免费文献传递   相关文献

Quantitative Analysis on the Effects of High Temperature at Meiosis Stage on Seed-Setting Rate of Rice Florets

减数分裂期高温对水稻颖花结实率影响的定量分析


High temperature, especially happened at flowering stage and meiosis stage, would cause sterility of rice florets and became one of restricting factors of rice yield. With the global warming, the high temperature events will increase during crop growth process. In order to evaluate the effect of high temperature on yield quantitatively, it is important to quantify the relationship between temperature and seed-setting rate. Previous studies have focused on the above relationship during flowering stage, but litter discussed the relationship during meiosis stage. In this study a controlled experiment during meiosis stage was conducted at Jiangsu Academy of Agricultural Sciences, China with two cultivars, TY559 and HJ1 under six temperature levels (31, 33, 35, 37, 39, and 41℃) and three durations (1, 3, and 5 d). High temperature lasted five hours from 8:40 to 13:40 each day, and natural environment was set as CK. The effect of high temperature on seed setting rate and the quantitative relationship between seed setting rate and temperature were analyzed. The results showed that temperature below 33℃ had no significant effect on seed setting rate, but with the increase of temperature and its duration the seed setting rate decreased gradually. The daily relative seed setting rate could be expressed in terms of temperature with a quadratic equation, and the total effect of high temperature during meiosis stage on relative seed setting rate could be expressed in the product of daily relative seed setting rates. Further, combining the diurnal change of temperature, the quantitative effect factor under the nature diurnal change pattern of temperature was dis-cussed. This study provided a quantitative method for calculating the effect of high temperature at meiosis stage on seed setting rate of rice, and would help to improve high temperature-induced sterility model in rice.


全 文 :作物学报 ACTA AGRONOMICA SINICA 2008, 34(4): 627−631 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

基金项目 : 国家自然科学基金项目 (30470332); 国家高技术研究发展计划 (863 计划 )项目 (2007AA10Z221); 江苏省自然科学基金项目
(BK2004002, BK2007123)
作者简介: 石春林(1969–), 男, 副研究员, 博士, 主要从事作物生长模型研究。Tel: 025-84390194; E-mail: amdjaas@jlonline.com
Received(收稿日期): 2007-08-16; Accepted(接受日期): 2007-10-23.
DOI: 10.3724/SP.J.1006.2008.00627
减数分裂期高温对水稻颖花结实率影响的定量分析
石春林1 金之庆1 郑建初1 汤日圣2
(1 江苏省农业科学院农业资源与环境研究所, 江苏南京 210014; 2 江苏省农业科学院农业生物技术研究所, 江苏南京 210014)
摘 要: 以华粳 1号和特优 559为材料, 于减数分裂期, 设置高温(31℃、33℃、35℃、37℃、39℃、41℃)及历期(1 d、
3 d、5 d)处理, 每日高温持续时间 5 h (8:40—13:40), 另设自然环境对照, 分析了高温及其持续期对水稻颖花相对结
实率的影响。结果表明, 33℃以下的温度对两供试材料的结实率无明显影响, 此后随温度及持续天数的增加结实率将
逐步降低; 高温下日相对颖花结实率与温度的关系可用二次方程描述, 而减数分裂期高温对颖花结实率的总影响为
逐日相对颖花结实率的乘积。进一步结合温度日变化规律, 讨论了温度日变化下日相对颖花结实率的定量方法。
关键词: 水稻; 高温; 减数分裂期; 结实率; 定量分析
Quantitative Analysis on the Effects of High Temperature at Meiosis Stage
on Seed-Setting Rate of Rice Florets
SHI Chun-Lin1, JIN Zhi-Qing1, ZHENG Jian-Chu1, and TANG Ri-Sheng2
(1 Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu; 2 Institute of Agricul-
tural Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China)
Abstract: High temperature, especially happened at flowering stage and meiosis stage, would cause sterility of rice florets and
became one of restricting factors of rice yield. With the global warming, the high temperature events will increase during crop
growth process. In order to evaluate the effect of high temperature on yield quantitatively, it is important to quantify the relation-
ship between temperature and seed-setting rate. Previous studies have focused on the above relationship during flowering stage,
but litter discussed the relationship during meiosis stage. In this study a controlled experiment during meiosis stage was conducted
at Jiangsu Academy of Agricultural Sciences, China with two cultivars, TY559 and HJ1 under six temperature levels (31, 33, 35,
37, 39, and 41℃) and three durations (1, 3, and 5 d). High temperature lasted five hours from 8:40 to 13:40 each day, and natural
environment was set as CK. The effect of high temperature on seed setting rate and the quantitative relationship between seed
setting rate and temperature were analyzed. The results showed that temperature below 33℃ had no significant effect on seed
setting rate, but with the increase of temperature and its duration the seed setting rate decreased gradually. The daily relative seed
setting rate could be expressed in terms of temperature with a quadratic equation, and the total effect of high temperature during
meiosis stage on relative seed setting rate could be expressed in the product of daily relative seed setting rates. Further, combining
the diurnal change of temperature, the quantitative effect factor under the nature diurnal change pattern of temperature was dis-
cussed. This study provided a quantitative method for calculating the effect of high temperature at meiosis stage on seed setting
rate of rice, and would help to improve high temperature-induced sterility model in rice.
Keywords: Rice; High temperature; Seed setting rate; Meiosis stage; Quantitative analysis
高温是影响水稻颖花结实率的主要因子之一。
抽穗开花期和减数分裂期是水稻颖花对高温最敏感
的两个主要阶段。有关高温诱发败育的机理、高温
对水稻颖花结实率的影响以及品种间对高温响应的
差异已有较多报道[1-7]。一些水稻生长模型和颖花发
育模型中亦初步考虑了高温对结实率和颖花发育的
影响, 但采用的方法大多是以开花期前后的平均日
极端最高气温对结实率进行订正[8-12]。Challinor等[13]
结合作物开花特性, 构建了高温对作物结实率和产
量定量影响的模型 ; 笔者等结合水稻颖花开花特
628 作 物 学 报 第 34卷

征、温度日变化规律等构建了水稻高温败育模拟模
型[14]。但上述研究大多是针对抽穗开花期的, 而对
减数分裂期高温的定量影响则研究较少。Sataka和
Yoshida[1]的研究指出, 减数分裂期是高温影响结实
率的次敏感阶段, 因此研究减数分裂期高温对水稻
颖花结实率的定量影响有助于建立与完善现有的高
温影响评价模型。本研究在控制试验的基础上, 分
析了高温及其历期对水稻颖花结实率的定量影响 ,
并确定了温度日变化模式下的高温对结实率的定量
影响因子。
1 材料与方法
试验于 2006年在江苏省农业科学院进行。供试
水稻品种为杂交籼稻特优 559 (TY559)和常规粳稻
华粳 1号(HJ1)。特优 559于 4月 30日播种, 5月 12
日移栽。华粳 1号 5月 29日播种, 6月 16日移栽。
两品种各种植 19 盆, 每盆栽 4 穴, 特优 559 单苗移
栽, 华粳 1 号每穴 3~4 苗。常规肥水管理。于减数
分裂期利用RXZ型智能人工气候箱进行高温胁迫处
理。高温设 6个水平, 即 31℃、33℃、35℃、37℃、
39℃、41℃, 胁迫时间设 3个长度, 即 1 d、3 d、5 d,
每天胁迫 5 h (8:40—13:40)。特优 559于 7月 22—
24日进行 3 d的高温处理, 7月 25日进行 1 d高温处
理, 7月 22—26日进行 5 d高温处理; 华粳 1号于 8
月 17—19日进行 3 d高温胁迫处理, 8月 20日进行
1 d高温处理, 8月 17—21日进行 5 d高温处理。另
设自然环境为对照, 7月 22—26日和 8月 17—21日
的日均温分别为 26.1℃和 27.7℃。上述供试材料处
理后移至网室内自然环境下生长。成熟后分别采收
各处理所有稻穗进行常规考种, 点数其结实率。利
用相对结实率, 即高温处理的结实率与对照结实率
之比, 来比较不同品种对高温的响应差异。
2 结果与分析
2.1 高温及其历期对减数分裂期颖花结实率的
定量影响
减数分裂期高温及其历期对两供试品种颖花相
对结实率的影响如图 1所示。31℃和 33℃的高温处
理对两品种颖花相对结实率的影响不大, 但随着处
理温度的提高 , 其对颖花结实率的影响趋于明显 ,
经过 1 d持续 5 h的 41℃高温处理, 结实率下降至对
照的 80%左右; 经过 5 d持续 5 h的 41℃高温处理,
结实率仅为对照的 20%左右。两品种间差异不明显。
随着高温持续日数的增加, 颖花相对结实率呈指数
下降趋势, 故可用下式描述高温持续时间对水稻颖
花相对结实率(RSS)的影响。
exp( )RSS a b DN= ⋅ ⋅ (1)
式中, DN为高温持续天数, a、b为拟合参数。表 1给
出了两个供试品种在各处理温度下的a、b及其R2值。
由表 1可见, 对于不同的温度处理, 参数 a的值
比较稳定, 均为 1左右, 而参数 b则随着温度的提高
而减少。由于参数 a约为 1, 因此式 1表明相同温度
处理下, 各日间的高温影响程度一致, 且减数分裂
期的高温总影响为各日影响因子的乘积。因此 ,
DN RSS 为高温下的日相对结实率, 即 1 d 高温处理
下的结实率与对照结实率之比。进而, 可根据不同高
温及其历期下的相对结实率 , 建立 DN RSS 与温



图 1 减数分裂期高温对不同水稻品种颖花相对结实率的影响
Fig. 1 The effects of high temperature at meiosis stage on relative seed setting rate of two rice cultivars

第 3期 石春林等: 减数分裂期高温对水稻颖花结实率影响的定量分析 629


表 1 两个供试品种不同温度处理下拟合方程的参数a、b及R2值
Table 1 Parameter a, b, and R2 values of the fitting equations under different temperature treatments
特优 559 TY559

华粳 1号 HJ1

温度
Temperature ( )℃ a b R2 a b R2
31 1.0032 −0.0005 0.0130 0.9945 0.0026 0.5206**
33 1.0139 −0.0115 0.5513** 1.0076 −0.0060 0.3238
35 1.0452 −0.0699 0.9352** 1.0079 −0.0449 0.9970**
37 0.9710 −0.0977 0.9922** 1.0304 −0.1181 0.9971**
39 0.8915 −0.1625 0.9315** 0.9259 −0.1886 0.9473**
41 1.0471 −0.2954 0.9906** 1.0444 −0.3532 0.9977**
** 表示在 1%水平上差异显著。** denotes significant difference at the 1% probability level.

度的关系(图 2)。从图 2 可以看出, 随温度升高, 日
相对结实率呈下降趋势, 其关系可用二次曲线拟合,

21 ( )DN CRSS c T T= − ⋅ − (2)
式中, c、TC为品种参数。对TY559取值分别为 0.0024,
31℃; 对HJ1取值为 0.0027, 31℃。因此可用下式描
述控制试验条件下高温及其持续时间对水稻颖花相
对结实率的影响。
2[1 ( ) ]DNCRSS c T T= − ⋅ − (3)
式(3)描述了减数分裂期持续恒定高温及历期对水稻
颖花结实率的定量影响。生产实际中, 由于逐日气
温是变化的, 故用下式表示减数分裂期高温的定量
影响。
1
0
t
i
i t
Y
=
=∑Y (4)
式中, Y为减数分裂期高温对相对结实率的总影响,
t0、t1为减数分裂期的起止时间, Yi为逐日颖花相对
结实率。



图 2 温度与日相对结实率的关系
Fig. 2 Relationship between daily relative seed setting rate
and temperature

2.2 温度日变化下的日高温影响定量因子确定
式(3)中[ ]是 1 d内持续 5 h的恒定
温度T℃下的相对结实率 , 而由于实际温度存在日
变化 , 且温度与相对结实率呈非线性关系 , 因此 ,
实际生产中日相对颖花结实率Y
21 ( )Cc T T− ⋅ −
i可由逐时的订正因
子进行确定。
23
0
( )i
j
Y f T
=
=∑ j
)
/ 5
) /
(5)
式中, j为一日中的时间; Tj (余同)为第j时刻的温度,
可由温度日变化模型(方程 7)得到; f (Tj)为温度为Tj
时第j时刻颖花的相对结实率。
由于式(3)中 为 1 d内连续 5 h高温造
成相对结实率下降百分率, 因此可以认为 1 h高温导
致的结实率下降为 , 即式(5)中的f (T
2( Cc T T⋅ −
2( )Cc T T⋅ − j)
可用下式表示。
2
1
( )
1 ( ) / 5
C
C C
T T
f T
c T T T T
⎧⎪⎪=⎨⎪ − ⋅ − >⎪⎩

(6)
温度Tj的日变化规律可由下式确定[15]。
max min max min( ) / 2 (
2 cos[0.2618 ( 14)]
jT T T T T
j
= + + −
⋅ ⋅ − (7)
式中Tj为第j时刻的温度, Tmax、Tmin分别为该日最高
温度与最低温度。
由上述关系, 结合长江中下游地区水稻减数分
裂期温度日较差 , 一般为 8℃左右 , c、TC分别取
0.0024 和 31℃, 利用式(7)描述的温度日变化规律,
可得日最高温度与日相对结实率关系(图 3)。图中日
最高温度与日相对结实率亦可用二次方程进行描述,
这与式(2)基本一致。但由于高温变化模式的不同 ,
二次曲线的参数c存在差异。
630 作 物 学 报 第 34卷



图 3 温度日变化模式下的日最高温度与日相对结实率的关系
Fig. 3 The relationship between daily maximum temperature
and relative seed setting rate under natural change pattern of
temperature

根据上述定量关系, 采用籼稻品种特优 559 的
参数, 即c、TC分别取 0.0024和 31℃, 则每日 8 h、
连续 5 d持续 35℃的高温处理下的颖花相对结实率
约为 73%。而Sataka和Yoshida[1]的控制试验结果表
明, 减数分裂期每日 8 h、连续 5 d持续 35℃的高温
处理, 将导致籼稻品种BNK6624-46-2颖花相对结实
率为 80%左右。考虑到所用品种的差异, 可以认为
本研究给出的减数分裂期高温影响定量方法合理。
3 讨论
气候变化增加了高温、低温、洪涝、季节性干
旱等灾害性天气的发生频率, 已经并将继续影响作
物生产[16-18]。因此加强气候灾害对作物生长影响的
研究, 探讨抗灾减灾策略, 对粮食生产的可持续发
展具有重要意义。
高温在减数分裂期影响颖花结实率的方式与抽
穗开花期不同, 前者会影响全部颖花的结实率, 而
后者主要影响开放颖花的结实率。虽然有研究表明,
抽穗期高温对后开颖花结实率亦有一定影响[19], 实
际上其影响机理与减数分裂期高温的影响具有一致
性, 都是对未开颖花的影响, 故可以用本研究予以
定量描述。当然, 不同阶段临界温度指标等可能会
有些差异。此外, 高温对颖花结实率影响模式在减
数分裂期与抽穗期间亦存在差异, 前者随温度升高,
颖花结实率呈二次曲线衰减, 而后者呈Logistic曲线
[11,14]。
本研究建立了定量分析减数分裂期高温对水稻
颖花结实率影响的方法, 并表明颖花结实率随减数
分裂期的高温呈二次曲线衰减, 品种间有差异。本
研究得到的临界温度与其他学者的研究基本一
致 [1,20], 所揭示的基本规律亦适用于大田的生产环
境, 但有关参数可能需要做一定调整, 这方面还有
待进一步分析。
4 结论
减数分裂期 33℃以下的温度对颖花结实率影响
不大, 减数分裂期水稻颖花日相对结实率与高温的
关系可用一元二次方程描述, 而全发育期的高温影
响为逐日相对结实率的乘积。
References
[1] Satake T, Yoshida S. High temperature-induced sterility in indica
rices at flowering. Jpn J Crop Sci, 1978, 47: 6−17
[2] Matsui T, Omasa K, Horie T. The difference in sterility due to
high temperature during the flowering period among japonica
rice varieties. Plant Prod Sci, 2001, 4: 90−93
[3] Xu H-B(徐海波), Wang G-M(王光明), Wei M(隗溟), Zhou
W-B(周文彪). Correlation analysis of the characters of pollen
grains and seed-setting of rice under high temperature stress. J
Southwest Agric Univ (西南农业大学学报 ), 2001, 23(3):
205−207 (in Chinese with English abstract)
[4] Li X-Z(李训贞), Liang M-Z(梁满中), Zhou G-Q(周广洽), Chen
L-B(陈良碧). Effect of environment condition on pollen vigor
and seed set during flowing time of rice. Acta Agron Sin (作物学
报), 2002, 28(3): 417−420 (in Chinese with English abstract)
[5] Zheng J-C(郑建初), Zhang B(张彬), Chen L-G(陈留根), Du
Q(杜群), Qin Y-S(秦永生), Song J(宋健), Zhang W-J(张卫建).
Genotypic differences in effects of high air temperature in field
on rice yield components and grain quality during heading stage.
Jiangsu J Agric Sci (江苏农业学报), 2005, 21: 249−254 (in Chi-
nese with English abstract)
[6] Prasad P V V, Boote K J, Allen Jr L H, Sheehy J E, Thomas J M
G. Species, ecotype and cultivar differences in spikelet fertility
and harvest index of rice in response to high temperature stress.
Field Crops Res, 2006, 95: 398−411
[7] Tang R-S(汤日圣), Zheng J-C(郑建初), Zhang D-D(张大栋), Jin
Z-Q(金之庆), Chen L-G(陈留根), Huang Y-H(黄益洪), Shi
C-L(石春林), Ge D-K(葛道阔). Effects of high temperature on
pollen vitality and seed setting of different rice varieties. Jiangsu
J Agric Sci (江苏农业学报), 2006, 22(4): 369−373 (in Chinese
with English abstract)
[8] Jin Z-Q(金之庆), Gao L-Z(高亮之), Li L(李林). Rice computer
simulation model (RICEMOD) and its application—Part 5: A
simulation model to evaluate sink yield and its components of
rice plant. Chin Agric Meteorol (中国农业气象), 1990, 11(2):
20−26, 34 (in Chinese with English abstract)
[9] Luo S-M(骆世明), Peng S-L(彭少麟). System Analysis on Agri-
cultural Ecology (农业生态系统分析). Guangzhou: Guangdong
Science and Technology Press, 1996. pp 174−175 (in Chinese)
[10] Liu X-W(柳新伟), Meng Y-L(孟亚利), Zhou Z-G(周治国), Cao
W-X(曹卫星). The primary study on floret and grain develop-
ment simulation in rice. Chin J Rice Sci (中国水稻科学), 2004,
第 4期 石春林等: 减数分裂期高温对水稻颖花结实率影响的定量分析 631


18(3): 249−254 (in Chinese with English abstract)
[11] Horie T, Nakagawa H, Centeno H G S, Kropff M J. The rice
simulation model SIMRIW and its testing. In: Matthews R B,
Kropff M J, Bachelet D, van Laar H H. Modelling the Impact of
Climate Change on Rice in Asia. Wallingford, UK: CAB Interna-
tional, 1995. pp 51−66
[12] Bouman B A M, Kropff M J, Tuong T P, Wopereis M C S, ten
Berge H F M, van Laar H H. ORYZA2000: Modeling Lowland
Rice. Los Bannos: International Rice Research Institute, and
Wageningen: Wageningen University and Research Center, 2001.
pp 23−77
[13] Challinor A J, Wheeler T R, Craufurd P Q, Slingo J M. Simula-
tion of the impart of high temperature stress on annual crop yields.
Agric For Meteorol, 2005, 135: 180−189
[14] Shi C-L(石春林), Jin Z-Q(金之庆), Tang R-S(汤日圣), Zheng
J-C(郑建初). A model to simulate high temperature-induced ste-
rility of rice. Chin J Rice Sci (中国水稻科学), 2007, 21(2):
220−222 (in Chinese with English abstract)
[15] Kropff M J, van Laar H H, Matthews R B. ORYZA1: An Eco-
physiological Model for Irrigated Rice Production. Los Bannos:
International Rice Research Institute, and Wageningen: Wagen-
ingen University and Research Center, 1994. pp 37−41
[16] Jin Z-Q(金之庆), Shi C-L(石春林), Ge D-K(葛道阔), Gao W(高
炜). Characteristics of climate change during wheat growing
season and the orientation to develop wheat in the lower valley of
the Yangtze River. Jiangsu J Agric Sci (江苏农业学报), 2001,
17(4):193−199 (in Chinese with English abstract)
[17] Ju H(居辉), Xiong W(熊伟), Xu Y-L(许吟隆), Lin E-D(林而达).
Impacts of climate change on wheat yield in China. Acta Agron
Sin (作物学报), 2005, 31(10): 1340−1343 (in Chinese with Eng-
lish abstract)
[18] IPCC. Climate Change 2001: The Scientific Basis. Contribution
of Working Group I to the Third Assessment Report of the Inter-
governmental Panel on Climate Change. Cambridge University
Press, 2001. p 881
[19] Zhang B(张彬), Rui W-Y(芮雯奕), Zheng J-C(郑建初), Zhou
B(周博), Yang F(杨飞), Zhang W-J(张卫建). Responses of pol-
len activity and seed setting of rice to high temperature of head-
ing period. Acta Agron Sin (作物学报), 2007, 33(7): 1177−1181
(in Chinese with English abstract)
[20] Ziska L H, Manalo P A, Ordonez P A. Intraspecific variation in
the response of rice (Oryza sativa L.) to increased CO2 and tem-
perature: growth and yield response of 17 cultivars. J Exp Bot,
1996, 47: 1353−1359