免费文献传递   相关文献

Ultrastructure of Synergid in Its Degenerative Process in Sugar Beet (Beta vulgaris)

栽培甜菜助细胞退化进程的超微结构观察



全 文 :作物学报 ACTA AGRONOMICA SINICA 2013, 39(12): 2220−2227 http://zwxb.chinacrops.org/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

本研究由国家自然科学基金项目(30470114)和植物生物学黑龙江省高校重点实验室(哈尔滨师范大学)开放基金项目资助。
* 通讯作者(Corresponding author): 申家恒, E-mail: hsdshenjiaheng@aliyun.com
Received(收稿日期): 2013-05-09; Accepted(接受日期): 2013-07-25; Published online(网络出版日期): 2013-09-29.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20130929.1539.016.html
DOI: 10.3724/SP.J.1006.2013.02220
栽培甜菜助细胞退化进程的超微结构观察
李 伟 1,2 申家恒 2,* 郭德栋 3
1 东北林业大学盐碱地生物资源环境研究中心 / 东北油田盐碱植被恢复与重建教育部重点实验室, 黑龙江哈尔滨 150040; 2 哈尔滨师范大学
生命科学与技术学院 / 植物生物学黑龙江省高校重点实验室, 黑龙江哈尔滨 150025; 3 黑龙江大学生命科学院, 黑龙江哈尔滨 150070
摘 要: 应用透射电镜技术研究栽培甜菜(Beta vulgaris)助细胞退化进程的超微结构特征, 以丰富被子植物生殖生物
学资料。结果表明: 花蕾时期, 2个助细胞相似, 珠孔端具发达的丝状器, 合点端无壁, 极性明显, 细胞器种类多, 数
量大, 呈现较强代谢活性; 随后, 一个助细胞的核质和胞质的电子密度显著高于另一个助细胞, 液泡膜消失, 线粒
体、质体膜与核膜不清晰, 细胞出现退化迹象, 但内质网和高尔基体丰富, 分泌活动旺盛; 待花蕾刚开放(授粉前), 此
助细胞完全退化。另一个助细胞(宿存助细胞)内的细胞器逐渐增多, 且功能状态趋于活跃, 表现为核糖体、线粒体、
质体等数量增加; 线粒体内嵴丰富, 可见 DNA 纤丝; 质体形态多样, 片层明显, 内含淀粉粒。至卵细胞受精前(授粉
后约 13 h), 宿存助细胞代谢达到最活跃状态; 至合子合点端建成蜂窝状细胞壁且胚乳游离核形成后, 宿存助细胞开
始退化; 至合子后期, 此细胞退化完全, 丝状器消失。上述结果表明, 栽培甜菜助细胞的退化与授粉和花粉管生长无
关; 宿存助细胞做为传递细胞, 为胚囊的发育吸收并转输营养。
关键词: 栽培甜菜; 助细胞; 退化进程; 超微结构
Ultrastructure of Synergid in Its Degenerative Process in Sugar Beet (Beta
vulgaris)
LI Wei1,2, SHEN Jia-Heng2,*, and GUO De-Dong3
1 Alkali Soil Natural Environmental Science Center, Northeast Forestry University / Key Laboratory of Saline-alkali Vegetation Ecology Restoration
in Oil Field, Ministry of Education, Harbin 150040, China; 2 College of Life Sciences and Technology, Harbin Normal University / Key Laboratory of
Plant Biology, College of Heilongjiang Province, Harbin 150025, China; 3 College of Life Sciences, Heilongjiang University, Harbin 150070, China
Abstract: An experiment was conducted by using TEM to study the degenerative process of synergid in sugar beet, so as to pro-
vide more information for reproductive biology of angiosperm. The results were as follows: two synergids were similar in flower
bud stage with large number of organelles. Both of them had developed filiform apparatus (FA) at micropyle end and lacked cell
wall at chalazal end, showing obvious polarity. Then electron density in one synergid increased. On the other hand, vacuole mem-
brane disappeared, membrane of mitochondrium, plastid and nuclear became illegible, which suggested cell degeneration began.
But endoplasmic reticulum and Golgi bodies were still active. Complete degeneration of this synergid occurred before pollination.
Number of organelles including mitochondrium, plastids and ribosomes gradually increased in the other synergid (persistent syn-
ergid). Mitochondria contained many tubular cristae and obvious DNA fibril. Plastids were irregular in shape and usually con-
tained starch gains and thylakoid membranes. The metabolism of persistent synergid gradually enhanced until fertilization (about
13 h after pollination). It began to degenerate when zygote had alveolate cell wall at the chalazal end and endosperm occurred,
while complete degeneration and disappearance of FA took place at late stage of zygote. The results indicated that degeneration of
one synergid in sugar beet must be triggered by other stimulation than pollination and pollen tube growth. As a transfer cell, per-
sistent synergid may absorb and transport nutrition for the development of embryo sac.
Keywords: Sugar beet (Beta vulgaris); Synergid; Degenerate course; Ultrastructure
被子植物受精作用是近年在植物生殖生物学中 最受关注的课题之一, 受精过程包括花粉在柱头上
第 12期 李 伟等: 栽培甜菜助细胞退化进程的超微结构观察 2221


萌发和长出花粉管; 花粉管生长通过花柱, 进入胚
囊和释放内容物; 配子融合 [1]。助细胞退化是受精
过程能否顺利完成的不可或缺的环节, 具有重要功
能 [2]。目前已在大量材料的超微结构研究中报道了
助细胞退化 [3-10], 并对助细胞退化时间和功能进行
了总结[1,11]。然而对助细胞退化进程的描述较少[3,12-13]。
关于助细胞退化机制虽有较多研究[14-15], 但尚薄弱,
仍没有明确结论。栽培甜菜为我国重要的糖料作物,
目前对其大小孢子发生、雌雄配子体发育[16-18]、花
粉[19-20]、成熟胚囊[5]、卵细胞、合子及二细胞原胚[21]
均进行了电镜水平研究, 并在光镜水平对其受精作
用[22]进行了研究。本研究详尽描述栽培甜菜助细胞
退化进程的超微结构特征, 探讨了助细胞退化时间
及机制, 以进一步完善甜菜生殖生物学研究及丰富
被子植物生殖生物学基础资料。
1 材料与方法
将栽培甜菜双丰 1号(Beta vulgaris)种植于黑龙
江大学植物园。2004—2006 年, 每年 6 月末至 7 月
中旬, 取直径为 1.5~3.0 mm的花蕾及刚开放的小花,
剥离胚珠并迅速置 3%戊二醛(pH 7.2, 二甲胂酸钠
缓冲液配制)固定; 每天清晨 8:00对刚开的花朵进行
人工异花授粉, 授粉后 13~27 h内, 每 2 h取雌蕊 50
个, 剥离胚珠并用 3%戊二醛固定。以缓冲液冲洗 4
次, 再用 1%锇酸室温下固定 2~4 h, 缓冲液冲洗后,
系列乙醇脱水, 经环氧丙烷置换, Spurr 树脂渗透包
埋。用Leica Ultracut R型超薄切片机切片(厚度 70 nm),
经醋酸双氧铀-柠檬酸铅双重染色后, 在 JEOL-1230型
透射电镜下观察并拍照。
2 结果与分析
栽培甜菜雌配子体发育类型为蓼型。2个助细胞
位于胚囊的珠孔端, 其合点端与中央细胞相邻。卵
细胞在侧面与2个助细胞依附, 横切面上, 卵细胞与
两助细胞呈“品”字形排列。2个助细胞分别在受精
前、后退化, 其退化经历如下几个阶段。
2.1 2个助细胞同时存在
花蕾时期 , 2个助细胞同时存在且已发育成熟
(图版 I-A)。助细胞高度特化, 具独特的细胞壁结构。
助细胞珠孔端的壁与胚囊壁结合, 液泡化的发展使
助细胞向中央细胞方向扩展, 进而在靠近珠孔端形
成“钩”状结构。助细胞珠孔端壁增厚, 向胞质形成众
多指状突起——丝状器。助细胞的细胞壁由珠孔端
向合点端逐渐变薄, 在合点端以质膜形式与中央细
胞接触(图版 I-A)。助细胞的极性明显, 液泡位于合
点端占据细胞一半的体积, 细胞核紧靠液泡位于细
胞的中部 , 细胞质集中在核与丝状器之间 (图版
I-A)。2个助细胞的核大小相似, 胞质相似, 线粒体
堆叠在丝状器旁 , 但内嵴不明显 , 电子较透明; 质
体较少且电子不透明(图版 I-B); 粗面内质网数目众
多, 呈囊泡状, 分布于核周围; 高尔基体大量存在,
并活跃地分泌小泡(图版 I-C, D)。超微结构特征显示
助细胞是代谢活跃的细胞。
2.2 一个助细胞开始退化, 一个助细胞宿存
花蕾期随着发育的进行, 2个助细胞开始出现差
异, 一个助细胞的细胞核与细胞质染色加深, 电子
密度增高, 呈现退化迹象(图版 I-E)。此助细胞的大
液泡消失, 液泡膜不可见, 细胞体积变小。线粒体内
嵴明显, 但有的线粒体膜结构开始不清晰(图版 I-F);
粗面内质网大量汇集在细胞的合点端, 潴泡彼此平
行排列, 末端膨大(图版 II-A); 高尔基体微弯曲, 仍
分泌小泡(图版 II-B)。
另一个助细胞宿存, 染色较浅, 超微结构没有
明显改变(图版 I-E)。只是线粒体数量增加, 且内嵴
发达, DNA纤丝清晰可见(图版 II-D); 质体中出现淀
粉粒(图版 II-C); 大量核糖体附着在内质网上。虽然
两助细胞出现差异, 但两细胞之间的细胞壁上仍有
胞间连丝联系(图版 I-F)。
2.3 一个助细胞完全退化, 一个助细胞宿存
花蕾刚开放时(授粉前), 一个助细胞完全退化,
仅剩下退化残迹, 丝状器仍然存在, 但无法分辨细
胞器结构(图版 II-E)。电子浓密物质出现在卵细胞与
中央细胞之间的膜间隙(图版 II-F)。而宿存助细胞内
的细胞器明显增多, 代谢加强(图版 II-F)。表现为线
粒体、质体、内质网、高尔基体及核糖体数量增多,
胞质电子密度增加。线粒体具发达内嵴; 管状或囊
泡状的粗面内质网潴泡相互联结, 其上结合众多核
糖体; 高尔基体活跃地分泌小泡(图版 III-A, B)。
授粉后约 13 h, 卵细胞成熟, 呈洋梨形, 且与中
央细胞间的膜间隙增大(图版 III-C)。宿存助细胞中
质体数量进一步增加 , 且形态多样 , 有的弯曲 , 有
的呈杯状或球形, 可见质体的片层(图版 III-D)。有
脂体出现 ; 胞质富含核糖体 , 电子密度加深 (图版
IV-A); 其他细胞器没有明显变化。可见, 宿存助细
胞的代谢达到最活跃状态。
2.4 宿存助细胞的退化
授粉后约 21 h, 合子的合点端已形成蜂窝状的
细胞壁(图版 IV-B), 初生胚乳核已分裂为游离核(另
2222 作 物 学 报 第 39卷


文报道), 一侧的退化助细胞中仍可见丝状器, 另一
侧的宿存助细胞染色加深, 电子密度增高, 其内的
细胞器膜模糊不清, 开始出现退化迹象(图版 IV-B,
C)。授粉后约 25 h, 合子的合点端已形成完整的细
胞壁 , 宿存助细胞完全退化 , 丝状器消失 (图版
IV-D)。
3 讨论
3.1 助细胞的退化时间及功能
20世纪60年代以来, 大量超微结构的观察, 得
出一致的结论, 即除缺少助细胞的白花丹属植物外,
花粉管都是到达胚囊中的一个助细胞[1]。接受花粉
管的助细胞或迟或早退化, 其退化的时间在不同植
物中存在差异, 有的助细胞在授粉前开始退化, 如
小麦[3]、水稻[4]和甜菜[5]; 有的助细胞的退化发生在
授粉后至花粉管到达胚囊前这一段时间, 大多数植
物属于此种类型, 如栎[6]、大豆[7]、陆地棉[8]等; 有
的助细胞在花粉管进入后不久退化, 如荠菜[9]。其中,
在小麦中描述了助细胞的退化进程 , 即花蕾期2个
助细胞均有退化迹象, 花粉管到达之前不再继续退
化, 而花粉管进入助细胞并释放内容物导致此助细
胞进一步退化。本研究发现甜菜的一个助细胞在花
蕾时期开始出现退化迹象, 至花蕾开放(授粉前)即
完全退化, 仅留下退化残迹。
助细胞并不是简单意义的退化, 而是受精过程
中的一个关键性程序, 具有重要的生理功能[2]。大量
工作暗示助细胞可能具有吸引花粉管的作用, 离体
实验证明花粉管的生长是直接或间接由助细胞的某
种成分或其释放的某种物质所引导的, 但是这种起
源于助细胞的信号尚未确定[23]。Jensen[10]首先在陆
地棉中用显微灰化法发现助细胞富含灰分, 推测其
中存在大量钙, 进一步提出假设, 假定助细胞退化
时, 随着液泡膜的破坏, 储存在液泡内高浓度的钙
盐被释放出来, 形成助细胞与相邻珠心细胞的钙的
梯度分布, 进而引导花粉管向助细胞生长并进入其
中。花粉管在退化助细胞的高钙环境中停止生长并
释放内容物[14]。本研究中栽培甜菜花蕾期助细胞开
始退化时, 液泡膜消失, 质体和线粒体膜以及核膜
不清晰 , 而内质网异常发达 , 高尔基体分泌小泡 ,
显示分泌活动活跃; 另外 , 此助细胞退化后 , 其丝
状器仍存在。因而我们推测退化助细胞通过丝状器
分泌某种物质(所分泌物质有待进一步检测), 引导
花粉管的定向生长, 使之准确到达退化助细胞中并
释放内容物。花蕾刚开放时, 退化助细胞完全退化,
细胞内的电子浓密物质转移至卵细胞与中央细胞之
间的膜间隙, 这与 Brunn[5]的描述相同, 推测与精细
胞转移至受精靶区相关。
宿存助细胞的宿存时间长短因植物而异, 有的宿
存时间较长, 并维持活跃的生理状态, 如向日葵[24]的
助细胞在心形胚时期仍存在。本研究中, 栽培甜菜的
一个助细胞退化后, 另一个助细胞(宿存助细胞)的细
胞器逐渐增多, 功能状态趋于活跃, 表现在核糖体、线
粒体、质体等数量增加; 线粒体内嵴丰富, 可见 DNA
纤丝; 质体形态多样, 片层明显, 内含淀粉粒。受精前,
其内的胞质最多, 细胞代谢最强; 至合子的合点端建
成蜂窝状细胞壁且游离核已形成时, 宿存助细胞开始
退化; 至合子后期退化完全。另外, 2个助细胞的丝状
器一直存在于胚囊的珠孔端, 直至两细胞均退化, 而
且在其附近一直有退化的珠心细胞出现。推测宿存助
细胞做为传递细胞, 为胚囊的发育吸收并转输营养。
3.2 助细胞退化的机制
关于助细胞退化的机制, 尚没有明确答案。助细
胞在花粉管进入后退化的情况, 认为是花粉管的进
入物理性破坏助细胞, 直接导致其退化[25]; 助细胞在
授粉后且花粉管进入之前退化的情况, 认为助细胞
退化依赖花粉管诱导, 如Jensen等[14]通过离体实验推
测花粉管在花柱中生长时产生的信号使赤霉素增加,
并扩散到胚囊, 诱导助细胞退化; 烟草中研究发现助
细胞退化大都发生在授粉后42~48 h, 即花粉管进入
子房而尚未到达胚囊之前, 如果不授粉或授粉后36 h
以前切断花柱阻止花粉管进入子房, 助细胞不退化,
表明助细胞退化由花粉管诱导, 并且受花粉管进入
子房后的近距离调控[15]。然而在小麦和珍珠谷的研究
中, 传粉前助细胞即开始退化, 说明助细胞的退化与
传粉和花粉管无关[12-13]。而且在珍珠谷中发现早期钙
主要存在于小液泡中, 随退化进行, 液泡中的钙进入
细胞质, 超常的高钙含量导致细胞器退化, 进而整个
细胞退化, 表明助细胞退化受钙调节。Wu和Cheung[26]
用细胞程序死亡的观点探讨助细胞退化问题, 亦认
为钙介导细胞凋亡。本研究中栽培甜菜在花蕾时期
(授粉前)助细胞即开始退化, 待花蕾刚开放(授粉前)
助细胞即完全退化, 可见其助细胞退化与授粉和花
粉管生长无关, 推测可能与细胞程序性死亡有关, 而
引发凋亡的信号尚有待进一步研究。
4 结论
在栽培甜菜助细胞的退化进程中, 一个助细胞
的退化起始于花蕾时期, 待花蕾刚开放(授粉前)时完
第 12期 李 伟等: 栽培甜菜助细胞退化进程的超微结构观察 2223


全退化, 仅余退化残迹。可见助细胞退化与授粉和花
粉管生长无关。宿存助细胞存在时间较长, 在合子建
成蜂窝状细胞壁且胚乳游离核已形成时开始退化 ,
至合子分裂前完全退化。一个助细胞退化后, 另一个
助细胞(宿存助细胞)内的胞质逐渐增多, 细胞器功能
趋于活跃, 呈现活跃的细胞代谢活性, 至卵细胞受精
前达到顶峰。丝状器一直存在至两助细胞完全退化,
丝状器旁有退化的珠心细胞出现。表明宿存助细胞做
为传递细胞, 为胚囊的发育吸收并转输营养。
References
[1] Hu S-Y(胡适宜). Reproductive Biology of Angiosperms (被子植
物生殖生物学). Beijing: Higher Education Press, 2005. p 134 (in
Chinese)
[2] Ge L-L(葛丽丽), Tian H-Q(田惠桥). Advances in the study of
fertilization mechanism of angiosperms. J Plant Physiol Mol Biol
(植物生理与分子生物学学报), 2006, 32(3): 271–279 (in Chi-
nese with English abstract)
[3] You R L, Jensen W A. Ultrastructural observation of the mature
megagametophyte and fertilization in wheat (Triticum aestivum).
Can J Bot, 1985, 63: 163–178
[4] Dong J(董健), Yang H-Y(杨弘远). An ultrastructural study of
embryo sac in Oryza sativa L. Acta Bot Sin (植物学报), 1989,
31(2): 81–88 (in Chinese with English abstract)
[5] Bruun L. The mature embryo sac of the sugar beet, Beta vul-
garies: A structural investigation. Nord J Bot, 1987, 7: 543–551
[6] Mogensen H L. Fine structure and composition of the egg appa-
ratus before and after fertilization in Quercus gambelii: the func-
tional ovule. Am J Bot, 1972, 59: 931–941
[7] Dute R R, Peterson C M, Rushing A E. Ultrastructural changes of
the egg apparatus associated with fertilization and proembryo
development of soybean, Glycine max (Fabaceae). Ann Bot, 1989,
64: 123–135
[8] Jensen W A, Fisher D B. Cotten embryogenesis: the entrance and
discharge of the pollen tube in the embryo sac. Planta, 1968, 78:
158–183
[9] Schulz R, Jensen W A. Capsella embryology: the synergids be-
fore and after fertilization. Am J Bot, 1968, 55: 541–552
[10] Jensen W A. The ultrastructure and histochemistry of the syner-
gids of cotton. Am J Bot, 1965, 52: 238–256
[11] Yang H-Y(杨弘远). Recent advances in research on the mecha-
nism of synergid degeneration during fertilization process. Chin
Bull Bot (植物学通报), 1994, 11(1): 1–5 (in Chinese with Eng-
lish abstract)
[12] Chaubal R, Reger B J. Relatively high calcium is localized in
synergid cells of wheat ovaries. Sex Plant Rep, 1990, 3: 98–102
[13] Chaubal R, Reger B J. Calcium in the synergid cells and
other regions of pearl millet ovaries. Sex Plant Rep, 1990, 5:
34–46
[14] Jensen W A, Ashton M E, Bearleg C A. Pollen tube -embryo sac
interaction in cotton. In: Mulcahy D L, Ottaviano E, eds. Pollen:
Biology and Implication for Plant Breedsing. Amsterdam: El-
sevier, 1983. pp 67–72
[15] Huang B Q, Russell S D. Synergid degeneration in Nicotiana: a
quantative, fluorochromatic and chlorotetracycline study. Sex
Plant Rep, 1992, 5: 151–155
[16] Shen J-H(申家恒), Li H-R(李慧蓉), Yin H(殷华). Megasporo-
genesis and microsporogenesis and the development of their fe-
male and male gametophyte in sugar beet. Acta Agron Sin (作物
学报), 1986, 12(3): 205–213 (in Chinese with English abstract)
[17] Ding C-H(丁常宏), Shen J-H(申家恒), Guo D-D(郭德栋), Li
W(李伟), Dong X-Y(董雪云). Ultrastructure of megasporo-
genesis in Beta vulgaris L. Chin Bull Bot (植物学报), 2009,
44(5): 562–570 (in Chinese with English abstract)
[18] Li W(李伟), Shen J-H(申家恒), Guo D-D(郭德栋), Shang Y-J(尚
娅佳), Lu J-P(陆俊萍), Ding C-H(丁常宏). Ultrastructure of
megagametophyte during the development period in sugar beet
(Beta vulgaris L.). Acta Agron Sin (作物学报), 2009, 35(3):
490–498 (in Chinese with English abstract)
[19] Lu J-P(陆俊萍), Shen J-H(申家恒), Guo D-D(郭德栋), Wang
Y-J(王艳杰). Ultrastructure of pollen development in Beta vul-
garis. Chin Bull Bot (植物学报), 2009, 44(3): 323–330 (in Chi-
nese with English abstract)
[20] Hoefert L L. Ultrastructure of beta pollen: I. Cytoplasmic con-
stituents. Am J Bot, 1969, 56: 363–368
[21] Li W(李伟), Shen J-H(申家恒), Guo D-D(郭德栋), Shang Y-J(尚
娅佳), Lu J-P(陆俊萍). Ultrastructural changes of egg, zygote
and two-celled proembryo in sugar beet (Beta vulgaris L.). Chin
Bull Bot (植物学报), 2010, 45(1): 79–87 (in Chinese with Eng-
lish abstract)
[22] Shen J-H(申家恒), Li H-R(李慧蓉), Han X-H(韩晓华), Wang
P(王谱). Observations on fertilization in sugar beet. Acta Bot Sin
(植物学报), 1986, 28(3): 251–255 (in Chinese with English ab-
stract)
[23] Peng X-B(彭雄波), Sun M-X(孙蒙祥). Molecule and cytology
mechanism of fertilization in angiosperms. Chin Bull Bot (植物
学报), 2007, 24(3): 355–371 (in Chinese with English abstract)
[24] Yan H(阎华), Yang H-Y(杨弘远), Jensen W A. Ultrastructure of
the developing embryo sac of sunflower (Helianthus annuus) be-
fore and after fertilization. Can J Bot, 1991, 69: 191–202
[25] Sandaklie-Nikolova L, Palanivelu R, King E J, Copenhaver G P,
Drews G N. Synergid cell death in Arabidopsis is triggered fol-
lowing direct interaction with the pollen tube. Plant Physiol,
2007, 144: 1753–1762
[26] Wu H M, Cheung A Y. Programmed cell death in plant reproduc-
tion. Plant Mol Biol, 2000, 44: 267–281






2224 作 物 学 报 第 39卷


图版说明:
所有图片均是珠孔端朝上。CC: 中央细胞; CW: 细胞壁; DSy: 退化助细胞; EC: 卵细胞; FA: 丝状器; G: 高尔基体; L: 脂体; M: 线粒
体; N: 核; P: 质体; PSy: 宿存助细胞; RER: 粗面内质网; S: 淀粉粒; Sy: 助细胞; V: 液泡; Ve: 小泡; Z: 合子。
Explanation of plate:
The micropyle is in upward position in each panel. CC: central cell; CW: cell wall; DSy: degenerated synergid; EC: egg cell; FA: filiform
apparatus; G: golgi body; L: lipid body; M: mitochondrium; N: nucleus; P: plastid; PSy: persistant synergid; RER: rough endoplasmic re-
ticulum; S: starch grain; Sy: synergid; V: vacuole; Ve: vesicle; Z: zygote.


图版 I (A): 2 个助细胞同时存在(Bar = 2 μm)。(B~D): 图 A 的局部放大, 图 B 示两助细胞之间的细胞壁(Bar =2 μm); 图 C 示助细胞
核周围的胞质(Bar =500 nm); 图 D 示高尔基体和内质网(Bar =200 nm)。(E): 一个助细胞开始退化, 一个助细胞宿存(Bar = 2 μm)。
(F): 图 E 的局部放大, 示两助细胞之间的胞间连丝(箭头) (Bar =200 nm)。
Plate I (A): Both of two synergids exist at the same time (Bar = 2 μm). (B–D): Higher magnification of Figure A, Figure B shows cell
wall between two synergids (Bar =2 μm), Figure C shows cytoplasm around synergid nucleus (Bar =500 nm); Figure D shows golgi
body and endoplasmic reticulum (Bar =200 nm). (E): One synergid began to degenerate and the other persisted (Bar = 2 μm). (F):
Higher magnification of Figure E, showing plasmodesmata between synergids by arrows (Bar =200 nm).

第 12期 李 伟等: 栽培甜菜助细胞退化进程的超微结构观察 2225



图版 II (A~D): 图版 I 中图 E 的局部放大, 图 A, B 示开始退化助细胞的胞质(Bar = 200 nm); 图 C, D 示宿存助细胞中的胞质(Bar =
500 nm)。(E, F): 一个助细胞完全退化, 一个助细胞宿存, 箭头示卵细胞合点端的电子浓密物质(图 E, Bar = 5 μm; 图 F, Bar = 2 μm)。
Plate II (A–D): Higher magnification of Figure E in Plate I, Figure A and B show cytoplasm of the degenerated synergid; Figure C
and D show cytoplasm of the persistant synergid (Bar = 500 nm). (E, F): One synergid degenerated completely, the other persisted,
electronic dense material at chalazal end of egg cell shown by arrows (Figure E, Bar = 5 μm; Figure F, Bar = 2 μm).

2226 作 物 学 报 第 39卷



图版 III (A, B): 图版 II 中图 F 的局部放大, 示宿存助细胞的胞质(Bar = 500 nm)。(C): 受精前的宿存助细胞(Bar = 5 μm)。
(D): 图 C 的局部放大, 示宿存助细胞的胞质(Bar = 500 nm)。
Plate III (A, B): Higher magnification of Figure F in Plate II, showing cytoplasm of the persistant synergid (Bar = 500 nm). (C):
Persistant synergid before fertilization (Bar = 5 μm). (D): Higher magnification of Figure C, showing cytoplasm in persistant synergid
(Bar = 500 nm).

第 12期 李 伟等: 栽培甜菜助细胞退化进程的超微结构观察 2227



图版 IV (A): 图版 III 中图 C 的局部放大, 示宿存助细胞的胞质(Bar = 200 nm)。(B): 合子时期的助细胞, 箭头示合子合点端蜂窝状
细胞壁(Bar = 2 μm)。(C): 图 B 的局部放大, 示宿存助细胞的胞质(Bar = 500 nm)。(D): 合子后期, 2 个助细胞均退化(Bar = 2 μm)。
Plate IV (A): Higher magnification of Figure C in plate III, showing cytoplasm of the persistant synergid (Bar = 200 nm). (B):
Synergids at zygote stage, arrow shows cell wall at chalazal end of zygote (Bar = 2 μm). (C): Higher magnification of Figure B, showing
persistant synergid began to degenerate (Bar = 500 nm). (D): Both of two synergids degenerated at late stage of zygote (Bar = 2 μm).