全 文 :作物学报 ACTA AGRONOMICA SINICA 2015, 41(1): 100108 http://zwxb.chinacrops.org/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
本研究由国家自然科学基金项目(U1203283, 31260295)资助。
* 通讯作者(Corresponding author): 张旺锋, E-mail: zhwf_agr@shzu.edu.cn, zwf_shzu@163.com; Tel: 0993-2057326
第一作者联系方式: E-mail: dhtzcwlp2004@126.com
Received(收稿日期): 2014-05-27; Accepted(接受日期): 2014-09-30; Published online(网络出版日期): 2014-11-11.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20141111.1557.013.html
DOI: 10.3724/SP.J.1006.2015.00100
膜下滴灌对棉花生育后期叶片与苞叶光合特性的影响
张 超 占东霞 张亚黎 罗宏海 勾 玲 张旺锋*
石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003
摘 要: 在新疆气候生态条件下, 选用新陆早 33号和新陆早 46号棉花品种, 设置 2个膜下滴灌量处理, 测定棉花叶
片和苞叶的光响应曲线、CO2 响应曲线、荧光参数等相关光合生理指标, 探讨生育后期棉花叶片与苞叶光合能力的
差异及对滴灌量的响应。结果表明 , 棉花生育期间 , 高温强光下苞叶最大羧化速率与最大电子传递速率的比值
(Jmax/Vc,max)较高, 气孔导度(Gs)较低。棉花生长发育后期, 苞叶面积、含水量、叶绿素含量、净光合速率(Pn)、光系
统 II实际光化学效率( PSII)、Rubisco含量显著低于叶片, 但随着生育进程降幅显著低于叶片。与常规滴灌处理相比,
节水滴灌处理棉花叶片含水量降幅显著高于苞叶; 叶片叶绿素含量、Pn和 Rubisco含量显著降低, 而苞叶的变化不显
著。棉花生育后期苞叶面积、含水量、叶绿素含量、Pn、ΦPSII、Rubisco含量的稳定性高于叶片, 表明生育后期叶片
衰老较快, 但苞叶仍能保持较稳定的光合能力, 对光合物质的贡献逐渐增大, 常规滴灌下达 7.22%~8.83%, 节水滴灌
下达 10.24%~12.53%。
关键词: 棉花; 苞叶; 节水滴灌; 光合能力
Effects of Drip Irrigation on Photosynthetic Characteristics of Leaves and
Bracts in Cotton at Late Growth Stage
ZHANG Chao, ZHAN Dong-Xia, ZHANG Ya-Li, LUO Hong-Hai, GOU Ling, and ZHANG Wang-Feng*
Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group / Agricultural College, Shihezi University, Shihezi 832003,
China
Abstract: The majority of cotton (Gossypium hirsutum L.) photosynthetic products comes from leaves, but non-foliar green or-
gans of cotton such as bracts also contain chlorophyll and may contribute to the yield. We selected Xinluzao 33 and Xinluzao 46
with two irrigation treatments (normal drip irrigation and water-saving drip irrigation) to determine physiological indices includ-
ing response curves of net photosynthetic rate (Pn), photosynthetically active radiation (PAR), intercellular CO2 concentration (Ci),
fluorescence parameters, and water content of cotton bracts and leaves and to explore the difference of photosynthetic capacity
between bracts and leaves under drip irrigation conditions. The results showed that bracts showed greater RuBP regenera-
tion/RuBP carboxylation capacity ratio (Jmax/Vc,max) and lower stomatal conductance under high irradiance and temperature condi-
tions. Photosynthetic area per plant, chlorophyll content, water content, Pn, the actual photochemical efficiency of PSII (ΦPSII),
and Rubisco content were less in bracts than in leaves, but the decline of the indices showed a significantly faster in leaves than in
bracts at the late growth stage. Compared with normal drip irrigation, the decreased degree of water content under water-saving
drip irrigation was significantly higher in leaves than in bracts of cotton plants, and chlorophyll content, Pn, and Rubisco content
decreased in leaves under water-saving drip irrigation, but there was no significant changed in bracts. The stabilities of bracts area,
water content, chlorophyll content, Pn, ΦPSII, rubisco content in bracts were higher than those in leaves. It indicated the photosyn-
thetic activity of leaves decreased rapidly. The bracts contributed approximate 7.22%–8.83% of the total photosynthate at the late
growth stage under normal drip irrigation, and 10.24%–12.53% under water-saving drip irrigation. We concluded that bracts can
increase the photosynthate of plant at the late growth stage under water-saving drip irrigation.
Keywords: Cotton; Bract; Water-saving drip irrigation; Photosynthetic activity
第 1期 张 超等: 膜下滴灌对棉花生育后期叶片与苞叶光合特性的影响 101
叶片是植物主要的光合器官, 叶片早衰导致叶
绿素含量降低, 叶绿体的数目减少、结构和功能发
生改变 , 降低光合生产能力 [1-3]。叶片衰老过程中 ,
所捕获的激发能超过其碳同化的利用能力时, 过多
的激发能导致光系统II (PSII)光碳失衡, 从而降低作
物的光合生产力[4-5]; 有关分离叶绿体或类囊体膜的
研究发现, 叶片衰老诱导光系统II (PSII)和光系统I
(PSI)光化学活性的降低, 并且在大多数情况下PSII
比PSI更容易衰老, PSII活性的下降导致光合能力降
低 [6-8]。类囊体膜蛋白的降解导致光合酶活性下降,
进而影响光合活性 [9-10], 其中Rubisco酶活性的降低
是导致光合速率下降最主要的原因[11-12]。
前人研究表明, 作物的非叶绿色器官, 如小麦
(Triticum aestivum L.)的穗 [13-14]、棉花 (Gossypium
hirsutum L.)的苞叶[15]、大豆(Glycine max)的豆荚[16]、
玉米(Zea mays L.)的苞叶[17]等均含有叶绿素, 具有
光合作用的潜力, 对产量形成有一定的贡献; 作物
非叶绿色器官具有较强的光合抗逆性, 充分发挥非
叶绿色器官的光合耐逆功能, 对提高整体光合能力具
有重要意义[18-20]。棉花叶片是碳同化的主要器官[21],
但棉花苞叶、棉铃、茎秆[15]等非叶绿色器官具有光
合作用。研究表明, 棉花叶片光合产物对棉铃发育
的贡献是有限的, 尤其在生育后期叶片的贡献显得
尤为不足[22-25]。水分胁迫抑制了叶片面积的伸展[26],
降低叶片光能转化率和光化学活性[27], 增加活性氧[28],
加重了叶片的早衰。在光合“源”受限制环境下, 棉花
非叶绿色器官的光合作用对产量形成的作用更为突
出。棉花苞叶包裹在棉铃外, 在生理位置上紧挨着
产量器官棉铃, 具有较强的光合能力, 在产量形成
中具有重要作用[24]。因此, 研究节水条件下棉花苞
叶的光合潜力, 探讨增强棉株整体的光合抗逆能力,
减轻土壤水分亏缺对棉株产量的不利影响, 是实现
棉花节水高产栽培迫切需要研究的重要内容。本研
究针对新疆典型大陆性干旱气候, 比较不同水分条
件下棉花生育后期叶片与苞叶光合能力的差异及对
生育后期干旱逆境的适应机制, 探究苞叶光合作用
对棉花产量的贡献, 为新疆棉花高产品种的选育及
节水抗逆栽培提供理论依据。
1 材料与方法
1.1 试验概况
2012—2013年在石河子大学农学试验站(45.32°N,
86.05°E)种植新疆棉区主栽品种新陆早33号和新陆
早46号, 2个品种生育期为124~125 d。设置2个滴灌
量处理, 常规滴灌量每次滴水至田间持水量的80%;
节水滴灌量每次滴水量为常规滴灌量的60%; 采用
裂区试验设计 , 主区为水分处理 , 副区为品种 , 重
复3次; 小区面积44 m2。两年试验分别于4月25日和4
月23日播种, 于棉花开花期进行滴灌水分处理。田
间种植方式、管道铺设方法及田间管理同一般大田
膜下滴灌棉花。
于棉花盛花期植株打顶后 , 在各小区分别选
取长势均匀、有代表性的棉株 , 对主茎倒二叶挂牌
标记 , 记录同时开花的倒二果枝第一果节花蕾。在
棉花开花期水分处理后开始定期取样测定 , 一般
选择灌水后第4天测定所标记叶片及棉铃苞叶的
气体交换参数、叶绿素荧光参数、环境因子及棉
株各器官含水量的变化 , 共取样5次 , 取样时间分
别在出苗后85、95、105、115和125 d前后 , 即对
应棉花的盛花期、盛铃前期、盛铃中期、盛铃后
期、吐絮初期。
1.2 测定项目与方法
在各小区分别选取长势均匀有代表性的棉株3
株, 用LI-3000 (LI-COR, Lincoln, USA)叶面积仪测
定单株叶片和苞叶面积。选取所标记的叶片与相邻
棉铃的苞叶 , 采用Lichtenthaler[29]的方法测定叶绿
素含量, 烘干法测定植株叶片与苞叶含水量。
选择晴朗无风天气 , 在北京时间11:30至13:30
用LI-6400便携式光合测定系统 (LI-COR, Lincoln,
USA)和6400-02LED红蓝光源叶室(LI-COR, Lincoln,
USA), 测定所标记叶片及苞叶的光响应曲线
(Pn-PAR)和CO2响应曲线(Pn-Ci)。在测定光响应曲线
时, 采用开放式气路, 气温为30~35℃, 空气相对湿
度50%~70%, 光强分别为2000、1800、1500、1200、
1000、800、500、200、50和0 μmol m–2 s–1。测定CO2
浓度响应曲线时 , 气温为30~35℃ , 空气相对湿度
50%~70%, 光强为2000 μmol m–2 s–1, CO2浓度分别
为2000、1000、500、400、300、200、100、50和0 μmol
m–2 s–1。采用轮回方法测定不同处理。
参考Schreiber等[30-31]的方法, 在北京时间11:30
至13:30, 采用PAM-2100便携式调制荧光仪(WALZ,
Effeltrich, Germany)和 2030-B光适应叶夹 (WALZ,
Effeltrich, Germany)测定叶片和苞叶PSII光适应下的
最大荧光产量(Fm′)和实际荧光产量(Ft)。设置光量子
通量密度为1800 μmol m–2 s–1, 每个样品照射3 min
后, 打开饱和脉冲光进行荧光猝灭分析, PSII有效光
102 作 物 学 报 第 41卷
化学效率(ΦPSII) = (Fm′ – Ft)/Fm′, 所测叶片及苞叶与
测定气体交换参数的相同。
应用Farquhar等[32]的模型, 对叶片与苞叶CO2响
应曲线进行拟合 , 在较低胞间CO2浓度下(C i<200
μmol m–2 s–1), Rubisco活性和数量是净光合速率的限
制因子, 此时, Pmax = Vc, max (Ci–Γ*)/ [Ci+Kc(1+Oi/
Ko)]–Rd; 根据von Caemmerer[33]的模型, 在较高胞间
CO2浓度下(Ci>200 μmol m–2 s–1), RuBP再生将受到
限制, 取决于电子传递速率, 此时Pmax= Jmax (Ci–Γ*)/
(4Ci+8Γ*) – Rd; 其中Pmax为最大净光合速率, Vc, max
为最大羧化速率, Jmax为最大电子传递速率, Ci为胞
间CO2浓度, Γ*为CO2补偿点, Kc和Ko是Rubisco羧化
和氧化反应的米氏常数, 分别为460 μbar和330 mbar,
Oi是叶绿体羧化部位的氧分压, 为210 mbar, Rd为光
下呼吸速率。根据Hymus等 [ 3 4 ]的理论 , 通过公式
Rubisco (mol m–2) = (Vc,max/1 000 000)/8Kcat估算
Rubisco含量 , 其中Kcat是每个活化位点的羧化能力 ,
为3.3。
1.3 数据分析
采用SPSS17.0统计软件对数据进行单因素分析,
用最小差异性检验 (LSD)法检验差异显著性 ,
P<0.05。用SigmaPlot10.0作图。
2 结果与分析
2.1 光合面积的变化
由图1可以看出, 随生育进程2个棉花品种单株叶
面积(图1-A)与苞叶面积(图1-B)均表现先上升后下降
的趋势, 在盛铃期达到峰值; 与正常滴灌量相比, 节
水滴灌处理下棉花叶片面积显著降低, 但苞叶面积的
变化无显著差异。从出苗后85~125 d, 不同水分处理下
棉花苞叶面积较叶面积与苞叶面积之和变化显著, 分
别增加了33.85%~39.69%和27.02%~33.10%。
图 1 棉花叶面积(A)与苞叶面积(B)的变化
Fig. 1 Changes of cotton leaf area (A) and bract area (B)
NDI: 常规滴灌量; SDI: 节水滴灌量。XLZ33: 新陆早 33号; XLZ46: 新陆早 46号。
NDI: normal drip irrigation; SDI: saving drip irrigation; XLZ33: Xinluzao 33; XLZ46: Xinluzao 46.
2.2 叶绿素含量的动态变化
叶绿素(Chl)含量的高低影响叶片对光能的吸
收、传递和转化, 生产实践中常用光合器官叶绿素
的含量来判断植株遭受逆境胁迫的程度与光合生产
能力等。试验表明, 单位面积苞叶的叶绿素含量显
著低于叶片(图 2-A, B)。出苗后 85~125 d, 叶片光合
机构已健全, 叶绿素含量显著下降(图 2-A); 而苞叶
光合机构尚未发育完全, 单位面积苞叶的叶绿素含
量呈现先上升后下降的趋势, 盛铃期到吐絮期降幅
较小, 差异不显著(图 2-B), 但显著低于叶片。与正
常滴灌相比, 节水滴灌处理下单位面积叶片的叶绿
素显著降低, 但单位面积苞叶的叶绿素含量无显著
性差异。
2.3 叶片与苞叶含水量的动态变化
随着棉花生育时期的推移, 在田间条件下棉株
叶片与苞叶的含水量均表现下降趋势, 苞叶含水量
显著高于叶片含水量, 不同品种间差异较小(图 3-A,
B)。在测定时期内, 常规滴灌量下叶片与苞叶含水
量分别下降 21.67%~30.78%和 15.04%~17.85%, 而
节水滴灌量下分别下降 28.78%~43.29%和 15.87%~
19.41%。苞叶的含水量降幅小于叶片, 表明苞叶比
叶片具有更强的耐旱性。
第 1期 张 超等: 膜下滴灌对棉花生育后期叶片与苞叶光合特性的影响 103
图 2 棉花叶片(A)与苞叶(B)叶绿素含量的变化
Fig. 2 Changes of chlorophyll content in cotton leaf (A) and bract (B)
缩写同图 1。Abbreviations are the same as those given in Fig. 1.
图 3 棉花叶片(A)与苞叶(B)含水量的变化
Fig. 3 Changes of water content in cotton leaf (A) and bract (B)
缩写同图 1。Abbreviations are the same as those given in Fig. 1.
2.4 叶片与苞叶气体交换参数的变化
2.4.1 净光合速率(Pn)的变化 随棉花生育时期
的推移 , 叶片净光合速率(Pn)逐渐下降(图 4-B), 不
同品种间盛花期至盛铃期差异显著, 吐絮期差异不
显著; 苞叶 Pn呈先上升后下降的趋势, 在出苗 95 d
达到峰值 , 这可能与苞叶光合器官逐渐建成有关 ,
品种间差异不显著。与正常滴灌量相比, 节水滴灌
处理下叶片 Pn显著降低, 但苞叶 Pn无显著差异。此
时常规滴灌下苞叶光合速率最大时约占叶片的
27%~29% (图 4-C), 而节水滴灌下这一比值可达到
35%~38%。
2.4.2 气孔导度(Gs)的变化 随着棉花生育时期
的推移, 叶片的气孔导度(Gs)持续下降(图 5-A); 苞
叶的光合机构尚在发育过程中, Gs 呈现由低到高的
变化趋势, 在出苗后 95 d 左右达到峰值(图5-B), 随
后逐渐下降。在新疆夏季气温(图4-A)及 1800 μmol
m–2 s–1光强条件下, 叶片的 Gs显著高于苞叶。与正
常滴灌相比, 节水滴灌处理下叶片 Gs 显著降低, 不
同品种间差异显著; 但不同水分处理下苞叶 Gs差异
不显著, 品种间苞叶 Gs差异亦不显著。
2.4.3 最大羧化速率(Vc,max)与最大电子传递速率
(Jmax)的动态变化 在新疆夏季气温(图 4-A)及光
104 作 物 学 报 第 41卷
图 4 1800 μmol m–2 s–1光强及新疆夏季气温(A)下棉花叶片(B)与苞叶(C)净光合速率(Pn)的变化
Fig. 4 Changes of photosynthetic rate (Pn) in cotton leaf (B) and bract (C) under 1800 μmol m–2 s–1 and Xinjiang’s temperature (A)
缩写同图 1。Abbreviations are the same as those given in Fig. 1.
图 5 新疆夏季棉花叶片(A)与苞叶(B)气孔导度(Gs)的变化
Fig. 5 Changes of of stomatal conductance (Gs) in cotton leaf (A) and bract (B) under 1800 μmol m–2 s–1 and Xinjiang’s temperature
缩写同图 1。Abbreviations are the same as those given in Fig. 1.
第 1期 张 超等: 膜下滴灌对棉花生育后期叶片与苞叶光合特性的影响 105
强 1800 μmol m–2 s–1条件下, 棉花叶片与苞叶的最
大羧化速率(Vc,max)变化趋势不同, 出苗后 85 d 叶片
的光合机构已健全, Vc,max 呈快速下降趋势(图 6-A),
而苞叶 Vc,max呈现先上升后下降的趋势, 且变化幅度
较小(图 6-C), 表明苞叶光合器官尚在逐渐发育过程
中。田间条件下棉花叶片最大电子传递速率(Jmax)变
化趋势与Vc,max相似(图 6-B, D)。与正常滴灌相比, 节
水滴灌条件下叶片 Vc,max 与 Jmax 显著降低, 但苞叶
Vc,max与 Jmax无显著差异, 品种间差异亦不显著。叶
片 Vc,max是苞叶的 3.42倍左右, Jmax是苞叶的 1.89倍
左右, 均达显著水平。
最大电子传递速率与最大羧化速率的比值(Jmax/
Vc,max)可用来评价Rubisco氧化和羧化作用的蛋白分
配情况 [35-36]。随棉花生育时期的推移 , 苞叶的
Jmax/Vc,max均显著高于叶片(图7-A, B)。与正常滴灌量
相比, 节水滴灌条件下叶片Jmax/Vc,max显著降低, 品
种间差异显著; 但苞叶Jmax/Vc,max无显著差异, 品种
间差异亦不显著。
图 6 棉花叶片 Vc,max(A)和 Jmax(B)与苞叶 Vc,max(C)和 Jmax(D)的动态变化
Fig. 6 Changes of the maximal velocity of RuBP carboxylation (Vc,max) and the maximum rate of electron transport driving RuBP
regeneration (Jmax) in cotton leaves (A, B) and bracts (C, D)
缩写同图 1。Abbreviations are the same as those given in Fig. 1.
图 7 棉花叶片(A)与苞叶(B)Jmax/Vc,max的变化
Fig. 7 Changes of Jmax/Vc,max in cotton leaves (A) and bracts
(B)
缩写同图 1。Abbreviations are the same as those given in Fig. 1.
2.4.4 Rubisco含量的动态变化 在棉铃发育过
程中, 单位面积叶片Rubisco含量呈降低趋势; 而苞
叶光合机构尚在发育过程中, 单位面积苞叶Rubisco
含量在出苗后95 d时达到峰值, 是叶片Rubisco含量
的19%~24% (图8), 此后苞叶的Rubisco含量开始缓
慢下降。出苗后 85~125 d, 常规滴灌下叶片的
Rubisco含量下降58.91%~60.25%, 苞叶的Rubisco含
量下降40.49%~41.07%; 而节水滴灌下叶片Rubisco含
量降低69.25%~74.71%, 苞叶降低45.17%~47.65%。
2.5 叶片与苞叶实际光化学效率(ΦPSII)的动态变化
在环境胁迫下, 实际光化学效率(ΦPSII)的变化
能反映PSII光合能力的高低[27,37-39]。在本试验条件下,
随生育进程, 当光强为1800 μmol m–2 s–1时, 叶片的
ΦPSII呈下降趋势(图9-A), 品种间差异显著; 至出苗
后125 d, 常规滴灌与节水滴灌下叶片的ΦPSII分别降
低45.36%~53.38%和58.57%~68.72%。棉花苞叶的
ΦPSII变化趋势与叶片存在明显差异, 出苗后85 d苞
叶ΦPSII呈先上升后下降的趋势, 表明苞叶光合器官
尚在发育过程中, 至出苗后95 d达到峰值(图9-B), 变
化趋势与Pn一致, 光系统II ΦPSII降低直接导致其较低
106 作 物 学 报 第 41卷
图 8 棉花叶片(A)与苞叶(B)单位面积 Rubisco含量的变化
Fig. 8 Changes of Rubisco content per unit area of leaf (A)
and bract (B) in cotton
缩写同图 1。Abbreviations are the same as those given in Fig. 1.
的 Pn; 苞叶的 ΦPSII下降缓慢且幅度较小, 品种间差异
不显著; 至出苗后 125 d, 常规滴灌与节水滴灌下苞叶
的 ΦPSII分别降低 29.25%~34.71%和 33.17%~37.65%。
3 讨论
3.1 叶片和苞叶光合能力的变化及对滴灌量的
响应
本研究结果表明 , 2个棉花品种在出苗后 85~
125 d, 叶片 Rubisco 含量快速下降, 而苞叶仍能保
持较稳定的 Rubisco 含量(图 8-B); 叶绿素降解是叶
片衰老的表现, 随棉铃的快速生长, 苞叶的叶绿素
含量下降幅度显著低于叶片(图 2-B)。在棉铃发育后
期, 苞叶 Rubisco 含量和叶绿素含量下降幅度均小
于叶片, 这表明苞叶的衰老较慢。节水滴灌条件下
叶片 Pn、Gs、Jmax与 Vc,max下降显著, 而苞叶 Pn、Gs、
Jmax与 Vc,max变化不显著, 表明土壤水分不足, 叶片
的光合能力受到明显抑制, 而苞叶能保持相对稳定
光合能力。相关分析表明, 苞叶能保持相对稳定光
合能力与其具有较稳定的含水量和相对稳定的光合
组分(叶绿素含量、Rubisco 含量)呈显著正相关。与
叶片相比, 苞叶具有较低的气孔导度和较高的水分
利用效率[40-42], 使得苞叶具有较为抗旱的形态特征
和生理机制。前人研究表明, 在棉铃发育的初期, 主
茎倒二叶的光合作用能为倒二果枝第一果节的棉铃
提供足够的碳水化合物, 但在棉铃发育中后期, 主
茎倒二叶衰老、光合能力下降不能再满足棉铃的发
育[15,43], 棉铃发育所需的能量主要由新的“光合源” 提
供。在棉花生育后期, 叶片逐渐衰老脱落, 苞叶表面积
的相对增加且其光合能力维持的时间较长, 因此苞叶
的光合作用可能是棉铃发育所需能量的新“源”之一。
强光下绿色器官捕获的激发能超过其碳同化的
利用能力时, 过剩光能会导致 PSII 的光抑制[39]。
Demmig和 Adams[44]认为光合器官通过降低 PSII实
际光化学效率以减轻光抑制。本研究结果表明, 随
生育进程叶片与苞叶的ΦPSII均呈下降趋势(图 9), 苞
叶的下降幅度显著低于叶片 ; 与正常滴灌量相比 ,
节水滴灌条件下叶片 ΦPSII显著降低, 而苞叶变化不
显著, 叶片 Pn 下降幅度显著高于苞叶, 表明苞叶具
有一定的抗旱性。棉花苞叶的 Pn (图 4)与 Gs (图 5)
显著低于叶片, 对 Pn、Gs与胞间 CO2浓度(Ci)进行
相关性分析表明, Pn、Ci与 Gs呈显著正相关, 较低的
图 9 棉花叶片(A)与苞叶(B)PSII实际光化学效率(ΦPSII)的变化
Fig. 9 Changes of actual photochemical efficiency of PSII (ΦPSII) in cotton leaves (A) and bracts (B)
缩写同图 1。Abbreviations are the same as those given in Fig. 1.
第 1期 张 超等: 膜下滴灌对棉花生育后期叶片与苞叶光合特性的影响 107
Gs可能是苞叶 Pn的限制因素, 另一方面, 较低的叶
绿素含量也是苞叶 Pn较低的重要原因。
Farquhar等[32]认为当环境中的 CO2浓度较高时,
RuBP 的氧化速率将成为限制光合速率的因子; Hu
等 [25]研究发现, 棉铃具有较高的呼吸速率, 对其包
裹在外的苞叶形成了一个高浓度 CO2的微环境。本
试验表明, 苞叶具有较高的 Jmax/Vc,max 比值(图 7)和
Gs (图 5), 表明苞叶对较高浓度CO2的适应能力高于
叶片。节水滴灌条件下叶片 Jmax/Vc,max比值和 Gs显
著降低, 但苞叶 Jmax/Vc, max比值和 Gs无显著性差异,
暗示节水滴灌条件下苞叶具有适应较高浓度 CO2的
能力, 同时维持稳定的光合作用。
3.2 生育后期苞叶光合作用对产量形成的贡献
前人研究表明, 小麦穗的光合作用占麦粒所需
碳水化合物的 40%~50%[40,45], 水稻花序的光合作用
占谷粒所需碳水化合物的 20%~30%[46]。因此, 作物
非叶绿色器官光合作用对产量形成具有重要的生理
意义。在棉花盛铃中期至吐絮初期叶片快速脱落 ,
相对而言, 苞叶面积增加, 苞叶面积占光合面积的
比例显著增大(图 1-B)且能保持较稳定的光合速率
(图 4-B)。因此, 随着叶片的衰老, 苞叶的光合作用
可能对整个棉株的光合作用起着重要补充作用。Hu
等[24]研究发现在棉铃的整个发育时期内, 茎秆能保
持相对稳定的表面积 , 约占棉株总面积的 15.6%~
17.3%, 但茎秆单位面积的叶绿素含量较低, 光合能
力有限; 随着棉铃的发育, 棉铃面积逐渐增加, 吐絮
期棉铃面积约占棉株总面积的 6.9%~8.1%, 但棉铃单
位面积的叶绿素含量较低, 光合能力有限。根据前人
对棉花非叶器官光合作用的估算[15,24,40,43], 分别将出
苗后 85~125 d 叶片、苞叶、铃壳和茎秆的净光合速
率平均值与其面积平均值相乘, 估算出常规滴灌下
苞叶的光合能力占整个棉株光合能力为 3.65%、
4.71%、5.56%、7.22%和 8.83%; 而节水滴灌下这一
比值可达到 4.78%、6.64%、7.87%、10.24%和 12.53%。
4 结论
棉花经济产量主要在盛铃期至吐絮期形成的 ,
生育后期叶片衰老较快, 而苞叶能保持较稳定的光
合能力, 在节水滴灌条件下, 棉花苞叶的光合作用
对植株整体光合能力的贡献率增加。因此, 在水分
不足条件下, 可通过膜下滴灌合理的水肥管理, 适
当控制叶面积指数的发展, 促进苞叶等非叶绿色器
官面积的发展, 调节叶铃空间分布, 充分发挥非叶
绿色器官的光合抗逆功能, 提高棉花产量。
References
[1] Munné-Bosch S, Leonor A. Die and let live: leaf senescence con-
tributes to plant survival under drought stress. Funct Plant Biol,
2004, 31: 203–216
[2] 张永平, 王志敏, 黄琴, 谢岷. 不同水分供给对小麦叶与非叶
器官叶绿体结构和功能的影响 . 作物学报 , 2008, 34:
1213–1219
Zhang Y P, Wang Z M , Huang Q, Xie M. Changes of chloroplast
ultra microstructure and function of different green organs in
wheat under limited irrigation. Acta Agron Sin, 2008, 34:
1213–1219 (in Chinese with English abstract)
[3] 王复标, 黄福灯, 程方民, 李兆伟, 胡东维, 潘刚, 毛愉婵. 水
稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观
察. 作物学报, 2012, 38: 871–879
Wang F B, Huang F D, Cheng F M, Li Z W, Hu D W, Pan G, Mao
Y C. Photosynthesis and chloroplast ultra-structure characteristics
of flag leaves for a premature senescence rice mutant. Acta Agron
Sin, 2012, 38: 871–879 (in Chinese with English abstract)
[4] Lu C M, Lu Q T, Zhang J H, Kuang T Y. Characterization of
photosynthetic pigment composition, photosystem II photochem-
istry and thermal energy dissipation during leaf senescence of
wheat plants grown in the field. J Exp Bot, 2001, 52: 1805–1810
[5] Tang Y L, Wen X G, Lu C M. Differential changes in degradation
of chlorophyll–protein complexes of photosystem I and photo-
system II during flag leaf senescence of rice. Plant Physiol Bio-
chem, 2005, 43: 193–201
[6] Grover A, Mohany P. Leaf senescence-induced alterations in
structure and function of higher plant chloroplasts. In: Abrol Y P,
Mohany P, Govindjee, eds. Photosynthesis: Photoreaction to
Plant Productivity. The Netherlands: Kluwer Academic Publish-
ers, 1992. pp 225–255
[7] Guiamét J J, Tyystjärvi E, Tyystjärvi T, John I, Kairavuo M,
Pichersky E, Noodén L D. Photoinhibition and loss of photosys-
tem II reaction centre proteins during senescence of soybean
leaves. Enhancement of photoinhibition by the ‘stay-green’ muta-
tion cytG. Physiol Plant, 2002, 115: 468–478
[8] Falqueto A R, Silva F S P, Cassol D, Magalhães Júnior A M,
Oliveira A C, Bacarin M A. Chlorophyll fluorescence in rice:
probing of senescence driven changes of PSII activity on rice va-
rieties differing in grain yield capacity. Brazil J Plant Physiol,
2010, 22: 35–41
[9] Okada K, Inoue Y, Satoh K, Katoch S. Effects of light on degra-
dation of chlorophyll and proteins during senescence of detached
rice leaves. Plant Cell Physiol, 1992, 33: 1183–1191
[10] 王静, 张成军, 陈国祥, 王萍, 施大伟, 吕川根. 低温对灌浆
期水稻剑叶光合色素和类囊体膜脂肪酸的影响. 中国水稻科
学, 2006, 20: 177–182
Wang J, Zhang C J, Chen G X, Wang P, Shi D W, Lü C G. Effect of
low temperature on photosynthetic pigments and thylakoid mem-
brane fatty acid in flag leaves of rice at the milky stage. Chin J Rice
Sci, 2006, 20: 177–182 (in Chinese with English abstract)
[11] Miller A, Schlagnhaufer C, Spalding M, Rodermel S. Carbohy-
drate regulation of leaf development: Prolongation of leaf senes-
cence in Rubisco antisense mutants of tobacco. Photosynth Res,
2000, 63: 1–8
[12] Shan X Y, Wang J X, Chua L L, Jiang D, Peng W, Xie D X. The
role of Arabidopsis Rubisco activase in jasmonate-induced leaf
senescence. Am Soc Plant Biol, 2011, 115: 751–764
[13] Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics
of non leaf organs of winter wheat cultivars differing in ear type
and their relationship with grain mass per ear. Photosynthetica,
2001, 39: 239–244
[14] 李朝霞, 赵世杰, 孟庆伟, 邹琦, 田纪春. 不同粒叶比小麦品
种非叶片光合器官光合特性的研究 . 作物学报 , 2004, 30:
419–428
108 作 物 学 报 第 41卷
Li C X, Zhao S J, Meng Q W, Zou Q, Tian J C. photosynthetic
characteristics in non-leaf organs of winter wheat cultivars dif-
fering in grain-leaf ratio. Acta Agron Sin, 2004, 30: 419–428 (in
Chinese with English abstract).
[15] Constable G A, Rawson H M. Carbon production and utilization
in cotton: inferences from a carbon budget. Aust J Plant Physiol,
1980, 7: 539–553
[16] Hao N B, Du W G, Ge Q Y. Progress in the breeding of soybean for
high photosynthetic efficiency. Acta Bot Sin, 2002, 44: 253–258
[17] Li H B, Bai K Z, Hu Y X, Kuang T Y, Lin J X. stomatal fre-
quency on some non-leaf organs of four crop species and their
significance in photosynthesis. Acta Phytoecol Sin, 2002, 26:
351–354 (in English with Chinese abstract)
[18] Xu H L, Ishii R. Effects of water deficit on photosynthesis in
wheat plants. V. Difference among plant parts in water relations.
Jpn J Crop Sci, 1990, 59: 384–389
[19] Martinez D E, Luquez V M, Bartoli C G, Guizmét J J. Persistence
of photosynthetic components and photochemical effect in ears of
water-stressed wheat (Triticum aestivum). Physiol Plant, 2003,
119: 519–525
[20] Tambussi E A, Bort J, Guiamet J J, Nogues S, Araus J L. The
photosynthetic role of ears in C3 cereals: metabolism, water use
efficiency and contribution to grain yield. Crit Rev Plant Sci,
2007, 26: 1–16
[21] Elmore C D. Contributions of the capsule wall and bracts to the
developing cotton fruits. Crop Sci, 1973, 13: 751–752
[22] 杜明伟, 冯国艺, 姚炎帝, 罗宏海, 张亚黎, 夏东利, 张旺锋.
杂交棉标杂A1和石杂 2号超高产冠层特性及其与群体光合生
产的关系. 作物学报, 2009, 35: 1−10
Du M W, Feng G Y, Yao Y D, Luo H H, Zhang Y L, Xia D L,
Zhang W F. Canopy characteristics and its correlation with pho-
tosynthesis of super high-yielding hybrid cotton Biaoza A1 and
Shiza 2. Acta Agron Sin, 2009, 35: 1−10 (in Chinese with English
abstract)
[23] 张亚黎, 冯国艺, 胡渊渊, 姚炎帝, 张旺锋. 棉花非叶绿色器
官光合能力的差异及与物质生产的关系. 作物学报, 2010, 36:
701–708
Zhang Y L, Feng G Y, Hu Y Y, Yao Y D, Zhang W F. Photosyn-
thetic activity and its correlation with matter production in
non-foliar green organs of cotton. Acta Agron Sin, 2010, 36:
701–708 (in Chinese with English abstract)
[24] Hu Y Y, Zhang Y L, Luo H H, Li W, Oguchi R, Fan D Y, Chow
W S, Zhang W F. Important photosynthetic contribution from the
non-foliar green organs in cotton at the late growth stage. Planta,
2012, 235: 325–336
[25] Hu Y Y, Oguchi R, Yamori W, von Caemmerer S, Chow W S,
Zhang W F. Cotton bracts are adapted to a microenvironment of
concentrated CO2 produced by rapid fruit respiration. Ann Bot,
2012, 112: 31–40
[26] 尹丽, 胡庭兴, 刘永安, 姚史飞, 马娟, 刘文婷, 何操. 干旱胁
迫对不同施氮水平麻疯树幼苗光合特性及生长的影响. 应用
生态学报, 2010, 3: 569–576
Yin L, Hu T X, Liu Y A, Yao S F, Ma J, Liu W T, He C. Effect of
drought stress on photosynthetic characteristics and growth of
Jatropha curas seedlings under different nitrogen levels. Chin J
Appl Ecol, 2010, 3: 569–576 (in Chinese with English abstract).
[27] Guan X Q, Gu S. Photorespiration and photoprotection of grape-
vine (Vitis vinifera L. cv. Cabernet Sauvignon) under water stress.
Photosynthetica, 2009, 47: 437–444
[28] 钱永强, 孙振元, 韩蕾, 巨关升, 刘俊祥, 曹丽. 野牛草叶片
活性氧及其清除系统对水分胁迫的响应. 生态学报, 2010, 7:
1920–1926
Qian Y Q, Sun Z Y, Han L, Ju G S, Liu J X, Cao L. Response of
reactive oxygen and its scavenging system in leaves of buchloe
dactyloides (nutt) engelm to water stress. Acta Ecol Sin, 2010, 7:
1920–1926 (in Chinese with English abstract).
[29] Lichtenthaler H K. Chlorophylls and carotenoids: pigments of
photosynthetic biomembranes. Methods Enzymol, 1987, 148:
350–382
[30] Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as
a nonintrusive indicator for rapid assessment of in vivo photo-
synthesis. Ecophysiol Photosynth, 1994, 100: 49–70
[31] Schreiber U. Pulse-amplitude-modulation (PAM) Fluorometry
and Saturation Pulse Method. Chlorophyll Fluorescence: a
Sig-nature of Photosynthesis. Dordrecht, The Netherlands: Klu-
wer Academic Publishers, 2004. pp 279–319
[32] Farquhar C D, von Caemmerer S, Berry J A. A biochemical
model of photosynthetic CO2 assimilation in leaves of C3 species.
Planta, 1980, 149: 78–90
[33] von Balthazar M, Endress P K. Floral bract function, flowering
process and breeding systems of Sarcandra and Chloranthus
(Chloranthaceae). Plant System Evol, 1999, 218: 161–178
[34] Hymus G J, Snead T G, Johnson D P. Acclimation of photosyn-
thesis and respiration to elevated atmospheric CO2 in two Scrub
Oaks. Global Change Biol, 2002, 8: 317–328
[35] wHikosaka K, Hirose T. Leaf and canopy photosynthesis of C3
plants at elevated CO2 in relation to optimal partitioning of nitro-
gen among photosynthetic components: theoretical prediction.
Ecol Model, 1998, 106: 247–259
[36] Hikosaka K. Nitrogen partitioning in the photosynthetic appara-
tus of Plant a goasiatica leaves grown under different temperature
and light conditions: similarities and differences between tem-
perature and light acclimation. Plant Cell Physiol, 2005, 46:
1283–1290
[37] Lichtenthaler H K, Rindele U. The role of chlorophyll fluores-
cence in the detection of stress conditions in plants. Crit Rev Anal
Chem, 1988, 19: 29–85
[38] Bai J, Xu D H, Kang H M, Chen K, Wang G. Photoprotective
function of photorespiration in Reaumuria soongorica during
different levels of drought stress in natural high irradiance. Pho-
tosynthetica, 2008, 6: 232–237
[39] Murata N, Takahashi S, Nishiyama Y, Suleyman I. Allakhverdiev
photoinhibition of photosystem II under environmental stress.
Biochim Biophys Acta, 2007, 1767: 414–421
[40] Araus J L, Brown H R, Febrero A, Bort J, Serret M D. Ear pho-
tosynthesis, carbon isotope discrimination and the contribution of
respiratory CO2 to differences in grain mass in durum wheat.
Plant Cell Environ, 1993, 16: 383–392
[41] Eduardo A T, Jordi B, Juan J G, Salvador N, José L A. The pho-
tosynthetic role of ears in C3 cereals: metabolism, water use effi-
ciency and contribution to grain yield. Crit Rev Plant Sci, 2007,
26: 1–16
[42] Zhu C W, Zhu J G, Zeng Q, Liu G, Xie Z B, Tang H Y, Cao J L,
Zhao X Z. Elevated CO2 accelerates flag leaf senescence in wheat
due to ear photosynthesis which causes greater ear nitrogen sink
capacity and ear carbon sink limitation. Plant Funct Evol Biol,
2009, 66: 291–299
[43] Wullschleger S D, Oosterhuis D M. Photosynthetic carbon pro-
duction and use by developing cotton leaves and bolls. Crop Sci,
1990, 30: 1259–1264
[44] Demmig-Adams B, Adams W W. Photoprotection and other re-
sponses of plant to high light stress. Annu Rev Plant Physiol
Plant Mol Biol, 1992, 43: 599–626
[45] Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics
of non leaf organs of winter wheat cultvars differeing in ear type
and their relationship with grain mass per ear. Photosynthetica,
2001, 39: 239–244
[46] Ishihara K, Kiyota E, Imaizumi N. On the contribution of
panicle photosynthesis to grain yield in rice plants. Jpn J
Crop Sci, 1991, 60: 122–123