免费文献传递   相关文献

SSR Analysis of Powdery Mildew Resistance Gene in a New Germplasm N9628-2 of Triticum aestivum L.

小麦新种质N9628-2抗白粉病基因的SSR分析


以抗白粉病的波斯小麦-小伞山羊草双二倍体Am9为母本, 与高感白粉病的普通小麦品种陕160杂交, 并用陕160回交一次, 从其后代中选育的普通小麦种质N9628-2对陕西省关中地区白粉病流行小种关中4号表现免疫。为了明确N9628-2所携带抗性基因的遗传方式及与抗性基因连锁的分子标记, 对该种质的抗白粉病基因进行了遗传分析和SSR标记分析。用高感白粉病品种陕160、陕优225与N9628-2杂交, F1代对白粉病均表现高抗, F2代抗感分离比例均符合3∶1, 表明N9628-2的白粉病抗性由1对显性基因控制。通过208对SSR引物对陕160 ´ N9628-2 F2代抗感分离群体的142个单株的检测, 发现位于6A上的SSR位点Xwmc553和Xwmc684在双亲和抗、感池间有特异性, 并与抗性基因连锁, 遗传距离分别是10.99和7.43 cM, 表明抗病基因可能位于6A染色体上。 用中国春部分第6同源群的缺体-四体系和双端体系进行验证, 进一步将抗性基因定位在6AS。用连锁的SSR标记和相关亲本分析表明, 该抗病基因可能来源于小伞山羊草Y39, 它不同于已有抗白粉病基因, 可能是一个新基因。

Powdery mildew, caused by Blumeria graminis D C f. sp. tritici (former Erysiphe graminis f. sp. tritici), is one of the devastating diseases of wheat (Triticum aestivum L.). So far, a total of 34 resistance genes have been formally named. However, very few of them are used in wheat production due to resistance lose and close linkage to ill agronomic traits. The new resistant germplasm N9628-2, which was derived from the backcross of Am9 (F1 progeny of the cross between tetraploid wheat-Aegilops amphidiploid and a sensitive wheat cultivar “Shaan 160”) and Shaan 160, showed highly resistant to Guanzhong 4, the prevailing Blumeria graminis f. sp. tritici race in Shaanxi province. In the present study, we aimed to identify the resistance gene in N9628-2, and locate it on wheat chromosome. The F1 (308 plants) and F2 (275 plants) populations derived from crosses of N9628-2 and highly susceptible cultivars Shaan 160 and Shaanyou 225 were inoculated with powdery mildew race Guanzhong 4 at the seedling stage for resistance identification. The parents and F2 individuals were used for gene location with 208 pairs of SSR markers including 38 pairs polymorphic marker between two parents, and the result was verified by analyzing Chinese Spring nullisomic-tetrasomic and ditelosomic lines. According to inoculation test, the resistance to powdery mildew in N9628-2 was controlled by a single dominant gene (χ2 = 0.038 and 0.068 in Shaan 160 ´ N9628-2 and Shaanyou 225 ´ N9628-2, respectively; χ20.05 = 3.84). Two markers Xwmc553 and Xwmc684 on chromosome 6A generated polymorphic DNA fragments between the resistant and susceptible pools, indicating the resistance gene might be located on chromosome 6A and linked to the two markers. The resistance gene was further located on chromosome 6AS by the absence of the above polymorphic DNA fragments only in Chinese Spring 6A nullisomic-tetrasomic and 6AL ditelosomic lines. The genetic distances between the resistance gene and the two markers, calculated by Kosambi’s formula, were 10.99 (Xwmc553) and 7.43 cM (Xwmc684) respectively. Our research found that the resistance gene in N9628-2 was probably a new gene differing from the reported resistance genes PmY39, PmPS5B (Pm33), and PmPS5A.


全 文 : ACTA AGRONOMICA SINICA 2008, 34(1): 84−88 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

:

 (2006 kz 05-G3)
 :

(1983–),    !#$%&()*+,-./0E-mail:liusulan1202@163.com
* 1234(Corresponding author):

567(1963–), 8 9 :; 9<= !#$%&()0E-mail: jiwan-
quan2003@126.com
Received(>?@A): 2007-07-19; Accepted(BC@A): 2007-08-08.
DOI: 10.3724/SP.J.1006.2008.00084
 N9628-2 SSR
   *
(  ,  712100)
 :    Am9,   160 , !
 160 # $%, &()*+, - N9628-2 ./01*2345 1* 4 6789:;
<=> N9628-2 ?@ABCDEFGHIBCDJKLMNO, .P-CDQ5LRS SSRNOLR; 160TU 225 N9628-2 , F1).V78, F2)L
WXYVZ[ 3\1, 7= N9628-2B] 1.^BCD_`;a 208. SSRbc. 160 × N9628-2 F2
)LWd 142efghi, j8kl 6Am SSRkn Xwmc553S Xwmc684opSTqrst
uB, !BCDJK, EFvWLwx 10.99S 7.43 cM, 7=CDyzkl 6A{|m; *}~L
€ 6‚dƒ„…S†…Q5‡ˆ, Q$‰ŠBCD‹ko 6AS;JK SSRNOSŒ1pLR
7=, PCDyz‚l  Y39, ŽlsCD, yzx$e‘CD;
:  ; ; ; BCD; SSRLR
SSR Analysis of Powdery Mildew Resistance Gene in a New Germ-
plasm N9628-2 of Triticum aestivum L.
LIU Su-Lan, WANG Chang-You, WANG Qiu-Ying, and JI Wan-Quan*
(College of Agronomy, Northwest Sci-Tech University of A & F, Yangling 712100, Shaanxi, China)
Abstract: Powdery mildew, caused by Blumeria graminis D C f. sp. tritici (former Erysiphe graminis f. sp. tritici), is one of the
devastating diseases of wheat (Triticum aestivum L.). So far, a total of 34 resistance genes have been formally named. However, very
few of them are used in wheat production due to resistance lose and close linkage to ill agronomic traits. The new resistant germplasm
N9628-2, which was derived from the backcross of Am9 (F1 progeny of the cross between tetraploid wheat-Aegilops amphidiploid
and a sensitive wheat cultivar “Shaan 160”) and Shaan 160, showed highly resistant to Guanzhong 4, the prevailing Blumeria
graminis f. sp. tritici race in Shaanxi province. In the present study, we aimed to identify the resistance gene in N9628-2, and locate it
on wheat chromosome. The F1 (308 plants) and F2 (275 plants) populations derived from crosses of N9628-2 and highly susceptible
cultivars Shaan 160 and Shaanyou 225 were inoculated with powdery mildew race Guanzhong 4 at the seedling stage for resistance
identification. The parents and F2 individuals were used for gene location with 208 pairs of SSR markers including 38 pairs polymor-
phic marker between two parents, and the result was verified by analyzing Chinese Spring nullisomic-tetrasomic and ditelosomic
lines. According to inoculation test, the resistance to powdery mildew in N9628-2 was controlled by a single dominant gene (χ2 =
0.038 and 0.068 in Shaan 160 × N9628-2 and Shaanyou 225 × N9628-2, respectively; χ20.05 = 3.84). Two markers Xwmc553 and
Xwmc684 on chromosome 6A generated polymorphic DNA fragments between the resistant and susceptible pools, indicating the
resistance gene might be located on chromosome 6A and linked to the two markers. The resistance gene was further located on chro-
mosome 6AS by the absence of the above polymorphic DNA fragments only in Chinese Spring 6A nullisomic-tetrasomic and 6AL
ditelosomic lines. The genetic distances between the resistance gene and the two markers, calculated by Kosambi’s formula, were
10.99 (Xwmc553) and 7.43 cM (Xwmc684) respectively. Our research found that the resistance gene in N9628-2 was probably a new
gene differing from the reported resistance genes PmY39, PmPS5B (Pm33), and PmPS5A.
 1 :  N9628-2  SSR 85


Keywords: Triticum aestivum L.; Aegilops umbelluata; Powdery mildew; Resistance gene; SSR analysis
 Blumeria graminis D C f. sp.
tritici ( Erysiphe graminis D C f. sp. tritici Marchal)
,  1200 hm2[1],
 !#$% & 34 
()*[2-3], +,-./01(2345
6789: , ;<=>?@A BCDE [4], *F
GHIJ ()* , KLMN)O , PQ
=J (R>, STDUVWX
,YZ[\]^ ()*, _`(
)*aQ=J(R> bcd`eA_`
)* fghijk., l[Amnopq3Y
Zrstu_`)*vYZ (Triticum
aestivum L.)wx yDUfgz{[5]|}~€
-‚~‚ƒA„…†‡ˆ‰Š‹n
opq Am93ŒR>Ž 160rs, F13
Ž 160 s, ‘’A“>”3”•–m
—˜^Ž|™[Vš›œ>™[ 4 ž
u„… J>Ÿ N9628-2[6]
 ¡¢£¤¥l SSR¢£¤uaQ
=(R>¦u(J)*4§2\ bc¨©
h¤z{ , !ª«¬V@A,(­
®¯­®eA SSR ¢£¤, –m( ° ±
²(BSA)^ N9628-2 ³œ()*´µq¶·,
¸¹º[»¼\q½qhn¾q¿À^l³œÁ
¶· , aÃÄheAÅ(` , PÆÅ()*³
{Ç ÈÉ­®h@AÊË)O
1 
1.1 
1.1.1       eA(¿À N9628-2
hŒR>Ž 160¦ŽÌ 225  ÍÎXrsÏmŽ
160×N9628-2hŽÌ 225×N9628-2, ÐÑ F1 308Òh
F2 275Ò Í^rsÓ¯Æl F1h F2³œ(
Ô¶h()* SSR  ¡¢£, Pˆ‰Š
‹ Y39¦†‡ PS5¦†‡ ˆ‰Š‹no
pq Am9a(^Õ’A[»¼ÆlÖ 6× Ø
`Ù? 3\q½qÚ(CSN6AT6B¦CSN6BT6A
hCSN6DT6A)h 6n¾qÚ(CSDT6BL¦CSDT6BS¦
CSDT6AL¦CSDT6AS¦CSDT6DL h CSDT6DS ³
œ()*´µq¶·P?ÛÁ¿ÀÜ|}~
€-‚~‚ƒÝÁÞÊË
1.1.2   ’A™[Všߛœ
>™[ 4, |}~€-‚ÛÁàႃÊË
1.2 
’AÞâãäåæç>gèéê¿Àë,ì
íî[ , ïãðñòó{ôõ , åæö÷ç>
ßø¡, <åæùúÞâQí 15 d ûü, ý 
, þÕ 0~4  ¢³œ([7], 0~2 
a(, 3~4a, 3 d‘{
1.3 SSR  
1.3.1 DNA  ’A CTAB g[8]Ê
Ó¯h F2 °ÙqÒ )*Ï DNA
1.3.2 SSR  A °Ùq Ï ±g
(bulked segregation analysis, BSA)[9] Ô¶3()
*9: ¢£þ Roder[10]¦Guyomarc[11]h
Somers[12] m 208 ^ SSR Á r> F2
ïãç>Ô¶(,  F2( °Ùqè 10
Ҍ(Ò DNAm(², 10Ҍ
Ò DNAm², P(Ó¯¦Ó
¯¦(²¦² DNAa“ SSR Á
1.3.3 PCR  蓘 D.
 SSR  ¡¢£< F2( °Ùq Ò DNA
[³œ PCR@< Perkin2Elmer 480
 !?³œ, @mϦ#$Æ%
&fgÜ( Wang[13] fg
1.3.4    )*+»~,×
GrainGenes-./0 (http://wheat.pw.usda.gov/cmap/),
è“Ñ1 SSR  ¡¢£¶·<´µq?, P[
»¼ÆlÖ 6× Ø`Ù? \q½qÚhn¾q
Ú SSR ¡¢£23–4³œê5
1.4  
χ
26(│A−3a│−2)2/3n, Aa7t893:, aa
;t893:, n=A+a[14]
)*y-<g=>()*3?@ Áz
A BÏC[15], þ Kosambi D$[16]èBÏCwEa
MNF°(cM)
A MapDraw V2.1GH[17]IX)*9:J
2 
2.1 N9628-2 
ç>Ô¶–47K, N9628-2^™[ 4>ž
u„…, Ž 160¦ŽÌ 225žuŒ, òrs F1
ÜžuŒ( , F2 Ùq (¦ÛÒLM Ía
86      34

10834 ((ÒN 1Ò 2_Oa 0h 0;, Ò
N 2Ò 3_Oa 4)h 10132 ((ÒN 2Ò 1
, 1Ò 2_Oa 0h 0;, ÒN 3Ò 3_O
a 4 ) P χ22ê, χ2: Ía 0.038 (Ž 160 ×
N9628-2)h 0.068 (ŽÌ 225 × N9628-2), Ü, χ20.05
(df =1, χ20.05 = 3.84), Qm 31  °LM, žR
N9628-2^™[ 4 ( 1^7)*WX
2.2 N9628-2 SSR
< 208 ^ SSR Á[D 38 ^§˜.Á, l[ 6A ? ò^ Á Xwmc553 h
Xwmc684<Ó¯h(¦²zA˜3(•™
?ST, UÇVWXò^ Á^@ SSR ·Y3
()*D9:™ÚA Xwmc553(J 1)h
Xwmc684(J 2)^Ž 160×N9628-2 F2 142Ò³
œh%&, –4(ž 1)PKosambiD$=>, SSR
·Y Xwmc553h Xwmc6843()* MNF°
 Ía 10.99 h 7.43 cMè()*Z% a
PmY39-2, l3 SSR ¡¢£ MN9:J[J 3
AŽÌ 225×N9628-2 F2 133 (Òê5,
3( °–4)¯•Q(ž 2)
2.3  
%&u, NCSN6AT6BhCSDT6AL_, ¿À]D!^ ?@_T(J`), aR3()*
9: SSR ·Y·, 6AS, bcè N9628-2 (
)*¶·, 6AS
2.4 N9628-2
nopq Am9 Ó¯†‡ PS5 hˆ‰Š
‹ Y39^ß]D(a&d¶wx1Y

 1 SSR Xwmc553 160 × N9628-2 F2
Fig. 1 PCR profile of Xwmc553 in F2 population of Shaan 160 × N9628-2
M: DL2000; 1:  160; 2: N9628-2; 3: ; 4: ; 5~11:  ;
12~16:  ; 17~20:  
M: DL2000; 1: Shaan 160; 2: N9628-2; 3: resistant bulk; 4: susceptible bulk; 5–11: individuals with the specific band from resistant
parent; 12–16: individuals with the specific band from susceptible parent; 17–20: individuals with both resistant and susceptible bands.

 2 SSR Xwmc684 160×N9628-2 F2
Fig. 2 PCR profile of Xwmc684 in F2 population of Shaan 160×N9628-2
M: DL2000; 1:  160; 2: N9628-2; 3: ; 4: ; 5~10:  ;
11~15:  ; 16~19:  
M: DL2000; 1: Shaan 160; 2: N9628-2; 3: resistant bulk; 4: susceptible bulks; 5–10: individuals with the specific band from resistant
parent; 11–15: individuals with the specific band from susceptible parent; 16–19: individuals with both resistant and susceptible bands.
 1 SSR Xwmc553 Xwmc684 160×N9628-2 F2
Table 1 SSR markers related to resistance in F2 population from Shaan 160 × N9628-2
 Resistance plant

 Susceptible plant

SSR
SSR marker A  A type AB  AB type B  B type

A  A type AB  AB type B  B type
Xwmc553 43 62 4 7 2 24
Xwmc684 32 71 5 1 4 29
A :   ; B :   ; AB :  
A type: specific band from resistant parent; B type: specific band from susceptible parent; AB: both resistant and susceptible bands.
 1 :  N9628-2  SSR 87


 2 SSR Xwmc553 Xwmc684 225×N9628-2 F2 
Table 2 SSR markers related to resistance in F2 population of Shaanyou 225×N9628-2
 Resisitant plant

 Susceptible plant

SSR
SSRmarker A  A type AB  AB type B  B type

A  A type AB  AB type B  B type
Xwmc553 43 54 3 2 5 26
Xwmc684 40 59 2 3 4 25
A :   ; B :   ; AB :  
A type: specific band from resistant parent; B type: specific band from susceptible parent; AB type: both resistant and susceptible bands.


 3 6A PmY39-2
Fig. 3 Location of SSR markers Xwmc553 and Xwmc684 on
wheat chromosome 6A
 N9628-2  ,  Y39
PS5Am9 160  N9628-2 ,
  2  SSR  Xwmc553 
Xwmc684 !#($ 5), %& Xwmc553(
N9628-2  )*+, PS5  Y39 -
./0, 123456  7%
&Xwmc684(N9628-2 )*
+,89 PS5 :;/0, 2<,=>?@ Y39 
/0, ABC D Y39, 6 EFG
D Y397

4 Xwmc553(A) Xwmc684(B) !#
Fig. 4 Performance of Xwmc553(A) and Xwmc684(B) in Chinese Spring nullisomic-tetrasomic and ditelosomic lines
M: DL2000; 1: Shaan 160; 2: N9628-2; 3: CS; 4: CSN6BT6A; 5: CSN6DT6A; 6: CSN6AT6B;
7: CSDT6BL; 8: CSDT6BS; 9: CSDT6AL; 10: CSDT6AS; 11: CSDT6DL; 12: CSDT6DS.


5 Xwmc684(A) Xwmc553(B) N9628-2$%&
( !#
Fig. 5 Performance of Xwmc684(A) and Xwmc553(B) in
N9628-2 and its parents
 !# $
The arrows show the specific bands in resistant plants. M: DL2000;
1: PS5; 2: Am9; 3: Y39; 4: N9628-2; 5: Shaan 160.
3 
HI, J; 34  KLJ 50 MN
(OPQRK )STUVW, XY Z,
[ 3A2D4D6D\J 17]^_`a[18]7bc0
 Dd efg
hi e, ^_`jk l, Fmno
pfghi e qrsd
, 12tu 6 vw l,
xy,zhc{|7}~€‚|&ƒ
h„…†‡ˆ‰ŠR[19-20]‹Œ(T. arthli-
cum)Ž(T. durum)d(T. aestivum)R
>?@i(Aegilops)Yh‘, z’“ 20 ”•
–—`, XY•–—`”˜™ š›œ;
žŸ6,  Y•–—`6bq¡7
¢£¤R[5,21-22], Y39c0“ PmY39,
¥¦§  3 ¨©ª Xgwm257
Xgwm296Xgwm319, X3«KDY392US
a7¬\ , ­®¯, PS5 c0“
PmPS5BPmPS5A[23], °±K,2BL2ALa, b
TUVW Pm33  PmPS5B ¨©ª
Xwmc317Xgwm111Xgwm382Xgwm526, v
88     % 34&

w²³° 1.12.24.0  18.1 cM; FG Pm4
RK PmPS5A¨©ªXgwm356, ²
³ 10.2 cM7´µ™ N9628-2 3 ¶·89
6#,  160Ÿ¸ , Y39 PS5
, 6 ¹FG D Y39 œ PS579…†
PmY39PmPS5B(Pm33) PmPS5A¨©ª
™¸º !#, »¼«:;(/)*]+, AB
N9628-26 b; «½-, FG
¾¿ , 2À Xwmc684 < 
D Y39, AB6 EFG D Y39, Áp
N9628-2‡Â+ ÃVW PmY39-27
ÄD‡¦§6 vw²³ÅÆ,
¯3ÇDÈÉÊzh, ËÌ ­
ÈÍÎÏÐC6 ÑÒœJ³
,xC6 Ó±ÔF!7
4 
ÕSSR#p¿hÖN9628-2
±K, 6AS a, ¥4±C6 FG D Y39,
Á ½-Db×Ø , FG¾¿ ,
ÃVW PmY39-27SSR  Xwmc553  Xwmc684
 PmY39-2vw²³°¾ 10.99 7.43 cM7
References
[1] Shao Z-R(()), Liu W-C(*+, ). Present status and
countermeasures of powdery mildew in China. Chin Agric Sci
Bull (-./012), 1996, 12(6): 21−23 (in Chinese)
[2] Zhang H-Q(345), Fu X-T(678), Hao C-Y(9:;).
Progress of studies on powdery mildew resistance genes in
wheat. J Shenyang Agric Univ (<;/=>002), 2003,
31(1): 68–71 (in Chinese with English abstract)
[3] Miranda L M, Murphy J P, Marshall D, Leath S. Pm34: a new
powdery mildew resistance gene transferred from Aegilops
tauschii Coss. to common wheat (Triticum aestivum L.).
Theor Appl Genet, 2006, 113: 1497−1504
[4] Zhang H-Q(345). SSR markers linked to a powdery mil-
dew resistance gene in Aegilops tauschii Y189. J Henan Univ
(Nat Sci Edn) (?@>002ABCD0E), 2007, 37(2):
177−180 (in Chinese with English abstract)
[5] Zhu Z-D(F(G), Zhou R-H(HIJ), Dong Y-C(KLM),
Jia J-Z(NO ). Analysis of powdery mildew resistance
genes in some tetraploid wheat-Aegilops amphidiploids and
their parents. J Plant Genet Resour (PQRS02), 2003,
4(2): 137−143 (in Chinese with English abstract)
[6] Ren Z-L (TUV), Wang C-Y(WX), Zhang H(3Y), Cai
D-M(ZG[), Wang Y-J(W\]), Wang Q-Y(W^_), Xue X-Z
(`ab), Ji W-Q(c+d). Development of new wheat varieties
and new germplasm with disease resistance by transferring alien
genes into common wheat. Northwest Sci-Tech Univ Agric For
(Nat Sci Edn)(ef/gDh>002·BCD0E), 2006,
34(11): 73−76 (in Chinese with English abstract)
[7] Sheng B-Q(ijk). Using the infection type record wheat pow-
dery mildew at seeding stage. Plant Prot (PQlm), 1988, (1):
49 (in Chinese)
[8] Saghai-Maroof M A, Soliman K, Joregensen R A, Allard R W.
Ribosomal DNA spacer-length polymerphisims in barley:
mendelian inheritance, chromosomal location and population
dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014−8018
[9] Michelmore R M, Paran I, Kesseli R V. Identification of
marker linked to disease-resistance genes by bulked segregant
analysis: a rapid method to detect markers in specific genomic
regions by using segregating populations. Proc Natl Acad Sci
USA, 1991, 88: 9828−9832
[10] Rodei M S, Korzum V, Wendehake K, Plaschke J, Tixier M H,
Lnoy P, Ganal M W. A microsatellite map of wheat. Genetics,
1998, 149: 2007−2023
[11] Somers D J, Isaac P, Edwards K. A high-density wheat mi-
crosatellite consensus map for bread wheat (Triticum aestivum
L.). Theor Appl Genet, 2004, 109: 1105−1114
[12] Guyomarc’h H, Sourdille P, Charmet G, Edwards K J, Bernard
M. Characterisation of polymorphic microsatellite markers
from Aegilops tauschii and transferability to the D-genome of
bread wheat. Theor Appl Genet, 2002, 104: 1164−1172
[13] Wang C Y, Ji W Q, Zhang G S, Wang Q Y, Cai D M, Xue X Z.
SSR markers and preliminary chromosomal location of a pow-
dery mildew resistance gene in common wheat germplasm
N9134. Acta Agron Sin (nQ02), 2007, 33(1): 163−166
[14] Li C-X(opq), Wang Z-H(WUr), Wang W-L(Wsg).
Biological Statistic (tQuv), 2nd edn. Beijing: Science
Press, 2002. pp 73−76 (in Chinese)
[15] Kosambi D D. The stimation of map distances from recombi-
nation values. Ann Eugen, 1944, 12: 172−175
[16] Allard R W. Formulas and table to facilitate the calculation of
recombination values in heredity. Hilgardia, 1956, 24: 235−278
[17] Liu R-H(*wx), Meng J-L(yz{). MapDraw: a Microsoft
Excel macro for drawing genetic linkage maps based on given
genetic linkage data. Heraditas (RS), 2003, 25 (3): 317−321
(in Chinese with English abstract)
[18] Li T(o|), Zhang Z-Y(3}), Lin Z-S(gU~), Xin
Z-R(U€). Mapping of a novel gene conferring resistance
to wheat powdery mildew using AFLP and SSR markers. Acta
Agron Sin (nQ02), 2005, 31(9): 1105−1109 (in Chinese
with English abstract)
[19] Chen S-N (‚ƒ), Dong Y-C (KLM), Zhou R-H (HIJ),
Wang J-X(W„…). Screening wild relatives of wheat for
disease resistance. Sci Agric Sin (-./=D0), 1990, 23(1):
54−59 (in Chinese with English abstract)
[20] Dong Y-C(KLM), Xu S-J(†‡ˆ), Zhou R-H(HIJ). Syn-
thesis and utilization of Triticum aestivum-Aegilops amphiploid.
In: Hu H(‰), Wang H-L(WŠ‹). Plant Cell Engineering and
Breeding (PQŒŽ‘). Beijing: Beijing Institute of
Technology Press, 1990. pp 178−185 (in Chinese)
[21] Zhu Z-D(F(G), Zhou R-H(HIJ), Jia J-Z(NO). Identifi-
cation of powdery mildew resistance genes in advanced wheat
lines using molecular markers. Acta Agron Sin (nQ02), 2005,
31(8): 977−982 (in Chinese with English abstract)
[22] Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsa-
tellite marker identification of a Triticum aestivum-Aegilops
umbellulata substitution line with powdery mildew resistance.
Euphytica, 2006, 150: 149−153
[23] Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsa-
tellite markers linked to 2 powdery mildew resistance genes in-
trogressed from Triticum carthlicum accession PS5 into common
wheat. Genome, 2005, 48: 585−590