免费文献传递   相关文献

Advances in the Studies on Salt Tolerance of Fruit Trees

果树耐盐性研究进展



全 文 :园 艺 学 报 2014,41(9):1761–1776 http:// www. ahs. ac. cn
Acta Horticulturae Sinica E-mail:yuanyixuebao@126.com
收稿日期:2014–06–19;修回日期:2014–09–09
基金项目:国家自然科学基金项目(31460057);石河子大学博士基金项目(RCZX200908)
* 通信作者 Author for correspondence(E-mail:lxyshz@126.com;Tel:18999538195)
果树耐盐性研究进展
靳 娟,鲁晓燕*,王 依
(石河子大学农学院,特色果蔬栽培生理与种质资源利用兵团重点实验室,新疆石河子 832000)
摘 要:综述了盐胁迫对果树的伤害和不同果树的耐盐性,从细胞膜透性、保护酶系统、光合作用
和渗透调节 4 个方面概括了果树对盐胁迫的生理生化响应,总结了果树应答盐胁迫的功能基因和调控基
因,并对今后果树的盐胁迫研究作出了展望,旨在为进一步开展本领域研究提供信息。
关键词:果树;耐盐性;生理生化响应;分子应答
中图分类号:S 66 文献标志码:A 文章编号:0513-353X(2014)09-1761-16

Advances in the Studies on Salt Tolerance of Fruit Trees
JIN Juan,LU Xiao-yan*,and WANG Yi
(College of Agriculture,Shihezi University,Xinjiang Production and Construction Corps Key Laboratory of Special Fruits
and Vegetables Cultivation Physiology and Germplasm Resources Utilization,Shihezi,Xinjiang 832000,China)
Abstract:This paper reviews the injury of salt stress caused to fruit trees and the salt tolerance of
different fruit trees. The physiological and biochemical responses of fruit trees to salt stress are discussed
from cell membrane integraty,protective enzyme system,photosynthesis and osmotic adjustment
respectively. This paper also summarizes the functional and regulatory genes involved in molecular
response to salt stress,and the future research on salt stress of fruit trees is prospected.
Key words:fruit trees;salt tolerance;physiological and biochemical responses;molecular
responses

土壤盐渍化是影响农业生产的世界性问题,全球近 20%的耕地和近半数的灌溉土地都受到不同
程度的盐害威胁(Zhu,2001)。土壤中较多的盐分通过引起渗透胁迫(Xiong & Zhu,2002;Munns
& Tester,2008)、离子毒害(Tester & Davenport,2003;Zhu,2003)和氧化胁迫(Hasegawa et al.,
2000;Zhu,2001,2003;Xiong & Zhu,2002)等方式影响植物的生长和发育。植物对土壤盐渍化
的适应有避盐和耐盐两种方式(赵可夫,2002)。植物盐胁迫诱导信号转导途径主要有盐过敏感(Salt
overly sensitive,SOS)信号转导途径、钙依赖蛋白激酶(Calcium-dependent protein kinase,CDPK)
级联反应途径、磷脂信号通路和促有丝分裂活化蛋白激酶(Mitogen-activated protein kinase,MAPK)
级联反应途径及脱落酸(Abscisic acid,ABA)信号通路途径(Xiong et al.,2002;Zhu,2002;Colcombet
& Hirt,2008)。
果树大多为多年生木本植物,在盐胁迫条件下经过长期的适应和驯化形成了应答盐胁迫的机

1762 园 艺 学 报 41 卷
制,但由于果树生长周期长、遗传背景复杂,目前果树的耐盐性研究远不如模式植物深入。本
文综述了盐分对果树的危害、不同果树的耐盐性、果树对盐胁迫的生理应答及分子应答等方面
的研究成果,以供参考。
1 盐胁迫对果树的伤害
果树属于对盐敏感的植物,生长极限盐度小,平均为 1.4 dS · m-1(赵可夫,1993)。综合目前研
究报道盐胁迫对果树种子萌发的影响有 3 种情况。①低浓度的盐不影响果树种子的发芽,高浓度的
盐抑制发芽:当 NaCl 浓度 ≥ 60 mmol · L-1 时,‘坪山柚’和‘福橘’的种子萌发率显著降低,相
对盐害率显著升高;当 Na2SO4 浓度 ≥ 30 mmol · L-1 时显著抑制酸枣种子的发芽率和发芽势;低浓
度的盐处理对这 3 种果树种子的发芽率都没有影响(马翠兰 等,2003;潘贤良 等,2013)。②随着
盐浓度的增加,种子的萌发率逐渐降低:随着 NaCl 浓度的增加,沙枣(孙贵,2000)、酸枣(不合
力杰木 等,2012)、柠檬(Kaushal et al.,2013;Sharma et al.,2013)种子的发芽率均逐渐降低。
③低浓度混合盐碱溶液对沙枣种子的萌发具有促进作用,而高浓度混合盐碱溶液则抑制沙枣种子的
萌发(齐曼 · 尤努斯 等,2006;王柏青和王耀辉,2008)。
植物在盐胁迫下最常见和最显著的生理过程是生长受到抑制(Takemura et al.,2000;Zhu,2002;
Munns & Tester,2008)。果树盐害等级的分类国内最早由王业遴等(1990)报道,其分类主要参考
标准为叶尖、叶缘或叶脉变黄;叶尖叶缘焦枯;落叶;枝条枯死,植株死亡。沙枣幼苗在 NaCl 胁
迫下出现叶片变黄变窄、幼叶轻微变厚、底部老叶干枯、脱落和幼苗死亡的现象(孙贵,2000);株
高净增长、侧枝数、叶生长参数、生物量累积均低于对照(刘正祥 等,2014)。郭艳超等(2011)
发现八棱海棠幼苗受到 NaCl 胁迫后表现出叶片萎蔫、黄化、枯焦,最终脱落死亡的盐害症状。在
樱叶海棠和西府海棠(Yin et al.,2010)、腰果(Marques et al.,2013)上的研究也证实了 NaCl 胁迫
对果树生长的抑制作用。
盐胁迫会降低果实的产量。NaCl 胁迫使伏令夏橙和葡萄柚产量减少、果皮变薄、成熟期延迟,
但不影响果实大小和品质(Francois & Clark,1980)。24 年生的华盛顿脐橙,在用 20 mmol · L-1 NaCl
灌溉 5 年后,结果数比用 5 mmol · L-1 NaCl 灌溉的减少 38%(Howie & Lloyd,1989)。高盐胁迫虽
然抑制了果实的生长,但由于果实成熟期推迟,果实生长期长,果实大小和对照基本一样(Storey &
Walker,1998)。
2 不同果树的耐盐性
果树耐盐性鉴定指标主要有形态指标,盐害等级、盐害指数和盐害率,生长量指标,生理生化
指标(马翠兰 等,2000;郑丽锦 等,2003)和分子生物学指标。
目前果树的耐盐性鉴定主要集中在不同树种的耐盐性比较和耐盐砧木的选择。葡萄、柑橘、枣、
梨、苹果、桃、柿等 19 种果树均能在盐碱条件下生长(陈瑞珊,1981)。石榴、无花果、杜梨、葡
萄、毛桃 5 种果树的耐盐性依次减弱(王业遴 等,1990;马凯 等,1997)。苹果、桃、李、杏及柠
檬对盐胁迫敏感(拉夏埃尔 · W,1980)。葡萄砧木‘贝达’、‘盐溪’、‘Kober 5 BB’、‘520 A’、‘1103’、
‘无核白’为耐盐品种,‘SO4’、‘Conderc1613’、‘Delight’、‘3309’、‘Salt Creek’、‘巨峰’、‘775’
为中度耐盐品种,‘Richter 110 R’、‘Barvera’、‘黑奥林’不耐盐;苹果砧木珠美海棠、毛山荆子、
楸子、Luo-2、东北黄海棠、新疆黄海棠为耐盐品种,‘M9’、‘M16’、‘M26’、‘MM106’、小金海
棠、八棱海棠、平邑甜茶为中度耐盐品种,丽江山荆子、山荆子、林芝海棠、红三叶海棠、巴东海
9 期 靳 娟等:果树耐盐性研究进展 1763

棠、河南海棠、‘SH15’、‘M4’、‘M11’、‘M27’不耐盐(李天忠和张志宏,2008)。柑橘砧木耐盐
性由强到弱的一般顺序为:印度酸橘、酸橙、甜橙、施文格枳柚、粗梓檬、枳(陈竹生 等,1992;
Maas,1993;Sykes,2011)。由于以上研究的环境条件、选取的试验材料和试验手段不同,结论也
相互有异。
3 果树对盐胁迫的生理应答
3.1 细胞膜透性
膜系统是植物盐害的主要部位,细胞膜是感受逆境胁迫最敏感的部位之一(Simon,1974)。葡
萄(廖祥儒 等,1996,1997;秦红艳 等,2010)、枣(徐呈祥 等,2011)和苹果(卢艳 等,2011)
叶片的细胞膜透性均随 NaCl 胁迫浓度的升高而增大。Bastam 等(2013)发现水杨酸( Salicylic acid,
SA)可以降低 NaCl 胁迫下阿月浑子叶片的电解质渗漏率,降低相对含水量以减轻盐害。
植物在衰老或逆境条件下往往发生膜脂过氧化作用,丙二醛(Malondialdehyde,MDA)是膜脂
过氧化的主要产物之一,膜和细胞中的许多生物功能分子如蛋白质、核酸和酶均可受其破坏(王爱
国 等,1986)。NaCl 胁迫使枣(徐呈祥 等,2011)、珠美海棠(马丽清 等,2006)、山荆子(马
丽清 等,2006)和八棱海棠(郭艳超 等,2011)叶片的 MDA 含量增加,使叶片受到伤害。
3.2 保护酶系统
植物在盐胁迫下能产生大量活性氧(Reactive oxygen species,ROS),当体内的 ROS 累积到一
定水平时就会对植株造成伤害。植物在长期进化过程中也相应形成了酶促和非酶促两大类保护系统,
以减轻或避免活性氧对细胞造成伤害(Smirnoff,1993;Asada,1999;Shigeoka et al.,2002)。参
与抗氧化清除反应的酶类主要有超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化氢酶
(Catalase,CAT)、抗坏血酸过氧化物酶(Ascorbate peroxidase,APX)等;非酶促机制中直接参与
ROS 清除的抗氧化物有抗坏血酸(Ascorbic acid,AsA)、谷胱甘肽(Glutathione,GSH)等(Arora
et al.,2002;Blokhina et al.,2003;Smirnoff,2005;尹永强 等,2007;Andronis & Roubelakis- Angelakis,
2010)。中度 NaCl 胁迫下苹果属植物‘MM106’叶片的 SOD 和 POD 活性升高,CAT 活性降低
(Molassiotis et al.,2006),‘富士’苹果愈伤组织及组培苗的抗氧化酶活性的变化与之相似(Wang
et al.,2013);但是 NaCl 胁迫下珠美海棠叶片中 SOD 活性保持稳定(马丽清 等,2006);苹果砧
木‘M26’的叶片在 NaCl 胁迫后期 SOD 活性下降(卢艳 等,2011)。随着 NaCl 胁迫浓度的升高,
樱桃砧木‘Gisela 5’(Erturk et al.,2007)和葡萄砧木‘山河 1 号’、‘河岸 3 号’、‘SO4’和‘Dog
Ridge’(李会云和郭修武,2008)叶片 SOD、POD、CAT 的活性先升高后降低。此外,AsA、GSH
等抗氧化物质已被证明与果树水分胁迫、寒害等逆境生理有关,但在果树耐盐性上尚未见报道。
3.3 光合作用
NaCl 胁迫下,葡萄(廖祥儒 等,1996;邢庆振 等,2011)、枣(徐呈祥和徐锡增,2005)、柠
檬(Garcia et al.,1993)、柑橘(Karstens et al.,1993;Banuls & Prino,1995)叶片的净光合速率(Net
photosynthetic rate,Pn)下降;同种砧木上的柑橘‘Narel’比‘Clementine’叶片的 Pn 下降快(Banuls
& Prino,1995)。高光林等(2003)认为盐逆境所产生的渗透胁迫和离子毒害而引起的气孔性限制
和非气孔性限制是果树叶片 Pn 下降的主要原因。柠檬(Schreiner & Zozor,1996)和枣(徐呈祥 等,
2011)叶片在 NaCl 胁迫下叶绿素含量均显著降低。
1764 园 艺 学 报 41 卷
3.4 渗透调节
渗透调节机制包括无机渗透调节和有机渗透调节。渗透调节物质主要的特点就是在高浓度时不
损害细胞正常生理的情况下,可以保护酶的代谢反应,降低盐对多种酶的抑制作用,这种保护作用
属于被动适应(赵可夫,1993)。盐生植物以无机离子为主要渗透调节剂(Rodriguez et al.,1997;
Hasegawa et al.,2000);非盐生植物则以 K+和有机渗透调节物质为主要的渗透调节剂(赵可夫,
1993)。
参与果树盐胁迫渗透调节的无机离子主要有 Na+、K+和 Cl-(Gucci & Tattini,1997;Ruiz et al.,
1999)。盐胁迫往往使果树细胞内 Na+增加,导致 K+外渗,当 K+/Na+比值降低到阈值(< 1)时果树
即受害(Gorham et al.,1985)。低浓度 NaCl 使石榴和桃叶片 K+/Na+明显提高,高浓度 NaCl 降低了
K+/Na+,且存活植株各部分 K+/Na+ > 1,死亡植株的 K+/Na+ < 1(汪良驹 等,1995),这与 Greenway
和 Munns(1980)提出的非耐盐性植物 Na+/K+应不高于 1 相吻合。Agrawal 等(2013)用不同浓度
的 NaCl 处理印度枣的两个品种‘Gola’和‘Umran’,发现‘Gola’根部和‘Umran’叶片分别聚
集了较高浓度的 Na+,造成‘Gola’叶片的 K+/Na+提高,说明‘Gola’可以通过抑制 Na+从根部向
叶片运输和在叶片中积累 K+来提高耐盐性。与对照相比,NaCl 胁迫下腰果(Marques et al.,2013)
和龙眼(Mahouachi et al.,2013)叶片的 Na+和 Cl-含量增加。Sharma 等(2011)发现腐胺(Putrescine,
Put)和多效唑(Paclobutrazol,PBZ)处理可以降低柑橘砧木‘卡尔纳尔’叶片中 Na+和 Cl-含量,
增加 K+含量,这说明‘卡尔纳尔’可以通过调控相关离子吸收以增强耐盐性。随着土壤 NaCl 浓度
的升高,银杏、石榴、葡萄、桃和猕猴桃等 5 种落叶果树体内 Cl- 含量增加,但不同树种的表现差
异明显,银杏可以通过老叶脱落向体外排出更多的 Cl-,银杏和石榴可能具有某种减少 Cl-进入体内
和向地上部运输的机制,耐盐性较强(汪良驹 等,1996)。
盐胁迫下,果树体内常合成和积累一些有机物质,以降低细胞渗透势,适应盐渍环境。NaCl
胁迫下葡萄品种‘里扎马特’的愈伤组织(陈耀锋 等,1997),苹果属植物八棱海棠(郭艳超 等,
2011;王锴 等,2013)、湖北海棠和山荆子(杨文翔,2011)的叶片游离脯氨酸含量增加。汪良驹
等(1989)报道 NaCl 诱导无花果叶片可溶性蛋白质和脯氨酸的积累与处理的 NaCl 溶液浓度有关:
可溶性蛋白质的积累在 NaCl 0 ~ 250 mmol · L-1 范围内几乎随 NaCl 浓度增加而直线上升,在 250 ~
300 mmol · L-1 间保持稳定,超过 300 mmol · L-1 时急剧下降,说明 NaCl 诱导无花果叶片的蛋白质的
积累具有一定的浓度范围;游离脯氨酸的含量随 NaCl 浓度的增加呈“S”型变化,以 NaCl 浓度为
200 ~ 300 mmol · L-1 时游离脯氨酸的增加量最大,这可能与该范围内可溶性蛋白质含量高有关。Yin
等(2010)采用含 200 mmol · L-1 NaCl 的营养液处理 15 种苹果属植物水培苗,发现东北黄海棠、大
果红三叶海棠、楸子和小金海棠叶片的可溶性蛋白质含量升高,其余 11 种叶片的可溶性蛋白质含量
变化不显著。NaCl 胁迫下柠檬的愈伤组织(Piqueras et al.,1996),‘坪山柚’的根(马翠兰和刘星
辉,2004),枳橙(Duke et al.,1986)、伏令夏橙、华盛顿脐橙和马叙葡萄柚(Lloyd et al.,1990)
的叶片均能积累甜菜碱。甜菜碱积累可提高细胞的渗透调节能力,稳定细胞内大分子及细胞膜的结
构和功能,是有利于避免盐胁迫伤害的生理效应。
4 果树对盐胁迫的分子应答
4.1 果树应答盐胁迫的功能基因
4.1.1 渗透调节物质合成基因
在盐胁迫下植物可以通过合成一些小分子有机物质如脯氨酸、甜菜碱、甘露醇、山梨醇等来提
9 期 靳 娟等:果树耐盐性研究进展 1765

高细胞保水能力,防止细胞内大量被动脱水,以减轻盐分对细胞的毒害(Yancey et al.,1982)。
脯氨酸是植物在盐胁迫下主要的渗透调节物质之一,它不仅是细胞结构和酶的保护剂、氮源等,
还具有防止质膜通透性变化、保护质膜完整和稳定膜结构的作用(Mansour,1998)。脯氨酸的合成
是通过谷氨酸和鸟氨酸两条途径进行的(Delauney & Verma,1993),Δ1–吡咯啉–5–羧酸合成酶
(Pyirroline-5-carboxylate synthetase,P5CS)是脯氨酸在谷氨酸合成途径中的关键酶(Hu et al.,1992)。
在 NaCl 胁迫下葡萄耐盐品种‘Razegui’比盐敏感品种‘Syrah’VvP5CS 基因转录水平高,脯氨酸
含量提高了 34%(Daldoul et al.,2010)。冯远航等(2013)报道在 200 mmol · L-1 NaCl 胁迫下,枸
杞 LmP5CS 基因表达量随处理时间延长先升高后降低,处理 9 h 表达量最高,脯氨酸含量变化与之
一致,表明 P5CS 基因在盐胁迫下脯氨酸含量的变化中起关键作用。
甜菜碱在植物叶绿体中由胆碱经两步不可逆的氧化反应合成:胆碱→甜菜碱醛→甜菜碱,其中
胆碱单加氧酶(Cholinemonooxygenase,CMO)催化第一步反应,第二步反应则由甜菜碱醛脱氢酶
(Betaine aldehyde dehydrogenase,BADH)催化完成(Hanson & Scott,1980;Rhodes & Hanson,
1993;Sakamoto & Murata,2000)。在柿叶片中通常检测不到甜菜碱,但转化了 CMO 基因的柿具有
积累甜菜碱能力,而且抗盐性提高(Gao et al.,2000)。Fu 等(2011)将 BADH 基因转入柑橘常用
砧木枸橼中,显著提高了其耐盐能力。
甘露醇和山梨醇都属于多元醇,具有多个羟基,亲水性强,能够有效地维持细胞内水的活度,
从而有效抵抗盐胁迫下细胞的渗透脱水,提高耐盐性(Orthen et al.,1994)。山梨醇不仅是很多蔷薇
科植物的主要光合产物,也是碳水化合物的主要运输形式和贮藏物质,而且在盐渍、干旱等逆境条
件下果树体内会大量积累山梨醇来缓解胁迫对植物的危害(梁冬,2010)。在果树中参与山梨醇代谢
相关的酶主要是 6–磷酸山梨醇脱氢酶(6-phosphaogluconate dehydrogenase,S6PDH)、山梨醇脱氢
酶(Sorbitol dehydrogenase,SDH)和山梨醇氧化酶(Sorbitol oxidase,SOX),其中 S6PDH 是合成
山梨醇的关键酶(Tao et al.,1995)。Gao 等(2000)将 S6PDH 基因 cDNA 导入柿中,对转基因植
株进行耐盐性比较试验和气相色谱检测时发现,与对照植株相比,山梨醇含量增加,Fv / Fm的减少
量降低,说明 S6PDH 基因提高了柿的耐盐性。苹果、梨和桃在 NaCl 胁迫下诱导 S6PDH 基因表达,
山梨醇积累(Kanayama et al.,2007)。
4.1.2 离子转运和重建离子平衡的有关基因
植物在液泡中积累 Na+,是抵御盐胁迫损伤的主要机制(刘友良 等,1987)。该过程主要是依
靠质膜和液泡膜上的 Na+/H+逆向转运蛋白完成(Niu et al.,1995;Yamaguchi et al.,2003),其驱动
力来源于液泡 H+-ATPase 和 H+-PPase 产生跨液泡膜的 H+电化学势梯度(Dietz et al.,2001)。Apse
等(1999)从拟南芥中克隆出第 1 个植物 Na+/H+逆向转运蛋白基因 NHX1。在柑橘(Porat et al.,2002)、
葡萄(Hanana et al.,2007)和珠美海棠(Zhang et al.,2009)等果树中也相继克隆出 Na+/H+逆向转
运体基因。Li 等(2010)在苹果砧木‘M26’中超表达液泡膜 Na+/H+逆向转运蛋白基因,在不同程
度上提高了植株根系在盐胁迫条件下的 Na+和 K+的含量;同时降低了叶片中 Na+的含量,表明
MdNHX1 可以提高苹果砧木‘M26’的耐盐性。
4.1.3 编码抗逆蛋白的基因
植物水通道蛋白(Aquaporins,AQPs)可通过提高质膜的渗透性介导水分子或中性小分子在生
物膜之间的快速运输过程。水通道蛋白是 MIP 家族的重要成员之一,在植物中水通道蛋白可分为 4
个主要的亚族:定位在质膜的质膜内在蛋白(PIPs),定位于液泡膜的液泡膜内在蛋白(TIPs),类
NOD-26 MIP 蛋白(NIPs)及小分子碱性膜内在蛋白(SIPs)(Postaire et al.,2008;Wudick et al.,
2009)。
在逆境条件下,转录水平以及蛋白质水平上大多数 AQPs 表达下降,导致 AQPs 通道活性下降
1766 园 艺 学 报 41 卷
甚至消失,从而限制了植物体内水分流失,维持水分平衡,增加了植物对胁迫因子的耐受能力
(Kaldenhoff & Fischer,2006)。在桃(Sugaya et al.,2001)、葡萄(Baiges et al.,2001;Fouquet et
al.,2008)、柑橘(Rodríguez-Gamir et al.,2011)和龙眼(陈虎 等,2012)等果树中已克隆出 AQP
基因。Rodríguez-Gamir 等(2012)研究了在 80 mmol · L-1 NaCl 处理条件下 PIP 水通道蛋白类基因
在印度酸橘、卡里佐枳橙和枳的表达与根电导率、蒸腾速度和氯离子运输的关系,结果表明,高浓
度的 NaCl 处理虽然降低了蒸腾速率和根系电导率,但长期的盐胁迫处理并不影响水通道蛋白的表
达,这说明柑橘的 PIP 水通道蛋白类基因可能在提高柑橘的耐盐性过程中具有一定的作用。李擎天
等(2012)通过对珠美海棠盐胁迫微列阵分析,从盐胁迫 cDNA 文库中分离得到的水通道蛋白基因
MzPIP1;1 受到盐诱导,初步判断 MzPIP1;1 基因在盐胁迫下的表达调控与珠美海棠耐盐能力密切相
关。
胚胎发育晚期富集蛋白(Late embryogenesis abundant proteins,LEA 蛋白)是目前受关注的一
类逆境胁迫诱导蛋白。Ingram 和 Bartels(1996)根据氨基酸序列的同源性以及一些特殊的基因序列,
将 LEA 蛋白分为 6 族,即 LEAD19(1 族)、LEAD11(2 族)、LEAD7(3 族)、LEAD113(4 族)、
LEAD29(5 族)以及 LEAD95(6 族)。其中 2 族 LEA 蛋白,又被称为脱水素,是在高等植物中研
究比较多的 LEA 蛋白(Rorat,2006;Hara,2010)。众多研究表明 LEA 基因的功能主要与抗逆性有
关,如干旱、低温、盐胁迫等均能诱导 LEA 基因的表达(刘洋 等,2011)。Shekhawat 等(2011a)
在香蕉中发现了一种新的 SK3 型脱水素基因 MusaDHN-1,在盐胁迫下过量表达该基因,可以提高
香蕉体内的脯氨酸含量,降低 MDA 含量,从而提高香蕉的抗盐性。柑橘(Hara et al.,2004)在干
旱、盐胁迫等逆境下脱水素具有清除羟自由基和过氧自由基的作用。100 mmol · L- 1 NaCl 处理可以
诱导‘Razegui’葡萄 VvDHN 基因的表达(Daldoul et al.,2010)。
4.2 果树应答盐胁迫的调控基因
4.2.1 AP2/ERF 类转录因子
AP2/ERF 转录因子是植物所特有的一类转录因子,是一个由众多成员组成的转录因子家族。
AP2/ERF 转录因子根据其保守域不同,分为 AP2 亚家族、RAV 亚家族、ERF 亚家族、DREB 亚家
族和其他类别(Xu et al.,2011)。许多逆境下诱导的 DREB 转录因子基因被克隆鉴定,它们通过结
合启动子区域 DRE/CRT 顺式作用元件来调控基因的表达(Yamaguchi & Shinozaki,2006)。
目前已在葡萄(Licausi et al.,2010)、桃(Zhang et al.,2012)、猕猴桃(Yin et al.,2012)等
果树上对 AP2/ERF 家族进行了表达分析。Yang 等(2011a)在柑橘中首次分离得到 CitERF 基因,
发现盐胁迫可以诱导柑橘 CitERF 的表达。八棱海棠 MrDREBA6 转录因子的表达受到高盐的诱导,
并具有组织特异性,说明该转录因子参与生长发育及逆境调控的过程(付晓燕 等,2009)。MbDREB1
基因的表达可以提高山荆子的耐盐性(Yang et al.,2011b)。赵涛(2013)在苹果基因组中总共鉴定
出 68 个 DREB 基因(MdDREB),实时荧光定量 PCR 结果表明,NaCl 处理下 MDP0000218344 被显
著诱导,MDP0000198054、MDP0000147009 和 MDP0000151428 被轻微诱导。Zhao 等(2014)在
葡萄基因组中鉴定出 38 个 VvDREB 基因,基因芯片分析结果表明 VvDREB05、VvDREB16、VvDREB25、
VvDREB27、VvDREB28、VvDREB30 和 VvDREB38 在盐胁迫下表达量显著增加。
4.2.2 MYB 转录因子
MYB 类转录因子是转录因子中数量最多,功能最多样化的转录因子家族之一,在植物胁迫应
答过程中起着重要的调控作用(Riechmann et al.,2000;刘蕾 等,2008)。目前已在拟南芥(Arabidopsis
thaliana)、葡萄(V. vinifera)等多种植物中对 MYB 基因进行了研究(Daldoul et al.,2010),分析
显示拟南芥中至少含有 196 个 MYB 基因,葡萄中至少含有 124 个 MYB 基因(Wilkins et al.,2009)。
9 期 靳 娟等:果树耐盐性研究进展 1767

在葡萄上已鉴定了 108 个 R2R3-MYB 基因序列(Matus et al.,2008)。李晓玲(2012)经半定量 PCR
筛选获得 7 个盐诱导的葡萄 MYB 转录因子,经荧光定量验证表明以上 MYB 转录因子在不同盐处
理时间均受盐诱导表达。王春荣等(2014)以葡萄砧木‘1103P’为试材,获得了 4 个受盐强烈诱
导的 R2R3-MYB 基因,4 个基因在根、茎、叶和果实中呈组成型表达,但具有不同的表达水平,尤
其是 VvMYB112 在葡萄根系中具有较高的表达水平,VvMYB112 能响应 100 ~ 200 mmol · L-1 高盐处
理,表明其可能介导了根系特异的抗盐途径。Wang 等(2014)利用 RACE 技术从苹果(Malus ×
domestica)中分离得到了 R2R3-MYB 基因 MdSIMYB1,该基因能被盐逆境所诱导。Cao 等(2013)
通过全基因组分析从苹果基因组中鉴定出 229 个 MYB 基因,并把它们分为 45 个组,其中定位于细
胞核上的 MdoMYB121 可显著提高苹果的耐盐性。
4.2.3 WRKY 转录因子
WRKY 转录因子通过特异结合靶基因启动子中的 W 盒(T)(T)TGAC(C/T),来调控靶基因
的转录水平,参与植物对生物及非生物胁迫的应答,调控植物生长发育、形态建成及多种代谢途径,
行使其生物学功能。
许瑞瑞等(2012)利用生物信息学方法对苹果 MdWRKY 转录因子进行了分析预测,结果表明
MdWRKY 家族包含 116 个基因,分为 GroupⅠ、GroupⅡ和 GroupⅢ,其中 GroupⅡ又可细分为 5 个
亚类;苹果的 17 条染色体均有 WRKY 转录因子分布,其中第 1 条染色体上的分布最多,有 12 个
WRKY 基因分布。Shekhawat 等(2011b)在香蕉品种‘Karibale Monthan’过表达 MusaWRKY71,可
以提高香蕉对盐胁迫的抗性。蒋阿维等(2010)首次报道了 WRKY 在珠美海棠中参与盐应答。罗昌
国等(2013a,2013b)在湖北海棠中分别克隆到 AtWRKY40 的同源基因 MhWRKY40b 和 AtWRKY42
的同源基因 MhWRKY42,在 200 mmol · L-1 NaCl 胁迫处理不同时间后 MhWRKY40b 和 MhWRKY42 的
表达量均显著增加,推测这两个基因可能与湖北海棠的抗盐性有关系。此外,Zhu 等(2012)在葡
萄中克隆出盐诱导相关基因 VpWRKY3。侯丽霞等(2013)以抗性葡萄品种‘左优红’为材料,克
隆抗逆相关基因 VvWRKY13、VvWRKY45 和 VvWRKY71,实时定量 PCR 结果表明,150 mmol · L-1 NaCl
胁迫处理可诱导 VvWRKY13、VvWRKY45 和 VvWRKY71 的表达,其中 VvWRKY45 和 VvWRKY71 对
NaCl 反应较快且表达量高,推测这两个基因与葡萄对盐胁迫的响应密切相关。
5 果树中的 microRNA
MicroRNA(miRNA)是一类来自真核生物自身基因组的非编码小分子 RNA (Non-coding small
RNA)。Reinhart 等(2002)首次报道了植物的 miRNA,其功能主要在转录后水平上通过介导 mRNA
靶分子的切割或降低靶分子的翻译来调节植物基因的表达,从而调控植物器官的形态建成、生长发
育、激素分泌与信号转导以及植物对外界环境胁迫因素的应答能力(Mallory et al.,2005)。在对拟
南芥的研究中发现,miRNA397b 和 miRNA402 的表达受大多数逆境条件的诱导,NaCl 处理诱导
miRNA393 的表达(Sunkar & Zhu,2004)。目前已在苹果(Gleave et al.,2008;Yu et al.,2011)、
柑橘(Song et al.,2009;Wu et al.,2011)、葡萄(Pantaleo et al.,2010;Wang et al.,2011a,2011b)、
桃(Zhang et al.,2011;Gao et al.,2012;Luo et al.,2013)、山葡萄(Wang et al.,2012)中克隆了
很多 miRNA。对于果树 miRNA 的研究主要是利用 Sanger、454 技术、Solexa 等测序技术,检测不
同果树中已知的 miRNA,预测新的 miRNA,通过 Northern 杂交、基因芯片或 RT-PCR 进行试验验
证。但是在果树 miRNA 的生物学功能方面研究甚少,在果树上尚未见盐胁迫下 miRNA 表达与功能
研究的报道。
1768 园 艺 学 报 41 卷
6 问题与展望
(1)种质资源的评价和应用是果树新品种选育的重要基础,已有的研究对于果树不同树种(品
种)的耐盐性比较因试验的环境条件、选取的试验材料,试验方法、评价体系等不同导致评价结果
出现差异,结论也相互有异。因此进一步规范试验程序,明确试验标准,建立不同果树耐盐性鉴定
和评价的技术规程,明确不同树种(品种)的耐盐阈值,是比较果树耐盐性研究的关键,也是果树
育种亲本选择、砧木选择和盐碱地的生物改良的重要参考依据。
(2)果树耐盐性生理研究已开展了部分工作,但与模式植物的耐盐性研究相比尚不够系统深
入,系统研究不同果树的耐盐生理和调控机制,为果树产业的发展提供可靠的技术支撑,对于保障
果树产业健康持续发展和丰富植物耐盐性的基础理论都具有重要的价值。
(3)果树在长期的进化过程中,形成了丰富的遗传多样性,存在大量特异的资源,蕴藏着珍
贵的特有基因。加强对这些资源遗传多样性研究,挖掘有价值基因,阐明果树耐盐蛋白的功能及调
控机制在科学研究上具有重要的意义。
(4)植物耐盐性是一个受多基因控制的数量性状,克隆耐盐相关基因,通过遗传工程手段提
高果树的抗盐性,培育耐盐碱果树品种还有待进一步的努力。

References
Agrawal R,Gupta S,Gupta N K,Khandelwal S K,Bhargava R. 2013. Effect of sodium chloride on gas exchange,antioxidative defense mechanism
and ion accumulation in different cultivars of Indian jujube(Ziziphus mauritiana L.). Photosynthetica,51:95–101.
Andronis E A,Roubelakis-Angelakis K A. 2010. Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta
in contrast to long-term stress. Planta,231:437–448.
Apse M P,Aharon G S,Snedden W A. 1999. Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science,
285:1256–1258.
Arora A,Sairam R K,Srivastava G C. 2002. Oxidative stress and antioxidative system in plants. Current Science,82:1227–1238.
Asada K. 1999. The water-water cycle in chloroplasts:Scavenging of active oxygen and dissipation of excess photons. Annual Review of Plant
Physiology and Plant Molecular Biology,50:601–639.
Baiges I,Schaffner A R,Mas A. 2001. Eight cDNA encoding putative aquaporins in Vitis hybrid Richter-110 and their differential expression. Journal
of Experimental Botany,52:1949–1951.
Banuls J,Prino E M. 1995. Effects of salinity on some citrus scion rootstocks combinations. Annals of Botany,76:97–102.
Bastam N,Baninasab B,Ghobadi C. 2013. Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth
Regulation,69:275–284.
Blokhina O,Virolainen E,Fagerstedt K V. 2003. Antioxidants,oxidative damage and oxygen deprivation stress:A review. Annals of Botany,91:
179–194.
Buhelijiemu Wubulikasimul,Zaitongguli Zhumal,Wumaerjiang Yasen,Buayyixiamu Yiti,Qiman Yunus. 2012. Effects of NaCl stress on seed
germination and seedling growth of wild jujube(Ziziphus spinosus Hu.). Journal of Xinjiang Agricultural University,35 (4):312–316. (in
Chinese)
不合力杰木 · 吾不力卡斯木,再通古丽 · 朱玛,吾买尔江 · 亚森,布阿依夏姆 · 依提,齐曼 · 尤努斯. 2012. 盐胁迫对酸枣种子萌发
及幼苗生长的影响. 新疆农业大学学报,35 (4):312–316.
Cao Zhong-hui,Zhang Shi-zhong,Wang Rong-kai,Zhang Rui-fen,Hao Yu-jin. 2013. Genome wide analysis of the apple MYB transcription factor
family allows the identification of MdoMYB121 gene conferring abiotic stress tolerance in plants. PLoS ONE,8:1–13.
Chen Hu,He Xin-hua,Luo Cong,Deng Li-bao,Hu Ying,Li Ming-juan,Yang Li-tao. 2012. Cloning and expression of longan aquaporin(DLPIP1)
gene. Journal of Fruit Science,29 (2):225–230. (in Chinese)
陈 虎,何新华,罗 聪,邓立宝,胡 颖,李明娟,杨丽涛. 2012. 龙眼水通道蛋白基因(DLPIP1)的克隆与表达分析. 果树学报,
9 期 靳 娟等:果树耐盐性研究进展 1769

29 (2):225–230.
Chen Rui-shan. 1981. Salt tolerance of fruit plants. Journal of Hebei Agriculture,2:73–76. (in Chinese)
陈瑞珊. 1981. 果树植物的耐盐力. 河北农学报,2:73–76.
Chen Zhu-sheng,Nie Hua-tang,Ji Yu,Gan Jun-xin,Wu Yun-lun. 1992. Identification of salt-tolerance of citrus germplasm. Acta Horticulturae
Sinica,19 (4):289–295. (in Chinese)
陈竹生,聂华堂,计 玉,甘俊新,吴云伦. 1992. 柑桔种质的耐盐性鉴定. 园艺学报,19 (4):289–295.
Chen Yao-feng,He Pu-chao,Liao Xiang-ru,Gao He-xiang. 1997. Salt tolerance of proline accumulation variant lines come from homogeneous grape
somitic callus. Journal of Agricultural Biotechnology,5 (1):58–63. (in Chinese)
陈耀锋,贺普超,廖祥儒,高荷香. 1997. 同基因型葡萄愈伤组织脯氨酸累积变异系的抗盐性研究. 农业生物技术通报,5 (1):58–63.
Colcombet J,Hirt H. 2008. Arabidopsis MAPKs:A complex signaling network involved in multiple biological processes. Biochemical Journal,413:
217–226.
Daldoul S,Guillaumie S,Reustle G M,Krczal G,Ghorbel A,Delrot S,Mliki A,Höfer M U. 2010. Isolation and expression analysis of salt induced
genes from contrasting grapevine(Vitis vinifera L.)cultivars. Plant Science,179:489–498.
Delauney A J,Verma D P S. 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal,4 (2):215–223.
Dietz K J,Tavakoli N,Kluge C,Mimura T,Sharma S S,Harris G C,Chardonnens A N,Golldack D. 2001. Significance of the V-type ATPase
for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of Experimental Botany,52:
1969–1980.
Duke E R,Johnson C R,Koch K E. 1986. Accumulation of phosphorus,dry matter and betaine during NaCl stress of split-root citrus seedlings
colonized with vesicular-arbuscular mycorrhizal fungi on zero,one or two halves. New Phytologist,104:583–590.
Erturk U,Sivritepe N,Yerlikaya C,Bor M,Ozdemir F,Turkan F. 2007. Responses of the cherry rootstock to salinity in vitro. Biologia Plantarum,
51:597–600.
Feng Yuan-hang,Wang Gang,Ji Jing,Guan Chun-feng,Jin Chao. 2013. Cloning and expression on analysis of LmP5CS gene from Lycium chinense
Miller. China Biotechnology,33 (1):33–40. (in Chinese)
冯远航,王 罡,季 静,关春峰,金 超. 2013. 枸杞 LmP5CS 基因的克隆及表达分析. 中国生物工程杂志,33 (1):33–40.
Fouquet R,Le on C,Ollat N,Barrieu F. 2008. Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep,
27 (9):1541–1550.
Francois L E,Clark R A. 1980. Salinity effects on yield and fruit quality of Valencia orange. J Amer Soc Hort Sci,105:199–202.
Fu Xiao-yan,Peng Ri-he,Zhang Zhen,Qiao Yu-shan,Zhou Jun,Zhu Bo,Gao Feng,Tian Yong-sheng,Zhao Wei,Xiong Ai-sheng,Yao Quan-hong.
2009. Cloning and expression of transcription factor gene MrDREBA6 from Malus micromalus. Journal of Fruit Science,26 (6):761–768. (in
Chinese)
付晓燕,彭日荷,章 镇,乔玉山,周 军,朱 波,高 峰,田永生,赵 伟,熊爱生,姚泉洪. 2009. 八棱海棠中转录因子基因
MrDREBA6 的克隆及表达分析. 果树学报,26 (6):761–768.
Fu Xing-zheng,Khan E U,Hu Shuang-shuang,Fan Qi-jun,Liu Ji-hong. 2011. Overexpression of the betaine aldehyde dehydrogenase gene from
Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange(Poncirus trifoliata L. Raf.). Environmental and Experimental
Botany,74:106–113.
Gao Guang-lin,Jiang Wei-bing,Yu Kai-jin,Wang Liang-ju. 2003. A review of studies on effect of salt stress on photosynthesis in fruit crops. Journal
of Fruit Science,20 (6):493–497. (in Chinese)
高光林,姜卫兵,俞开锦,汪良驹. 2003. 盐胁迫对果树光合生理的影响. 果树学报,20 (6):493–497.
Gao M,Sakamoto A,Miura K,Murata N,Sugiura A,Tao R. 2000. Transformation of Japanese persimmon(Diospyros kaki Thunb.)with a bacterial
gene for choline oxidase. Molecular Breeding,6:501–510.
Gao Z H,Luo X Y,Shi T,Cai B,Zhang Z,Cheng Z M,Zhuang W B. 2012. Identification and validation of potential conserved microRNAs and
their targets in peach(Prunus persica L.). Molecules and Cells,34:239–249.
Garcia M F,Ortiz J M,GarCi A,Cerda A. 1993. Effect of salinity on growth ion content and CO2 assimilation rate in lemon varieties on different
rootstocks. Physiol Plant,89 (3):427–432.
1770 园 艺 学 报 41 卷
Gleave A P,Ampomah D C,Berthold S,Dejnoprat S,Karunairetnam S,Nain B,Wang Y Y,Crowhurst R N,MacDiarmid R M. 2008. Identifcation
and characterisation of primary microRNAs from apple(Malus domestica cv. Royal Gala)expressed sequence tags. Tree Genetics & Genomes,
4:343–358.
Gorham J,Jones R G W,McDonnell E. 1985. Some mechanisms of salt tolerance in crop plants. Plant and Soil,89:15–40.
Greenway H,Munns R. 1980. Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology and Plant Molecular Biology,
31:149–190.
Gucci R,Tattini M. 1997. Salinity tolerance in olive. Horticultural Reviews,21:177–184.
Guo Yan-chao,Wang Wen-cheng,Li Ke-ye,Wu Xin-hai,Dong Wen-qi,Wu Fei. 2011. Effects of NaCl stress on the growth and some physiological
indexes of Malus robusta Rehd. Chinese Agricultural Science Bulletin,27 (28):130–134. (in Chinese)
郭艳超,王文成,李克晔,吴新海,董文琦,吴 菲. 2011. NaCl 胁迫对八棱海棠幼苗生长及其生理指标的影响. 中国农学通报,27 (28):
130–134.
Hanana M,Cagnac O,Yamaguchi T,Hamdi S,Ghorbel1 A,Blumwald E. 2007. A grape berry(Vitis vinifera L.)cation/proton antiporter is associated
with berry ripening. Plant and Cell Physiol,48:804–811.
Hanson A D,Scott N A. 1980. Betaine synthesis from radioactive precursors in attached,water-stressed barley leaves. Plant Physiology,66:
342–348.
Hara M,Fujinaga M,Kuboi T. 2004. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiology and Biochemistry,
42:657–662.
Hara M. 2010. The multifunctionality of dehydrins:An overview. Plant Signal Behav,5:1–6.
Hasegawa P M,Bressan R A,Zhu J K,Bohnert H J. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology
and Plant Molecular Biology,51:463–499.
Hou Li-xia,Wang Wen-jie,Guo Xiu-ping,Fu Pei-ning,Liu Xin. 2013. Gene cloning and expression analysis of three WRKYs in Vitis vinifera L. Plant
Physiology Journal,49 (3):289–296. (in Chinese)
侯丽霞,王文杰,郭秀萍,傅佩宁,刘 新. 2013. 三个葡萄 WRKYs 基因的克隆及表达特性分析. 植物生理学报,49 (3):289–296.
Howie H,Lloyd J. 1989. Response of orchard‘Washington navel’orange Citrus sinensis(L.)Osbeck to saline water .Ⅱ Flowering,fruit set and
fruit growth. Australian Journal of Agricultural Research,40 (2):371–380.
Hu C A A,Delauney A J,Verma D P S. 1992. A bifunctional enzyme(Δ1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline
biosynthesis in plants. Proc Natl Acad Sci USA,89:9354–9358.
Ingram J,Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology,
47:377–403.
Jiang A-wei,Zhang Su-wei,Sun Yang-wu,Chu Xin-ran,Zhao Yu,Xu Xue-feng,Kong Jin. 2010. Expression analysis of WRKY family in response
to salt stress in Malus zumi Mats. Acta Horticulturae Sinica,37 (8):1213–1219. (in Chinese)
蒋阿维,张素维,孙杨吾,褚欣然,赵 宇,许雪峰,孔 瑾. 2010. 珠美海棠 MzWRKY 基因家族盐胁迫应答模式研究. 园艺学报,37
(8):1213–1219.
Kaldenhoff R,Fischer M. 2006. Aquaporins in plants. Acta Physiology,187:169–176.
Kanayama Y,Moriguchi R,Deguchi M,Kanahama K,Yamaki S. 2007. Effects of environmental stresses and abscisic acid on sorbitol-6-phosphate
dehydrogenase expression in Rosaceae fruit trees. Acta Horticulturae,738:375–381.
Karstens G S,Ebert G,Ludders P. 1993. Long-term and short-term effects of salinity on root respiration,photosynthesis and transpiration of citrus
rootstocks. Angewandte Botanik,67:3–8.
Kaushal M,Kumar L,Gill M I S,Choudhary O P,Bali S K. 2013. Effect of salinity on survival and growth performance of in vitro grown rough
lemon(Citrus jambhiri Lush.)seeds. Indian Journal of Biotechnology,12:281–286.
Laxiaaier · W. 1980. Plant physiology and ecology. Li Bo. trans. Beijing:Science Press:154. (in Chinese)
拉夏埃尔 · W. 1980. 植物生理生态学. 李博译. 北京:科学出版社:154.
Li Hui-yun,Guo Xiu-wu. 2008. Influence of NaCl on activities of protective enzymes and MDA content in grape rootstock leaves. Journal of Fruit
Science,25 (2):240–243. (in Chinese)
9 期 靳 娟等:果树耐盐性研究进展 1771

李会云,郭修武. 2008. 盐胁迫对葡萄砧木叶片保护酶活性和丙二醛含量的影响. 果树学报,25 (2):240–243.
Li Qing-tian,Zhao Yu,Zhou Qi-yun,Huang Li-fang,Jiang Yu-zhuang,Chen Hao,Kong Jin. 2012. Cloning and expression analysis of MzPIP1;1
gene from Malus zumi Mats. Journal of China Agricultural University,17 (3):63–68. (in Chinese)
李擎天,赵 宇,周绮云,黄黎芳,蒋玉妆,陈 浩,孔 瑾. 2012. 珠眉海棠水通道蛋白 MzPIP1;1 基因的克隆与表达分析. 中国农
业大学学报,17 (3):63–68.
Li Tian-zhong,Zhang Zhi-hong. 2008. Biology of modern fruit crops. Beijing:Science Press:229–231. (in Chinese)
李天忠,张志宏. 2008. 现代果树生物学. 北京:科学出版社:229–231.
Li Xiao-ling. 2012. Modifications of grape berry quality and MYB TFs induced by NaCl treatment[M. D. Dissertation]. Tai’an:Shandong Agricultural
University. (in Chinese)
李晓玲. 2012. NaCl 诱导的葡萄果实品质变化及 MYB 转录因子筛选[硕士论文]. 泰安:山东农业大学.
Li Y,Zhang Y,Feng F,Liang D,Cheng L,Ma F,Shi S. 2010. Over expression of a Malus vacuolar Na+/H+ antiporter gene(MdNHX1)in apple
rootstock M.26 and its influence on salt tolerance. Plant Cell Tiss Organ Cult,102:337–345.
Liang Dong. 2010. Molecular characteristics of genes involved in sorbitol metabolism in apple[Ph. D. Dissertation]. Yangling:Northwest A & F
University. (in Chinese)
梁 冬. 2010. 苹果山梨醇代谢相关基因的分子特性研究[博士论文]. 杨凌:西北农林科技大学.
Liao Xiang-ru,He Pu-chao,Wan Yi-zhen,Zhu Xin-chan. 1996. Injury of the leaves of grapevine cuttings under NaCl salt stress. Journal of Fruit
Science,13 (4):211–214. (in Chinese)
廖祥儒,贺普超,万怡震,朱新产. 1996. 盐胁迫对葡萄离体新梢叶片的伤害作用. 果树科学,13 (4):211–214.
Liao Xiang-ru,He Pu-chao,Zhu Xin-chan. 1997. Effect of zeatin on H2O2 scavenging system of Vitis vulpina leaf disks under salt stress. Acta
Botanica Sinica,39 (7):641–646. (in Chinese)
廖祥儒,贺普超,朱新产. 1997. 玉米素对盐渍下葡萄叶圆片 H2O2 清除系统的影响. 植物学报,39 (7):641–646.
Licausi F,Giorgi F M,Zenoni S,Osti F,Pezzotti M,Perata P. 2010. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis
vinifera. BMC Genomics,11:719.
Liu Lei,Du Hai,Tang Xiao-feng,Wu Yan-min,Huang Yu-bi,Tang Yi-xiong. 2008. The roles of MYB transcription factors on plant defense
responses and its molecular mechanism. Hereditas,30 (10):1265–1271. (in Chinese)
刘 蕾,杜 海,唐晓凤,吴燕民,黄玉碧,唐益雄. 2008. MYB 转录因子在植物抗逆胁迫中的作用及其分子机理. 遗传,30 (10):1265–1271.
Liu Yang,Xing Xin,Li De-quan. 2011. Studies on the classification and function of LEA proteins. Biotechnology Bulletin,8:36–42. (in Chinese)
刘 洋,邢 鑫,李德全. 2011. LEA 蛋白的分类与功能的研究进展. 生物技术通报,8:36–42.
Liu You-liang,Mao Cai-liang,Wang Liang-ju. 1987. Research advance of plant salt resistance. Plant Physiology Communication,(4):1–7. (in
Chinese)
刘友良,毛才良,汪良驹. 1987. 植物耐盐性研究进展. 植物生理学通讯,(4):1–7.
Liu Zheng-xiang,Zhang Hua-xin,Yang Sheng,Yang Xiu-yan,Di Wen-bin. 2014. Effects of NaCl stress on growth and photosynthetic characteristics
of Elaeagnus angustifolia seedlings. Scientia Silvae Sinicae,50 (1):32–40. (in Chinese)
刘正祥,张华新,杨 升,杨秀艳,狄文彬. 2014. NaCl 胁迫对沙枣幼苗生长和光合特性的影响. 林业科学,50 (1):32–40.
Lloyd J,Kriedemann P,Aspinall D. 1990. Contrasts between citrus species in response to salinization:An analysis of photosynthesis and water
relations of different rootstock-scion combinations. Physiol Plant,78:236–246.
Lu Yan,Wang Fei,Han Ming-yu,Zhao Liang-ming,Li Tao. 2011. Effect of NaCl stress on growth and photosynthetic characteristics of apple on four
different rootstock-scion combinations. Acta Agriculture Boreali-occidentalis Sinica,20 (8):106–110. (in Chinese)
卢 艳,王 飞,韩明玉,赵亮明,李 涛. 2011. NaCl 胁迫对 4 种砧穗组合苹果的生长及光合特性的影响. 西北农业学报,20 (8):
106–110.
Luo Chang-guo,Qu Shen-chun,Zhang Ji-yu,Wang San-hong,Qiao Yu-shan,Zhang Shi-jie,Liu Dan,Zhang Zhen. 2013a. Expression analysis
of Malus hupehensis(Pamp)Rehd. MhWRKY40b gene in response to several stresses. Acta Horticulturae Sinica,40 (1):1–9. (in Chinese)
罗昌国,渠慎春,张计育,王三红,乔玉山,张仕杰,刘 丹,章 镇. 2013a. 湖北海棠 MhWRKY40b 在几种胁迫下的表达分析. 园艺
学报,40 (1):1–9.
1772 园 艺 学 报 41 卷
Luo Chang-guo,Qiao Yu-shan,Liang Shen-chun,Zhang Ji-yu,Wang San-hong,Wang Hong,Liu Dan,Zhang Zhen. 2013b. Cloning and expression
of MhWRKY42 gene from Malus hupehensis. Journal of Nanjing Agricultural University,36 (3):29–35. (in Chinese)
罗昌国,乔玉山,渠慎春,张计育,王三红,王 红,刘 丹,章 镇. 2013b. 湖北海棠 MhWRKY42 基因克隆及表达分析. 南京农业
大学学报,36 (3):29–35.
Luo X,Gao Z,Shi T,Cheng Z,Zhang Z,Ni Z. 2013. Identification of miRNAs and their target genes in peach(Prunus persica L.)using
high-throughput sequencing and degradome analysis. PLoS ONE,8:e79090.
Ma Cui-lan,Liu Xing-hui,Chen Zhong-hai. 2000. Advances in response of fruit trees to salt stress and their salt-tolerance identification. Journal of
Fujian Agricultural University,29 (2):161–166. (in Chinese)
马翠兰,刘星辉,陈中海. 2000. 果树对盐胁迫的反应及耐盐性鉴定的研究进展. 福建农业大学学报,29 (2):161–166.
Ma Cui-lan,Liu Xing-hui,Du Zhi-jian. 2003. Effects of salt stress on seed germination and seedling growth of pomelo and citrus. Journal of Fujian
Agriculture and Forestry University:Natural Science Edition,32 (3):320–324. (in Chinese)
马翠兰,刘星辉,杜志坚. 2003. 盐胁迫对柚、福橘种子萌发和幼苗生长的影响. 福建农林大学学报:自然科学版,32 (3):320–324.
Ma Cui-lan,Liu Xing-hui. 2004. Analysis of salt stress factors in the seedlings of pomelo(Citrus grandis Osbeck). Chinese Journal of Tropical
Crops,25 (1):28–31. (in Chinese)
马翠兰,刘星辉. 2004. 盐对柚幼苗的胁迫效应分析. 热带作物学报,25 (1):28–31.
Ma Kai,Wang Liang-ju,Wang Ye-lin,Jiang Wei-bing,Gu Ping. 1997. Study on the symptoms of salt-injury and the tolerance of fruit trees. Journal
of Fruit Science,14 (1):1–5. (in Chinese)
马 凯,汪良驹,王业遴,姜卫兵,顾 平. 1997. 十八种果树盐害症状与耐盐性研究研究. 果树科学,14 (1):1–5.
Maas E V. 1993. Salinity and citriculture. Tree Physiology,12:195–216.
Mahouachi J,Fernandez G D,Gomez C A. 2013. Abscisic acid,indole-3-acetic acid and mineral nutrient changes induced by drought and salinity in
longan(Dimocarpus longan Lour.)plants. Acta Physiol Plant,35:3137–3146.
Ma Li-qing,Han Zhen-hai,Zhou Er-feng,Xu Xue-feng. 2006. Effect of salt stress on protective enzyme system of membrane in Malus zumi and M.
baccata. Journal of Fruit Science,23 (4):495–499. (in Chinese)
马丽清,韩振海,周二峰,许雪峰. 2006. 盐胁迫对珠美海棠和山定子膜保护酶系统的影响. 果树学报,23 (4):495–499.
Mallory A C,Bartel D P,Bartel B. 2005. MicroRNA-directed regulation of Arabidopsis AUXIN REPONSE FACTOR 17 is essential for proper
development and modulates expression of early auxin response genes. Plant Cell,17:1360–1375.
Mansour M M F. 1998. Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiol
Biochem,36:767–772.
Marques E C,de Freitas P A F,Alencar N L M,Prisco J T,Gomes-Filho E. 2013. Increased Na+ and Cl- accumulation induced by NaCl salinity
inhibits cotyledonary reserve mobilization and alters the source-sink relationship in establishing dwarf cashew seedlings. Acta Physiol Plant,35:
2171–2182.
Matus J T,Aquea F,Arce J P. 2008. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene
structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology,8:83–98.
Molassiotis A N,Sotiropoulos T,Tanou G,Kofidis G,Diamantidis G,Therios E. 2006. Antioxidant and anatomical responses in shoot culture of
the apple‘MM 106’treated with NaCl,KCl,mannitol or sorbitol. Biologia Plantarum,50:61–68.
Munns R,Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology,59:651–681.
Niu X,Bressan R A,Hasegawa P M,Pardo J M. 1995. Ion homeostasis in NaCl stress environments. Plant Physiol,109:735–742.
Orthen B,Popp M,Smirnoff N. 1994. Hydroxyl radical scavenging properties of cyclitols. Proceedings of the Royal Society of Edinburgh,102:
269–272.
Pan Xian-liang,Lu Xiao-yan,Wang Ce,Wang Jia-hui,Niu Jian-xin,Zhao Bao-long. 2013. Effect of Na2SO4 on seed germination and root growth
of sour jujube. Journal of Shihezi University:Natural Science,31 (1):14–17. (in Chinese)
潘贤良,鲁晓燕,王 策,王佳慧,牛建新,赵宝龙. 2013. Na2SO4 胁迫对酸枣种子萌发及根系生长的影响. 石河子大学学报:自然科
学版,31 (1):14–17.
Pantaleo V,Szittya G,Moxon S,Miozzi L,Moulton V,Dalmay T,Burgyan J. 2010. Identification of grapevine microRNAs and their targets using
9 期 靳 娟等:果树耐盐性研究进展 1773

high-throughput sequencing and degradome analysis. The Plant Journal,62:960–976.
Piqueras A,Hernandez J A,Olmos E,Hellin E,Sevilla F. 1996. Changes in antioxidant enzymes and organic solutes associated with adaptation of
citrus cells to salt stress. Plant Cell,Tissue and Organ Culture,45:53–60.
Porat R,Pavoncello D,Ben-Hayyim G,Lurie S. 2002. A heat treatment induced the expression of a Na+/H+ antiport gene(cNHX1)in citrus fruit.
Plant Science,16:957–963.
Postaire O,Verdoucq L,Maurel C. 2008. Aquaporins in plants:From molecular structures to integrated functions. Advances in Botanical Research,
46:77–78.
Qiman · Yunus,Li Yang,Muhetaer,Ma Ping-ting,Hisamitsu Takahashi,Shinpei Takahashi. 2006. Effects of salt stress treatment on seed germination
and seedlings physiological characteristics in Elaeagnus angustifolia L. Xinjiang Agricultural Sciences,43 (2):136–139. (in Chinese)
齐曼 · 尤努斯,李 阳,木合塔尔,马娉婷,高桥久光,高桥新平. 2006. NaCl、Na2SO4 胁迫对新疆大果沙枣种子萌发及生理特性的影
响. 新疆农业科学,43 (2):136–139.
Qin Hong-yan,Shen Yu-jie,Li Chang-yu,Yang Yi-ming,Fan Shu-tian,Wang Xin-wei,Ai Jun. 2010. Response of leaf lipid peroxidation and
protective enzyme activity of different grape varieties to salt stress. Northern Horticulture,(20):4–9. (in Chinese)
秦红艳,沈育杰,李昌禹,杨义明,范书田,王新伟,艾 军. 2010. 不同葡萄品种膜质过氧化和保护酶活性对盐胁迫的响应. 北方园
艺,(20):4–9.
Reinhart B J,Weinstein E G,Rhoades M W,Bartel B,Bartel D P. 2002. MicroRNAs in plants. Genes and Development,16:1616–1626.
Rhodes D,Hanson A D. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and
Plant Molecular Biology,44:357–384.
Riechmann J L,Heard J,Martin G,Reuber L,Jiang C Z,Keddie J,Adam L,Pineda O,Ratcliffe O J,Samaha R R,Creelman R,Pilgrim M,
Broun P,Zhang J Z,Ghandehari D,Sherman B K,Yu G L. 2000. Arabidopsis transcription factors:Genome-wide comparative analysis among
eukaryotes. Science,5499:2105–2110.
Rodriguez H G,Roberts J K M,Jordan W R. 1997. Growth,water relations,and accumulation of organic and inorganic solutes in roots of maize
seedlings during salt stress. Plant Physiology,113:881–893.
Rodríguez-Gamir J,Ancillo G,Aparicio F,Bordas M,Primo-Millo E,Forner-Giner M A. 2011. Water-deficit tolerance in citrus is mediated by the
down regulation of PIP gene expression in the roots. Plant and Soil,347:91–104.
Rodríguez-Gamir J,Ancillo G,Legaz F,Primo-Millo E,Forner-Giner M A. 2012. Influence of salinity on PIP gene expression in citrus roots and
its relationship with root hydraulic conductance,transpiration and chloride exclusion from leaves. Environmental and Experimental Botany,78:
163–166.
Rorat T. 2006. Plant dehydrins:Tissue location,structure and function. Cellular and Molecular Biology Letters,11:536–556.
Ruiz D,Martinez V,Cerd A. 1999. Demarcating specific ion(NaCl,Cl-,Na+)and osmotic effects in the responses of two cirtus rootstocks to salinity.
Scientia Horticulturae,20:213–224.
Sakamoto A,Murata N. 2000. Genetic engineering of glycine betaine synthesis in plants:Current status and implications for enhancement of stress
tolerance. Journal of Experimental Botany,51:81–88.
Schreiner T E,Zozor Y. 1996. Salinity influences photosynthetic characteristics water relations and foliar mineral composition Annona squamosa L.
Journal of the American Society for Horticultural Science,121:243–248.
Sharma D K,Dubey A K,Srivastav M,Singh A K,Sairam R K,Pandey R N,Dahuja A,Kaur C. 2011. Effect of putrescine and paclobutrazol on
growth,physiochemical parameters,and nutrient acquisition of salt-sensitive citrus rootstock karna khatta(Citrus karna Raf.)under NaCl stress.
Journal of Plant Growth Regulation,30:301–311.
Sharma L K,Kaushal M,Bali S K,Choudhary O P. 2013. Evaluation of rough lemon(Citrus jambhiri Lush.)as rootstock for salinity tolerance at
seedling stage under in vitro conditions. African Journal of Biotechnology,12:6267–6275.
Shekhawat U K S,Srinivas L,Ganapathi T R. 2011a. MusaDHN-1,a novel multiple stress-inducible SK3-type dehydrin gene,contributes
affirmatively to drought- and salt-stress tolerance in banana. Planta,234:915–932.
Shekhawat U K S,Ganapathi T R,Srinivas L. 2011b. Cloning and characterization of a novel stress-responsive WRKY transcription factor gene
(MusaWRKY71)from Musa spp. cv. Karibale Monthan(ABB group)using transformed banana cells. Mol Biol Rep,38:4023–4035.
1774 园 艺 学 报 41 卷
Shigeoka S,Ishikawa T,Tamoi M,Miyagawa Y,Takeda T,Yabuta Y,Yoshimura K. 2002. Regulation and function of ascorbate peroxidase
isoenzymes. Journal of Experimental Botany,53:1305–1319.
Simon E W. 1974. Phospholipids and plant membrane permeability. Plant Science,73:377–420.
Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist,125:27–58.
Smirnoff N. 2005. Antioxidants and reactive oxygen species in plants. Oxford:Blackwell Publishing.
Song C N,Fang J G,Li X Y,Liu H,Chao C T. 2009. Identification and characterization of 27 conserved microRNAs in citrus. Planta,230:671–685.
Storey R,Walker R R. 1998. Citrus and salinity. Scientia Horticulturae,78:39–81.
Sugaya S,Gemma H,Iwahori S. 2001. Isolation and expression analysis of a gene encoding a vacuolar-type water channel protein in peach fruit.
Journal of the Japanese Society for Horticultural Science,70:716–718.
Sun Gui. 2000. The effects of salt stress on seeds germination and seedlings growth of Elaeagnus angustifolia[M. D. Dissertation]. Jinan:
Shangdong Normal University. (in Chinese)
孙 贵. 2000. 盐胁迫对沙枣种子萌发及幼苗生长的效应[硕士论文]. 济南:山东师范大学.
Sunkar R,Zhu J K. 2004. Novel and stress-regulated microRNA and other small RNA from Arabidopsis. Plant Cell,16:2001–2019.
Sykes S R. 2011. Chloride and sodium excluding capacities of citrus rootstock germplasm introduced to Australia from the People’s Republic of
China. Scientia Horticulturae,128:443–449.
Takemura T,Hanagata N,Sugihara K,Baba S,Karube I,Dubinsky Z. 2000. Physiological and biochemical responses to salt stress in the mangrove,
Bruguiera gymnorrhiza. Aquatic Botany,68:15–28.
Tao R,Uratsu S L,Dandekar A M. 1995. Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate
dehydrogenase. Plant Cell Physiology,36:525–532.
Tester M,Davenport R. 2003. Na+ tolerance and Na+ transport in high plants. Annals of Botany,91:503–527.
Wang Ai-guo,Shao Cong-ben,Luo Guang-hua. 1986. Inquiry into malondialdehyde as index of peroxidation of plant lipids. Plant Physiology
Communications,(2):55–57. (in Chinese)
王爱国,邵从本,罗广华. 1986. 丙二醛作为植物膜质过氧化指标的探讨. 植物生理学通讯,(2):55–57.
Wang Bo-qing,Wang Yao-hui. 2008. Effect of mixed salt stress on seed germination of Elaeagnus angustifolia. Journal of Northeast Forestry
University,36 (12):11–12. (in Chinese)
王柏青,王耀辉. 2008. 混合盐碱胁迫对沙枣种子萌发的影响. 东北林业大学学报,36 (12):11–12.
Wang C,Han J,Liu C H,Kibet N K,Kayesh M,Shangguan L F,Li X Y,Fang J G. 2012. Identification of microRNAs from Amur grape(Vitis
amurensis Rupr.)by deep sequencing andanalysis of microRNA variations with bioinformatics. BMC Genomics,13:122.
Wang C,Shangguan L F,Kibet N K,Wang X C,Han J,Song C N,Fang J G. 2011a. Characterization of microRNAs identified in a table grapevine
cultivar with validation of computationally predicted grapevine miRNAs by miR-RACE. PLoS ONE,6 (7):e21259.
Wang C,Wang X C,Kibet N K,Song C N,Zhang C,Li X Y,Han J,Fang J G. 2011b. Deep sequencing of grapevine flower and berry short RNA
library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase. Physiol Plant,
143:64–81.
Wang Chun-rong,Wang Qing-jie,Li Xiao-ling,Yao Yu-xin,Hao Yu-jin. 2014. Screening and expression analysis of salt-induced R2R3-MYB genes
in grapevine. Acta Horticulturae Sinica,41 (3):529–535. (in Chinese)
王春荣,王庆杰,李晓玲,姚玉新,郝玉金. 2014. 葡萄中盐诱导的 R2R3-MYB 基因的筛选与表达分析. 园艺学报,41 (3):529–
535.
Wang K,Zhang L X,Gao M,Lü L X,Zhao Y G,Zhang L S,Li B Z,Han M Y,Ashok K. 2013. Influence of salt stress on growth and antioxidant
responses of two malus species at callus and plantlet stages. Pak J Bot,45 (2):375–381.
Wang Kai,Zhang Li-xin,Gao Mei,Zhao Yong-gui,Lü Li-xia,Zhang Lin-sen,Li Bing-zhi,Han Ming-yu. 2013. Effects of salinity on growth and
organic osmolytes accumulation of callus and tissue culture seedlings of two Malus. Acta Agriculture Boreali-occidentalis Sinica,22 (2):112–118.
(in Chinese)
王 锴,张立新,高 梅,赵永桂,吕丽霞,张林森,李丙智,韩明玉. 2013. 盐胁迫对 2 种苹果属植物愈伤组织及组培苗生长和有机
渗透调节物质累积的影响. 西北农业学报,22 (2):112–118.
9 期 靳 娟等:果树耐盐性研究进展 1775

Wang Liang-ju,Wang Ye-lin,Liu You-liang. 1989. Study on the mechanisms of salt tolerance . The accumulation of proline and soluble protein Ⅰ
under salt stress. Journal of Nanjing Agricultural University,12 (4):124–125. (in Chinese)
汪良驹,王业遴,刘友良. 1989. 无花果耐盐机理的研究 .Ⅰ 盐逆境下脯氨酸和可溶性蛋白的积累. 南京农业大学学报,12 (4):124–
125.
Wang Liang-ju,Ma Kai,Jiang Wei-bing,Ling Zhi-fen,Wang Ye-lin. 1995. Study on contents of sodium and potassium ions of pomegranate and
peach plants under sodium chloride stress and thire salt tolerance. Acta Horticulturae Sinica,22 (4):336–340. (in Chinese)
汪良驹,马 凯,姜卫兵,凌志奋,王业遴. 1995. NaCl 胁迫下石榴和桃植株 Na+、K+含量与耐盐性研究. 园艺学报,22 (4):336–340.
Wang Liang-ju,Ma Kai,Jiang Wei-bing,Wang Ye-lin. 1996. Study on chlorine ion distribution in the plant of 5 deciduous fruit trees and their salt
tolerance. South China Fruits,25 (4):34–38. (in Chinese)
汪良驹,马 凯,姜卫兵,王业遴. 1996. 五种落叶果树的氯离子分布与耐盐性研究. 中国南方果树,25 (4):34–38.
Wang R K,Cao Z H,Hao Y J. 2014. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco
and apples. Physiologia Plantarum,150:76–87.
Wang Ye-lin,Ma Kai,Jiang Wei-bing,Ling Zhi-fen,Gu Ping,Wu Bing,Chen Bing-quan,Ying Bao-qing. 1990. Report of salt tolerance of five
fruit trees. China Fruits,(3):8–12. (in Chinese)
王业遴,马 凯,姜卫兵,凌志奋,顾 平,吴 兵,陈炳泉,应宝清. 1990. 五种果树耐盐力试验初报. 中国果树,(3):8–12.
Wilkins O,Nahal H,Foong J,Provart N J,Campbell M M. 2009. Expansion and diversification of the populus R2R3-MYB family of transcription
factors. Plant Physiol,149:981–993.
Wu X M,Liu M Y,Ge X X,Xu Q,Guo W W. 2011. Stage and tissue-specific modulation of ten conserved miRNAs and their target during somatic
embryogenesis of Valencia sweet orange. Planta,233:495–505.
Wudick M M,Luu D T,Maurel C. 2009. A look inside:localization patterns and functions of intracellular plant aquaporins. New Phytol,184:
289–302.
Xing Qing-zhen,Yu Song-lin,Niu Ya-ping,Yu Kun,Song Man-man. 2011. Effects of salt stress on photosynthetic physiology and chlorophyll
fluorescence characteristics of grape(Red Globe)seedlings. Agricultural Research in the Arid Areas,29 (3):96–100. (in Chinese)
邢庆振,郁松林,牛雅萍,于 坤,宋曼曼. 2011. 盐胁迫对葡萄幼苗光合及叶绿素荧光特性的影响. 干旱地区农业研究,29 (3):
96–100.
Xiong L M,Schumaker K S,Zhu J K. 2002. Cell signaling during cold,drought,and salt stress. Plant Cell,14:S165–S183.
Xiong L,Zhu J K. 2002. Molecular and genetic aspects of plant response to osmotic stress. Plant,Cell and Environment,25:131–139.
Xu Cheng-xiang,Xu Xi-zeng. 2005. Effects of silicon on chlorophyll fluorescence and gas exchange of Zizyphus jujuba cv. Jinsixiaozao under salt
stress. Journal of Nanjing Forestry University:Natural Sciences Edition,29 (1):25–28. (in Chinese)
徐呈祥,徐锡增. 2005. 硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响. 南京林业大学学报:自然科学版,29 (1):25–28.
Xu Cheng-xiang,Xu Xi-zeng,Ma Yan-ping,Shang Xu-lan. 2011. Relationship between salt tolerances of Ziziphus jujuba cv. Jinsixiaozao and other
three cultivars and proton pump activities of plasma membrane and tonoplast in roots and leaves. Journal of Fruit Science,28 (2):221–228. (in
Chinese)
徐呈祥,徐锡增,马艳萍,尚旭岚. 2011. 金丝小枣等 4 个枣品种耐盐性与细胞质膜、液泡膜质子泵活性的关系. 果树学报,28 (2):
221–228.
Xu Rui-rui,Zhang Shi-zhong,Cao Hui,Shu Huai-rui. 2012. Bioinformatics analysis of WRKY transcription factor genes family in apple. Acta
Horticulturae Sinica,39 (10):2049–2060. (in Chinese)
许瑞瑞,张世忠,曹 慧,束怀瑞. 2012. 苹果 WRKY 转录因子家族基因生物信息学分析. 园艺学报,39 (10):2049–2060.
Xu Z S,Chen M,Li L C,Ma Z Y. 2011. Functions and application of the AP2/ ERF transcription factor family in crop improvement. J Integr Plant
Biol,53:570–585.
Yamaguchi T,Apse M P,Shi H,Blumwald E. 2003. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that
regulates antiporter cation selectivity. Proceedings of the National Academy of Sciences,100:12510–12515.
Yamaguchi S K,Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual
Review of Plant Biology,57:781–803.
1776 园 艺 学 报 41 卷
Yancey P H,Clark M E,Hand S C,Bowlus R D,Somero G N.1982. Living with water stress:Evolution of osmolyte systems. Science,217:
1214–1222.
Yang Wei,Liu Xiao-dan,Chi Xiao-juan,Wu Chang-ai,Li Yan-ze,Song Li-li,Liu Xiu-ming,Wang Yan-fang,Wang Fa-wei,Zhang Chuang,
Liu Yang,Zong Jun-mei,Li Hai-yan. 2011b. Dwarf apple MbDREB1 enhances plant tolerance to low temperature,drought,and salt stress via
both ABA-dependent and ABA-independent pathways. Planta,233:219–229.
Yang Wen-xiang. 2011. Effects of salt stress on the growth and physiological properties of three hitom stocks varieties[M. D. Dissertation]. Nanjing:
Nanjing Forestry University. (in Chinese)
杨文翔. 2011. 盐胁迫对三个海棠砧木品种生理及生长的影响[硕士论文]. 南京:南京林业大学.
Yang Xiao-yan,Xie Jin-xia,Lu Xiao-peng,Liu Yong-zhong,Peng Shu-ang. 2011a. Isolation of a citrus ethylene-responsive element binding factor
gene and its expression in response to abiotic stress,girdling and shading. Scientia Horticulturae,127:275–281.
Yin R,Bai T H,Ma F W,Wang X J,Li Y H,Yue Z Y. 2010. Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl
stress. Scientia Horticulturae,126:247–252.
Yin X R,Allan A C,Xu Q,Burdon J,Dejnoprat S,Chen K S,Ferguson I B. 2012. Differential expression of kiwifruit ERF genes in response to
postharvest abiotic stress. Postharvest Biology & Technology,66:1–7.
Yin Yong-qiang,Hu Jian-bin,Deng Ming-jun. 2007. Latest development of antioxidant system and responses to stress in plant leaves. Chinese
Agricultural Science Bulletin,23 (1):105–110. (in Chinese)
尹永强,胡建斌,邓明军. 2007. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展. 中国农学通报,23 (1):105–110.
Yu H P,Song C N,Jia Q D,Wang C,Shangguan L F,Kibet N K,Zhang X Y,Fang J G. 2011. Computational identification of microRNAs in apple
expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Planta,141:56–70.
Zhang C H,Shangguan L F,Ma R J,Sun X,Tao R,Guo L,Korir N K,Yu M L. 2012. Genome-wide analysis of the AP2/ERF superfamily in peach
(Prunus persica). Genet Mol Res,11:4789–4809.
Zhang Q X,Xu X F,Wang Y,Li T Z,Kong J,Han Z H. 2009. Isolation and preliminary function analysis of a Na+/H+ antiporter gene from Malus
zumi. African Journal of Biotechnology,8:4774–4781.
Zhang Y P,Yu M L,Yu H P,Han J,Song C N,Ma R J,Fang J G. 2011. Computational identification of microRNAs in peach expressed sequence
tags and validation of their precise sequences by miR-RACE. Mol Biol Rep,39 (2):1975–1987.
Zhao Ke-fu. 1993. Plant salt resistant physiology. Beijing:China Science and Technology Press:9–10,22–24. (in Chinese)
赵可夫. 1993. 植物抗盐生理. 北京:中国科学技术出版社:9–10,22–24.
Zhao Ke-fu. 2002. Plant salt resistant cells and physiological basis. Wuhan:Wuhan University Press:188–222. (in Chinese)
赵可夫. 2002. 植物抗盐细胞及其生理基础. 武汉:武汉大学出版社:188–222.
Zhao T,Xia H,Liu J Y,Ma F W. 2014. The gene family of dehydration responsive element-binding transcription factors in grape(Vitis vinifera):
Genome-wide identification and analysis,expression profiles,and involvement in abiotic stress resistance. Mol Biol Rep,41:1577–1590.
Zhao Tao. 2013. Genome-wide identification and analysis of the DREB transcription factor in apple and grapevine[M. D. Dissertation]. Yangling:
Northwest A & F University.
赵 涛. 2013. 苹果和葡萄中 DREB 转录因子家族鉴定与分析[硕士论文]. 杨凌:西北农林科技大学.
Zheng Li-jin,Zhang Xue-ying,Ge Hui-bo,Zhang Jie,Li Qing-yun. 2003. Advances on physiological and biochemical characteristics of fruit trees
to salt stress. Journal of Agricultural University of Hebei,26 (Supplement):41–44. (in Chinese)
郑丽锦,张学英,葛会波,张 洁,李青云. 2003. 果树盐胁迫生理生化特性的研究进展. 河北农业大学学报,26 (增刊):41–44.
Zhu J K. 2001. Plant salt tolerance. Trends Plant Science,6 (2):66–71.
Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology,53:247–273.
Zhu J K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,6:441–445.
Zhu Z G,Shi J L,Cao J L,He M Y,Wang Y J. 2012. VpWRKY3,a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis
pseudoreticulata. Plant Cell Rep,31:2109–2120.