免费文献传递   相关文献

Effects of Basic Fertilizer and Nitrogen Topdressing Treatments at Jointing Stage on Grain Textural Characteristics of Fresh Waxy Maize

基肥配比和拔节期追氮对鲜食糯玉米籽粒物性的影响


The results of a field experiment using Suyunuo 5 and Yunuo 7 indicated that fertilizer treatments significantly changed the textural properties, and the effects of basic fertilizer on textural characteristics except fracturability and c


全 文 :作物学报 ACTA AGRONOMICA SINICA 2013, 39(3): 557562 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

本研究由国家自然科学基金项目(31271640, 30971731, 31000684), 江苏省高校自然科学基金项目(11KJB210006), 江苏高校优势学科
建设工程项目, 江苏高校优秀科技创新团队项目和农业科研杰出人才及其创新团队项目资助。
* 通讯作者(Corresponding author): 陆卫平, E-mail: wplu@yzu.edu.cn
第一作者联系方式: E-mail: dllu@yzu.edu.cn
Received(收稿日期): 2012-06-29; Accepted(接受日期): 2012-11-16; Published online(网络出版日期): 2013-01-04.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20130104.1735.016.html
DOI: 10.3724/SP.J.1006.2013.00557
基肥配比和拔节期追氮对鲜食糯玉米籽粒物性的影响
陆大雷 孙旭利 王 鑫 闫发宝 陆卫平*
扬州大学江苏省作物遗传生理重点实验室 / 农业部长江中下游作物生理生态与栽培重点开放实验室, 江苏扬州 225009
摘 要: 以鲜食糯玉米品种苏玉糯 5 号和渝糯 7 号为材料研究表明, 基肥配比和拔节期追氮对籽粒物性有显著影响,
且基肥配比对物性参数(除脆度和黏聚性)影响大于拔节期追氮。物性参数中, 黏着性、脆度和咀嚼度变异系数较高。
基肥处理中, 总体上以氮磷钾肥合理配比(N 75 kg hm–2 + P2O5 75 kg hm–2 + K2O 75 kg hm–2)时硬度、脆度、黏着性(绝
对值)、弹性、黏聚性和咀嚼度较高, 回复性适中。随着拔节期追氮量增加, 硬度、脆度、黏聚性、咀嚼度和回复性
均呈先升后降趋势, 黏着性在不追氮和追氮 150 kg hm–2处理下无显著差异, 但显著高于追氮 300 kg hm–2处理, 弹性
受拔节期追氮量影响较小。相关分析表明, 硬度和脆度与弹性、黏聚性和咀嚼度显著正相关。黏着性与弹性、咀嚼
度显著负相关, 与回复性显著正相关。弹性、黏聚性和咀嚼度两两极显著正相关。综合考虑各参数的变化趋势, 氮磷
钾均衡基施并拔节期适量追氮时两品种籽粒具有较好的黏着性、咀嚼度和脆度, 且苏玉糯 5 号籽粒硬度显著低于渝
糯 7号。
关键词: 鲜食糯玉米; 基肥配比; 拔节期追氮; 物性
Effects of Basic Fertilizer and Nitrogen Topdressing Treatments at Jointing
Stage on Grain Textural Characteristics of Fresh Waxy Maize
LU Da-Lei, SUN Xu-Li, WANG Xin, YAN Fa-Bao, and LU Wei-Ping*
Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and
Lower Reaches of Yangtze River of Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China
Abstract: The results of a field experiment using Suyunuo 5 and Yunuo 7 indicated that fertilizer treatments significantly
changed the textural properties, and the effects of basic fertilizer on textural characteristics except fracturability and cohesiveness
were higher than those of other nitrogen topdressing at jointing stage. Variation of adhesiveness, chewiness and fracturability was
higher than that of other textural characteristics. Higher hardness, fracturability, adhesiveness (absolute value), springiness, cohe-
siveness and chewiness, and middle resilience were presented in the treatment of N 75 kg ha–1 + P2O5 75 kg ha–1 + K2O 75 kg ha–1
among all the basic fertilizer treatments. With the increment of nitrogen topdressing at jointing stage, springiness was stable,
hardness, fracturability, cohesiveness, chewiness and resilience were increased first and fallen later, adhesiveness was similar
between treatments of nitrogen topdressing at 0 and 150 kg ha–1at jointing stage, while it was lower at 300 kg ha–1. The correlation
analysis indicated that hardness and fracturability were positively correlated with springiness, cohesiveness and chewiness. Cohe-
siveness was negatively correlated with springiness and chewiness, while positively correlated with resilience. The positive corre-
lations were observed for springiness, cohesiveness and chewiness between each other. Considering of the changing tendency of
textural characteristics, the treatment of N 75 kg ha–1+ P2O5 75 kg ha–1 + K2O 75 kg ha–1 as basic fertilizer combined with N 150
kg ha–1 topdressing at jointing stage had higher adhesiveness, chewiness and fracturability, and significantly lower grain hardness
in Suyunuo 5 than in Yunnuo 7.
Keywords: Fresh waxy maize; Basic fertilizer; Nitrogen topdressing at jointing stage; Textual property
硬度、脆度、弹性、黏性等参数是评价食品品质的重
要指标, 评价方式多为感官评价。感官评价除了受食品自
身的色、香、味、质、形影响外, 亦受评价人员的情绪、
爱好、健康状况等因素影响[1-2], 其科学性、准确性和可
558 作 物 学 报 第 39卷

操作性屡遭质疑。物性分析仪将感官评价用具体参数来表
示, 避免了人为因素的主观影响[3], 在食品行业上得到了
广泛应用 [4]。孙辉等 [5]研究表明 , TPA (Texture Profile
Analysis)测试可量化馒头品尝指标 , 使数据便于处理和
分析。王灵昭等[6]研究发现, 物性分析仪所测硬度、咀嚼
度、黏着性和弹性与品尝法所测面条的筋道感、硬度、弹
性显著正相关, 与滑口感显著负相关。在不同作物上研究
发现, 物性参数与糊化特性、热力学特性相关性较好, 且
受籽粒组分含量、淀粉粒分布、淀粉直支比以及链长分布
的影响[7-14]。
糯玉米是籽粒胚乳淀粉由 100%支链淀粉组成的特用
玉米, 在我国主要用作鲜食。随着国民经济快速发展和人
民生活水平不断提高, 鲜食糯玉米已成为我国种植面积
最大的蔬菜, 并成为农业产业结构调整的主要内容。鲜食
糯玉米品质是其占据市场的决定因素, 可以通过选用良
种, 种植于适宜环境并采用合理栽培措施来改善[15-18]。肥
料处理是目前生产中调优品质的易行措施, 施肥对鲜食
糯玉米品质有显著影响, 但指标多集中于蛋白、淀粉、脂
肪等营养成分含量, 其他理化指标未见相关报道[18]。我们
前期研究了拔节期追氮对鲜食糯玉米籽粒糊化和热力学
特性的影响 [17], 在此基础上 , 本研究设置了不同基肥
(氮、磷、钾)配比和拔节期追氮处理, 分析其对鲜食糯玉
米籽粒物性的影响, 以期为鲜食糯玉米品质调优提供理
论依据。
1 材料与方法
1.1 材料与试验设计
苏玉糯 5号(A1)和渝糯 7号(A2)为国家南方区鲜食糯
玉米区试对照品种, 目前在国家南方糯玉米主栽区有较
大种植面积。
试验于 2011 年在扬州大学实验农牧场进行, 7 月 10
日播种, 7月 15日移栽。大田前茬为玉米, 土壤含全氮 88
g kg–1、速效氮 37.2 mg kg–1、速效磷 20.1 mg kg–1、速效
钾 86.2 mg kg–1。采用三因素裂区设计, 以不同基肥配施
(B)为主区, 设 8个水平, 分别是空白(B1)、N 75 kg hm–2
(B2)、P2O5 75 kg hm–2 (B3)、K2O 75 kg hm–2 (B4)、N 75 kg
hm–2 + P2O5 75 kg hm–2 (B5)、N 75 kg hm–2 + K2O 75 kg
hm–2 (B6)、P2O5 75 kg hm–2 + K2O 75 kg hm–2 (B7)、N 75 kg
hm–2 + P2O5 75 kg hm–2 + K2O 75 kg hm–2 (B8), 在移栽前施
用; 以拔节期追施氮(C)为副区, 设 N 0(C1)、150 kg hm–2 (C2)
和 300 kg hm–2 (C3) 3个水平。不同基肥配比与拔节期追氮
组合, 2次重复, 共 96个小区, 小区面积 24 m2, 种植密度为
5.25万株 hm–2。其他管理措施统一按常规要求实施。
于开花期对植株人工套袋授粉, 授粉后 23 d 取样,
用于籽粒物性测定。
1.2 籽粒物性测定
采用物性分析仪 (TA-XT2i, Stable Micro Systems,
England)测定鲜食糯玉米籽粒物性。将糯玉米果穗放入电
煑饭煲中蒸 30 min 后, 自然冷却到 60 , ℃ 选择每穗玉米
中间部分, 取其中一竖行完整的籽粒。并选取 5粒籽粒(连
续)进行 TPA 测定。参照张大力等[19]的方法, 测前速率 1
mm s–1、测试速率 2 mm s–1、测后速率 2 mm s–1、压缩程
度 70%、停留间隔 5 s、触发值 5 g。
1.3 数据分析
采用 DPS 7.05软件进行统计及相关分析, 采用 LSD
法测验显著性。
2 结果与分析
2.1 不同施肥处理下鲜食糯玉米籽粒物性
鲜食糯玉米籽粒物性有显著基因型差异, 同时受基
肥配比和拔节期追氮影响(表 1)。籽粒脆度、黏着性、咀
嚼度和回复性在品种、基肥配比、拔节期追氮单因子及其
互作间均有显著差异。基肥配比和拔节期追氮单因子间,
脆度和黏聚性受基肥配比影响低于拔节期追氮, 其他 5项
特征值受基肥配比影响高于拔节期追氮。硬度、弹性和黏
聚性两品种间无显著差异, 其他特征值(除回复性)均表现
为渝糯 7号较高(黏着性为绝对值)。不同基肥配比处理下
随着拔节期追氮量的增加各物性特征参数变化趋势不同。
7个物性参数中, 以黏着性、脆度和咀嚼度的变异系数较
大(分别为 39.1%、25.5%和 25.8%)。
2.2 基肥配比对鲜食糯玉米籽粒物性的影响
不同基肥配比下鲜食糯玉米籽粒物性有显著差异
(表 2)。籽粒硬度在 B3、B4和 B8处理下较高, B7处理下
较低; 脆度在 B3和 B8处理下较高, B5、B6和 B7处理下
较低; 黏着性在 B1和 B3处理下较高, B8处理下较低; 弹
性在 B3和 B8处理下较高, B5和 B6处理下较低; 黏聚性
在 B3、B4和 B8处理下较高, B1、B2、B5、B6和 B7处
理下较低。咀嚼度以 B8处理下较高, B5和 B7处理下较
低; 回复性 B4 处理下较高, B2 和 B7 处理下较低。总体
而言, B8 处理下回复性适中, 其他特征值较高(黏着性为
绝对值), B1 和 B7 处理下除回复性外其他物性特征值较
低。
2.3 拔节期追氮对鲜食糯玉米籽粒物性的影响
硬度、脆度、黏聚性、咀嚼度和回复性 5项指标均随
拔节期追氮量的增加呈先升后降趋势(表 3), 黏着性在 C1
和 C2 处理下无显著差异, 但显著低于 C3 处理(绝对值),
弹性不同处理间无显著差异。
2.4 物性参数间的相关性
鲜食糯玉米籽粒物性参数间有良好的相关关系(表
4)。硬度和脆度与弹性、黏聚性和咀嚼度显著正相关, 且
脆度与硬度显著正相关, 与黏着性显著负相关。黏着性与
弹性、咀嚼度显著负相关, 与回复性显著正相关。弹性、
黏聚性和咀嚼度两两极显著正相关。回复性和黏聚性显著
正相关。

第 3期 陆大雷等: 基肥配比和拔节期追氮对鲜食糯玉米籽粒物性的影响 559


表 1 不同施肥处理下鲜食糯玉米籽粒物性特征值
Table 1 Textural characteristics of grain under different fertilizer treatments for fresh waxy maize
处理
Treatment
硬度
Hardness (g)
脆度
Fracturability (g)
黏着性
Adhesiveness
弹性
Springiness
黏聚性
Cohesiveness
咀嚼度
Chewiness
回复性
Resilience
A1B1C1 10705 2729 –13.71 0.365 0.267 1044 0.216
A1B1C2 11608 2904 –13.13 0.343 0.260 1057 0.196
A1B1C3 7286 1380 –9.22 0.354 0.263 677 0.246
A1B2C1 10440 2773 –13.37 0.378 0.290 1152 0.222
A1B2C2 11120 2436 –9.25 0.383 0.278 1217 0.223
A1B2C3 10468 2685 –16.19 0.412 0.260 1125 0.200
A1B3C1 11553 2406 –7.33 0.349 0.279 1111 0.236
A1B3C2 12818 3508 –11.03 0.441 0.289 1623 0.220
A1B3C3 10199 2510 –14.13 0.373 0.254 961 0.203
A1B4C1 11245 1853 –11.82 0.330 0.271 1004 0.227
A1B4C2 12147 2567 –11.94 0.302 0.269 983 0.211
A1B4C3 10702 2016 –11.17 0.413 0.283 1238 0.233
A1B5C1 9469 1802 –17.13 0.331 0.259 827 0.215
A1B5C2 10271 1784 –16.53 0.330 0.284 966 0.243
A1B5C3 12982 2970 –9.87 0.308 0.261 1058 0.226
A1B6C1 12252 2367 –13.59 0.312 0.283 1096 0.237
A1B6C2 10393 1819 –18.30 0.333 0.257 906 0.225
A1B6C3 8172 1333 –8.13 0.319 0.264 694 0.254
A1B7C1 9576 1769 –21.74 0.364 0.249 869 0.208
A1B7C2 9177 1672 –10.77 0.300 0.257 720 0.221
A1B7C3 9012 2047 –18.10 0.377 0.248 842 0.199
A1B8C1 9095 2000 –20.03 0.394 0.280 1015 0.220
A1B8C2 9470 2828 –20.46 0.378 0.275 984 0.217
A1B8C3 10607 2201 –33.61 0.432 0.268 1227 0.213
A2B1C1 10027 2373 –15.28 0.334 0.266 924 0.202
A2B1C2 9736 2097 –14.92 0.343 0.265 899 0.226
A2B1C3 9615 2184 –12.25 0.397 0.292 1120 0.245
A2B2C1 9626 2460 –15.40 0.310 0.251 763 0.195
A2B2C2 9571 2613 –9.85 0.358 0.264 912 0.218
A2B2C3 10164 2340 –32.58 0.356 0.256 949 0.196
A2B3C1 8878 1980 –14.04 0.391 0.258 902 0.210
A2B3C2 12013 3329 –15.22 0.460 0.309 1705 0.233
A2B3C3 11601 2865 –19.52 0.377 0.281 1234 0.207
A2B4C1 9570 2079 –15.62 0.378 0.281 1020 0.234
A2B4C2 11847 2792 –14.85 0.393 0.303 1428 0.240
A2B4C3 12881 3492 –22.08 0.406 0.296 1552 0.220
A2B5C1 9226 2097 –13.67 0.348 0.250 807 0.210
A2B5C2 8162 2090 –13.59 0.376 0.259 799 0.210
A2B5C3 10263 2115 –17.94 0.330 0.268 911 0.210
A2B6C1 9965 2615 –13.61 0.383 0.283 1091 0.222
A2B6C2 9720 2250 –21.27 0.384 0.281 1052 0.214
A2B6C3 9820 2150 –12.16 0.281 0.243 669 0.188
A2B7C1 8880 2059 –10.49 0.371 0.266 928 0.200
A2B7C2 9535 2389 –9.34 0.389 0.281 1054 0.225
560 作 物 学 报 第 39卷

(续表 1)
处理
Treatment
硬度
Hardness (g)
脆度
Fracturability (g)
黏着性
Adhesiveness
弹性
Springiness
黏聚性
Cohesiveness
咀嚼度
Chewiness
回复性
Resilience
A2B7C3 11242 3110 –19.10 0.335 0.262 996 0.192
A2B8C1 11543 2346 –26.07 0.417 0.279 1364 0.224
A2B8C2 14908 4927 –29.79 0.452 0.303 2018 0.232
A2B8C3 11833 2785 –31.27 0.435 0.265 1432 0.199
F-value
A 0.01 34.35** 66.51** 4.41 4.51 8.85** 16.91**
B 32.74** 18.85** 33.14** 8.57** 7.82** 19.17** 6.46**
C 17.84** 20.51** 15.33** 1.19 9.79** 9.89** 4.08*
A×B 31.98** 11.97** 4.86** 2.22* 5.81** 9.02** 5.27*
A×C 35.88** 7.07** 9.73** 4.55** 6.40** 5.44** 8.16**
B×C 19.97** 15.39** 12.03** 2.42** 3.73** 5.95** 4.67**
A×B×C 13.91** 6.07** 4.18** 1.00 2.41* 2.69** 2.36*
*和**表示处理间差异达显著(P<0.05)和极显著(P<0.01)水平。A1: 苏玉糯 5号; A2: 渝糯 7号。B和 C指基肥配比和拔节期追氮处理。B1~B8
分别指空白、75 kg N hm–2、75 kg P2O5 hm–2、75 kg K2O hm–2、75 kg N hm–2 + 75 kg P2O5 hm–2、75 kg N hm–2 + 75 kg K2O hm–2、75 kg P2O5 hm–2
+ 75 kg K2O hm–2和 75 kg N hm–2 + 75 kg P2O5 hm–2 + 75 kg K2O hm–2。C1~C3分别指拔节期追氮 0、150、300 kg hm–2。
F-value marked with * and ** are significant at 0.05 and 0.01 probability levels, respectively. In treatment column, A1 and A2 are Suyunuo 5 and
Yunuo 7, respectively. B and C refer to application of basic and topdressing fertilizers respectively. Basic fertilizers are blank (B1), 75 kg N hm–2 (B2),
75 kg P2O5 hm–2 (B3), 75 kg K2O hm–2 (B4), 75 kg N hm–2 + 75 kg P2O5 hm–2 (B5), 75 kg N hm–2 + 75 kg K2O hm–2 (B6), 75 kg P2O5 hm–2 + 75 kg
K2O hm–2 (B7), and 75 kg N hm–2 + 75 kg P2O5 hm–2 + 75 kg K2O hm–2 (B8), respectively. Topdressing fertilizers are 0 (C1), 150 (C2), and 300 kg N
hm–2 (C3), respectively.

表 2 基肥配比下鲜食糯玉米籽粒物性特征值
Table 2 Textural characteristics of grain under different basic fertilizer treatments for fresh waxy maize
处理
Treatment
硬度
Hardness (g)
脆度
Fracturability (g)
黏着性
Adhesiveness
弹性
Springiness
黏聚性
Cohesiveness
咀嚼度
Chewiness
回复性
Resilience
B1 9830 cd 2278 c –13.085 a 0.356 bc 0.269 b 954 cd 0.222 ab
B2 10232 b 2551 b –16.107 b 0.366 b 0.267 b 1020 c 0.209 c
B3 11177 a 2766 a –13.545 a 0.399 a 0.278 a 1256 ab 0.218 b
B4 11399 a 2467 b –14.580 ab 0.370 b 0.284 a 1204 b 0.228 a
B5 10062 bc 2143 cd –14.788 ab 0.337 c 0.264 b 895 d 0.219 b
B6 10054 bc 2089 d –14.510 ab 0.335 c 0.269 b 918 cd 0.223 ab
B7 9570 d 2174 cd –14.923 ab 0.356 bc 0.261 b 902 d 0.208 c
B8 11243 a 2848 a –26.872 c 0.418 a 0.278 a 1340 a 0.218 b
CV (%) 6.8 12.0 27.8 7.8 3.0 16.8 3.2
LSD0.05 349 187 2.2 0.03 0.01 114 0.01
同一列中标以不同字母的值差异达显著(P<0.05)水平。缩写同表 1。
Values followed by different letters are significantly different at P<0.05 according to LSD test. Abbreviations are the same as those given in Table 1.

表 3 拔节期不同追氮处理下鲜食糯玉米籽粒物性特征值
Table 3 Textural characteristics of grain under different nitrogen topdressing treatments for fresh waxy maize
处理
Treatment
硬度
Hardness (g)
脆度
Fracturability (g)
黏着性
Adhesiveness
弹性
Springiness
黏聚性
Cohesiveness
咀嚼度
Chewiness
回复性
Resilience
0 10128 c 2232 c –15.181 a 0.360 a 0.270 b 995 b 0.217 ab
150 kg N hm–2 10781 a 2625 a –15.015 a 0.373 a 0.277 a 1145 a 0.222 a
300 kg N hm–2 10428 b 2386 b –17.958 b 0.369 a 0.267 b 1043 b 0.214 b
CV (%) 3.1 8.2 10.3 1.8 2.1 7.2 1.8
LSD0.05 215 122 1.2 0.02 0.01 68 0.01
同一列中标以不同字母的值差异达显著(P<0.05)水平。
Values followed by different letters are significantly different at P<0.05 according to LSD test.

第 3期 陆大雷等: 基肥配比和拔节期追氮对鲜食糯玉米籽粒物性的影响 561


表 4 籽粒物性特征值之间的相关系数
Table 4 Correlation coefficients of textural characteristics of grain
特征值
Characteristics
硬度
Hardness
脆度
Fracturability
黏着性
Adhesiveness
弹性
Springiness
黏聚性
Cohesiveness
咀嚼度
Chewiness
脆度 Fracturability 0.80**
黏着性 Adhesiveness –0.26 –0.29*
弹性 Springiness 0.28* 0.48** –0.41**
黏聚性 Cohesiveness 0.51** 0.51** –0.07 0.59**
咀嚼度 Chewiness 0.81** 0.81** –0.37** 0.76** 0.78**
回复性 Resilience 0.07 –0.11 0.33* 0.08 0.50** 0.19
*和**表示相关性达显著(P<0.05)或极显著(P<0.01)水平。
* and ** represent significant correlations at P<0.05 and P<0.01, respectively.

3 讨论
基肥配比和拔节期追氮对鲜食糯玉米籽粒物性有显
著影响。以氮磷钾均衡基施时籽粒的硬度、脆度、黏着性
(绝对值)、弹性、黏聚性和咀嚼度较高, 回复性适中; 不
同拔节期追氮处理下 , 弹性变异较小 , 黏着性在不追氮
和追氮 150 kg hm–2时较高, 追氮 300 kg hm–2时较低, 其
他 5项参数均随拔节期追氮量的增加呈先升后降趋势。从
各参数在不同处理下的变异系数来看, 变异较大的为黏
着性、咀嚼度和脆度, 说明鲜食糯玉米籽粒的黏度、咬劲
和柔嫩性易通过采用不同的施肥处理来调节。本研究条件
下, 总体上以氮磷钾均衡基施并拔节期适量追氮(150 kg
hm–2)时鲜食籽粒具有较好的黏度、咬劲和柔嫩性, 前人
研究亦表明适量追氮使糯玉米的鲜食品质较优 [17-18], 且
成熟期 RVA 黏度参数亦表现为氮磷钾均衡基施并拔节期
适量追氮时较优[20]。该处理下品质较优的原因可能在于合理
施肥有利于籽粒的灌浆结实和养分积累, 使籽粒具有较低
的含水量, 较高的蛋白、淀粉和纤维等营养成分含量[15,18]。
因此在生产中应根据生产关注指标来调节肥料运筹, 实
现优质栽培。
本研究结果表明, 硬度和脆度与弹性、黏聚性和咀嚼
度显著正相关 , 与黏着性负相关 , 说明当籽粒蒸煮后硬
度越高, 其柔嫩性、弹性、黏性较好, 且咬劲较大。而孙
辉等 [5]发现硬度除与咀嚼度显著正相关外 , 与其他指标
均呈负相关, 这种差异可能是样品不同所致。黏着性与弹
性、咀嚼度显著负相关, 与回复性显著正相关。说明当籽
粒黏性越好时, 其弹性越好, 咀嚼后其回复程度越低。弹
性、黏聚性和咀嚼度两两极显著正相关。现有鲜食糯玉米
品质评价体系中, 一直采用品尝(风味、果皮厚薄、糯性、
柔嫩性)评价法。物性分析可将感官评价定量, 因此结合
国家糯玉米区域试验, 分析物性参数与感官评价指标的
相关性, 可为物性分析仪在鲜食糯玉米上的更好应用提
供理论依据。
References
[1] Liu Z(刘正), Liu F-R(刘芳荣), Zhu F-Q(朱付群). Method of
quality comprehensive evaluate on fresh-eatable glutinous maize.
J Anhui Technol Teachers Coll (安徽技术师范学院学报), 2003,
17(1): 32–36 (in Chinese with English abstract)
[2] Liu P(刘萍), Lu W-P(陆卫平), Lu D-L(陆大雷). Quality differ-
ences and physicochemical index screening for quality evaluation
in waxy corn. J Yangzhou Univ (Agric Life Sci Edn)(扬州大学学
报农业与生命科学版), 2009, 30(3): 16–21 (in Chinese with
English abstract)
[3] Chu Y-P(楚炎沛). Application study of texture analyzer on food
quality estimation. Cereal Feed Ind (粮食与饲料工业), 2003, (7):
40–42 (in Chinese)
[4] Liu Y-P(刘亚平), Li H-B(李红波). Review on the application of
texture analyzer and TPA in the assessment for fruits and vegeta-
bles. J Shanxi Agric Univ (Nat Sci Edn) (山西农业大学学报自
然科学版), 2010, 30(2): 188–192 (in Chinese with English ab-
stract)
[5] Sun H(孙辉), Jiang W-L(姜薇莉), Tian X-H(田晓红), Ling
J-Y(凌家煜), Lin J-Y(林家永). Study on steamed-bread quality
with texture analyzer. J Chin Cereals Oils Assoc (中国粮油学报),
2005, 20(6): 121–125 (in Chinese with English abstract)
[6] Wang L-Z(王灵昭), Lu Q-Y(陆启玉), Yuan C-G(袁传光). Study
on the assessment for noodle texture with texture analyser. J
Zhengzhou Inst Technol (郑州工程学院学报), 2003, 24(3):
29-33 (in Chinese with English abstract)
[7] Song Y-Z(宋亚珍), Yan J-T(闫金婷), Hu X-Z(胡新中). Wheat
flour viscosity and the relationship with fresh noodle and cooked
noodle texture character. J Chin Cereals Oils Assoc (中国粮油学
报), 2005, 20(6): 12–15 (in Chinese with English abstract)
[8] Singh H, Sodhi N S, Singh N. Characterization of starches sepa-
rated from sorghum cultivars grown in India. Food Chem, 2010,
119: 95–100
[9] Wang L, Flores R A. Effect of flour particle size on the textural
properties of flour Tortillas. J Cereal Sci, 2000, 31: 263–272
[10] Beta T, Corke H. Genetic and Environmental variation in sor-
ghum starch properties. J Cereal Sci, 2001, 34: 261–268
562 作 物 学 报 第 39卷

[11] Akissoe N, Mestres C, Handschin S, Gibert O, Hounhouigan J,
Nago M. Microstructure and physico-chemical bases of textural
quality of yam products. LWT-Food Sci Technol, 2011, 44: 321–329
[12] Singh J, McCarthy O J, Singh H. Physicochemical and morpho-
logical characteristics of New Zealand Taewa (Maori potato)
starches. Carbohydrate Polymers, 2006, 64: 569–581
[13] Wang L, Xie B, Shi J, Xue S, Deng Q, Wei Y, Tian B. Physico-
chemical properties and structure of starches from Chinese rice
cultivars. Food Hydocolloids, 2010, 24: 208–216
[14] Chen D-S(陈东升), Kiribuchi-Otobe C, Xu Z-H(徐兆华), Chen
X-M(陈新民), Zhou Y(周阳), He Z-H(何中虎), Yoshida H,
Zhang Y(张艳), Wang D-S(王德森). Effect of Wx-A1, Wx-B1
and Wx-D1 protein on starch properties and Chinese fresh noodle
quality. Sci Agric Sin (中国农业科学), 2005, 38(5): 865–873 (in
Chinese with English abstract)
[15] Zhao Y-Q(赵益强). Effects of different planting density and ni-
trogen levels on major nutritional elements of fresh waxy corn
ears. J Sichuan Agric Univ (四川农业大学学报), 2010, 28(3):
280–284 (in Chinese with English abstract)
[16] Lu D-L(陆大雷), Yan F-B(闫发宝), Lu W-P(陆卫平). Genotypic
difference of physicochemical properties of fresh waxy maize
grain. J Nucl Agric Sci (核农学报), 2012, 26(1): 95–101 (in
Chinese with English abstract)
[17] Lu D-L(陆大雷), Guo H-F(郭换粉), Dong C(董策), Lu W-P(陆
卫平). Effects of nitrogen topdressing at jointing stage on pasting
and thermal properties of fresh waxy maize flour. Plant Nutr Fert
Sci (植物营养与肥料学报), 2011, 17(1): 48–54 (in Chinese with
English abstract)
[18] Xie Y(谢勇), Feng Y-Z(冯颖竹), Chen H-Y(陈惠阳), Lan X(兰
霞). Effect of nitrogen application on yield and quality of waxy
maize. J Anhui Agric Sci (安徽农业科学 ), 2006, 34(16):
4052–4053 (in Chinese with English abstract)
[19] Zhang D-L(张大力), Zhang H-X(张海霞), Min W-H(闵伟红),
Zheng M-Z(郑明珠), Liu J-S(刘景圣). Physical properties and
optimum consumption temperature of steamed corn on the cob.
Food Sci (食品科学), 2011, 32(9): 111–113 (in Chinese with
English abstract)
[20] Lu D-L(陆大雷), Lu W-P(陆卫平), Zhao J-R(赵久然), Wang
D-C(王德成). Effects of basic fertilizer treatments and nitrogen
topdressing at jointing stage on starch RVA characteristics of
waxy maize. Acta Agron Sin (作物学报 ), 2008, 34(7):
1253–1258 (in Chinese with English abstract)