作 者 :徐国伟;杨立年;王志琴;刘立军;杨建昌
期 刊 :作物学报 2008年 34卷 08期 页码:1424-1434
关键词:水稻 ;秸秆还田 ;实地氮肥管理 ;磷 ;钾 ;利用率 ;
Keywords:Rice , Wheat residue incorporation , Site-specific nitrogen management , Phosphorous , Potassium , Use efficiency ,
摘 要 :粳稻品种扬粳9538种植于大田, 进行了麦秸还田与不还田、实地氮肥管理(SSNM)和农民习惯施肥法(FFP)等处理。结果表明, 在相同氮肥管理条件下, 与秸秆未还田相比, 秸秆还田后植株中N含量及N、P、K积累量在生育前期较低, P、K含量在整个生育期均较高; 秸秆还田提高了氮肥利用效率, 增加了N、P、K的收获指数。在秸秆还田量相同条件下, 与FFP相比, SSNM降低了N、P的吸收量, 提高了抽穗至成熟N、P、K的转运率, 增加了N和P收获指数。表明秸秆还田和SSNM可以提高水稻N、P、K的吸收利用效率。
Abstract:More than half of wheat residues are burnt or discarded for years in China, which not only wastes organic fertilizer source, but also pollutes the environment. Meanwhile, heavy use of nitrogen fertilizer has become a serious problem in rice production, especially in Jiangsu province. The purposes of this study were to investigate the effects of wheat straw application and site-specific nitrogen management (SSNM) on the absorption and utilization of nitrogen (N), phosphorous (P), and potassium (K) in rice plants. A mid-season japonica rice cultivar of Yangjing 9538 was field-grown. Three treatments of farmers’ N-fertilizer practice (FFP), SSNM based on chlorophyll measurement (SPAD) readings, no nitrogen application, and with or without wheat residue application (the straw was incorporated to soil) were conducted. The results showed that wheat-residue incorporation re-duced N content and the accumulations of N, P, and K in plants at the early growth stage, increased P and K contents in plants during the whole growth period, and increased nitrogen use efficiency, harvest index, and biomass production efficiency of N, P, and K when compared with the straw removal treatment. Under the same amount of straw incorporation, SSNM reduced the amount of N and P absorption in plants, and increased transportation percentage of N, P, and K from heading to maturity and N and P harvest index. There was no significant difference in the amount of K absorption between SSNM and FFP. The results indi-cated that both wheat-residue application and SSNM can increase absorption and use efficiency of N, P, and K in rice plants.
全 文 : ACTA AGRONOMICA SINICA 2008, 34(8): 1424−1434 http://www.chinacrops.org/zwxb/ ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn :
(30671225, 30771274);
(2006BAD02A13-3-2); (948 )
(2006-G60) : (1978–), , , !#$%&()* * +,-.(Corresponding author): /01)E-mail: jcyang@yzu.edu.cn Received(2345): 2008-01-07; Accepted(67458: 2008-03-14. DOI: 10.3724/SP.J.1006.2008.01424
1,2 1
1 1
1,* (1 /
, 225009; 2 , 471003) : 9538
,
(SSNM) (FFP) !#$%&, ()*+,-, ./
)0, .
123 N 456 NPK 785(9 :;<=>, PK45(?@9:
5)*+,-, FFP)0, SSNMO>
NPJPK5, CB
QRSTU NPKJVWG, HI
N PKLMN#&.
SSNMXYCBZ NPKJPKDEFG# : Z; .
; ; [; \; DEG Effects of Wheat-Residue Application and Site-Specific Nitrogen Manage- ment on Absorption and Utilization of Nitrogen, Phosphorus, and Potas- sium in Rice Plants XU Guo-Wei1,2, YANG Li-Nian 1, WANG Zhi-Qin1, LIU Li-Jun1, and YANG Jian-Chang1,* (1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Yangzhou University, Yangzhou 225009, Jiangsu; 2 Agricultural College, Henan University of Science and Technology, Luoyang 471003, Henan, China) Abstract: More than half of wheat residues are burnt or discarded for years in China, which not only wastes organic fertilizer source, but also pollutes the environment. Meanwhile, heavy use of nitrogen fertilizer has become a serious problem in rice pro- duction, especially in Jiangsu province. The purposes of this study were to investigate the effects of wheat straw application and site-specific nitrogen management (SSNM) on the absorption and utilization of nitrogen (N), phosphorous (P), and potassium (K) in rice plants. A mid-season japonica rice cultivar of Yangjing 9538 was field-grown. Three treatments of farmers’ N-fertilizer practice (FFP), SSNM based on chlorophyll measurement (SPAD) readings, no nitrogen application, and with or without wheat residue application (the straw was incorporated to soil) were conducted. The results showed that wheat-residue incorporation re- duced N content and the accumulations of N, P, and K in plants at the early growth stage, increased P and K contents in plants during the whole growth period, and increased nitrogen use efficiency, harvest index, and biomass production efficiency of N, P, and K when compared with the straw removal treatment. Under the same amount of straw incorporation, SSNM reduced the amount of N and P absorption in plants, and increased transportation percentage of N, P, and K from heading to maturity and N and P harvest index. There was no significant difference in the amount of K absorption between SSNM and FFP. The results indi- cated that both wheat-residue application and SSNM can increase absorption and use efficiency of N, P, and K in rice plants. Keywords: Rice; Wheat residue incorporation; Site-specific nitrogen management; Phosphorous; Potassium; Use efficiency ,
, !# $%&()%*+,-./%01234 567, 89:4;:<=>?
@AB CDEF, G!STUVWXYZ[1-3][\]^_`ab, c def?dghijk< lmno (site-specific nitrogen management, SSNM), pq 8 :
1425 rstuQvwxyz{%|}{4 ~Qv{Z {
; 5 (SPAD)(LCC)< 2R, sj SPAD LCC Sj , {f , 8 ;4 {!
>[4-5][SSNM ¡K%K¢%M£%¤ ¥%M¦4§¨KZ©ª«¤, ¬?® ¯x°[5-6][± k< lmH²³% ´ 5x6hiµ¶[
!·¸
¹º»¼O½¾1, ·¸ ¿ÀÁÂ4tu ÃS
ÄÅÂÆ.Ç Èw! [7], ÉÊR ¤ËÌ , Íη ¸ÏwÐ ÑÒÓ¶[dÔÕ
ÄÖ×Ø!Ù· ¸¿À {%/ZÚÛf?ÜÝhi[6-10], , wÞ ·¸¿À4 SSNM ßàHQv áâhiãäwåæ[çhiè@éêë ? ·¸¿À4k< lmßàHìíî /ï(N)%³(P)%´(K)4ðñáq, ò \xQvlmyrs[ 1 1.1 óô± 2005õ2006 ö ÷øù×
×úkô
ûf[yóüý\þ)÷ 9538, pî È\ 17 , ;\ 5 , /ï 150~155 d[óô<\
, tu1<\ut, !
ºwÐ1 2.02%%wx 103.2 mg kg−1%Ò x³ 24.5 mg kg−1%Òx´ 85.6 mg kg−1[ 1.2
f·¸¿À(A) × lm(B)óô[A1 \·¸¿À; A2·¸{¿À(2005 ö\ 7.21 t hm−2, 2006ö\ 7.38 t hm−2), Ð
·¸ , з¸t þ[B1\ ; B2\< (FFP); B3 \%{4 SPAD !k< lmno(#$ SSNM)[FFP(B2)4 SSNM(B3) 4 {%& 1[(), ·¸¿À\î(, lm\(( ()[ (Ûñ\ 30 m2, ÉÐ*A, 4 +,[ (;!-./0ý12[5 3 18 45 ¹, 63 64ìí[67 2¹89[ìí: ( P2O5 75 kg hm−2(;³<=>?), K2O 90 kg hm−2(; KCl >?), @/ïþ(14~15 A)f *BÀÕ, pCÁÂD
[EFGÏ+% ,%~-[ 1.3
1.3.1 Hìí 20 d (63 26 4)I, 6 10 d (SPAD)
+J(K LMH 1 , KLN) º{, SPAD(OP q 1Q):&ª º{[: (6+ 20JJ, 6JJ R%þ%HS 3q, ¬TÈ[ 1.3.2
vU±vVþ%LvR %KLS ), ¬: (wW&â² 5 7( jXYwxVTÈ!Z ), Z[ , v \%4L 3 Sv]^._, vU:`aQvº{, H2SO4-H2O2bc, de , fghi ³, jklm ´[11][ n\op, )? ý5x6[ q(harvest index, HI)\ )QÛñ r²LSs(N%P%K)ñð{tr²usñð {vvi[ wÌ{(translocation)\KLx`as(N% P%K)ñð{ )u`ausyz{{|[ wÌ6(transportation efficiency, TE)\QÛñ r²KLs(N%P%K)&ê}~{(KL xs{ )us{{|) tKLusñð{vvi[ 1
Table 1 Amount and timing of nitrogen application (kg hm−2) Treatment Pre-transplanting Tillering
Panicle initiation
Heading
Designed amount Actually applied B1 0 0 0 0 0 0 B2 (FFP) 180 30 75 15 300 300 B3(SSNM) 100 SPAD40, 20 SPAD40, 40 SPAD40, 0 160–255 180 (A1) 38 SPAD38, 60 SPAD38, 80 A1; A2B1; FFP !; SSNM# A1: wheat residue removed; A2: wheat residue incorporated; B1: no N applied; FFP: farmers’ fertilizer-N practice; SSNM: site-specific nitrogen management. 1426 $ 34% 1.3.3 SASàfé)vs, SigmaPlot 8.0[ 2 2.1
2.1.1
m{4r² º{
%& 2[ ! lmßàH, · ¸ä¿À!i, ·¸¿Àr²º6 vVþ è7, ÉÊ/ïfr²º{¯*[ !· ¸m(·¸¿Àä¿À)ßàH , FFP !i , SSNM mr²º6 /ïÈ7, p vVþKL®7, P )Ù® |[ös {Rw
|(® ),
>(& 2)[ 2.1.2
mr² vSÌw
% 1S 2[; 1Å, ), r²îv Lþ, &L>\> J[ !ÚßàH, ·¸ä¿À!i, · ¸¿À®¯*? )JLþº{, Ó 7?\þz( 1), KLP ) Ìw{SÌw6®¯*( 2)[ !·¸ m(·¸¿Àä¿À)ßàH, FFP !i, SSNM m7?PQ`aþñð, ?þ º{ , KLP )Ìw{è7 , ®f?PQ`aþÌw[R °, ·¸¿Àk< lmf Ìw , Ó¶PQ`aþz , 5 x6[ 2.1.3
lmßàH, ·¸¿À!i, ·¸¿À. q ®¯*( 3)[ !·¸m(·¸¿Àä ¿À)ßàH, FFP !iè, SSNM ?q , TÈ 7.66vvq( 3)[ FFPm Ý r² ¡, )z ~ þèÝ, 8þÌ}è¶[;n¢~, · ¸¿Àk< lm? þi£, 8?q[ 2
Table 2 Effect of wheat residue returned to the field and site-specific nitrogen management on yield and N content of rice plants & Year Treatment ( Grain yield (t hm−2) ) Mid-tillering (mg g−1)
Panicle initiation (mg g−1)
Heading (mg g−1) *+ Maturity (mg g−1) A1B1 5.26 d 26.7 c 14.9 b 11.2 d 9.7 c A1B2 7.48 c 31.7 a 16.2 ab 16.2 b 12.3 ab A1B3 8.02 a 27.8 c 15.1 b 15.8 c 12.0 b ,- Average 6.92 28.7 15.4 14.4 11.3 A2B1 5.21 d 25.9 d 15.6 b 11.4 d 10.3 c A2B2 7.72 b 29.2 b 17.3 a 17.1 a 12.8 a A2B3 8.10 a 27.6 c 15.9 ab 16.2 b 12.6 ab 2005 ,- Average 7.01 27.6 16.2 14.9 11.9 A1B1 5.40 d 26.4 d 14.6 cd 11.0 d 10.2 c A1B2 7.41 c 32.0 a 15.6 bc 16.5 a 12.5 ab A1B3 8.36 a 28.3 c 15.3 bc 15.0 c 12.4 ab ,- Average 7.06 28.9 15.2 14.2 11.7 A2B1 5.29 d 26.1 d 15.4 bc 11.4 d 10.7 c A2B2 7.81 b 30.2 b 17.0 a 16.6 a 12.9 a A2B3 8.51 a 28.1 c 16.2 ab 15.9 b 12.8 a 2006 ,- Average 7.20 28.1 16.2 14.6 12.2 A1; A2./; B1; B201!(FFP); B3!(SSNM); 234567 P<0.05 8,9:;<=>?@ A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; B1: no N applied (N omission plot); B2: farmer fertilizer-N practice (FFP); B3: site-specific nitrogen management (SSNM). Values followed by a different letter are significantly different from the control at P<0.05. 8 :
1427 2005 2006 1
!# Fig. 1 Proportion of nitrogen accumulation in leaf, stems, and grains at maturity stage A1; A2./; 0N; FFP01!; SSNM! A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. 2005 2006 2
!
!$%$%& Fig. 2 Effect of wheat residue returned and site-specific nitrogen management on N transport from vegetative organs to grains of rice during grain filling A1; A2./; 0N; FFP01!; SSNM! A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. 1428 ! $ 34% 2005 2006 3
!
()* Fig. 3 Effect of wheat residue returned and site-specific nitrogen management on N harvest index A1; A2./; 0N; FFP01!; SSNM! A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. 2.2
2.2.1 3 ,
, ,
!#$%&
, ( FFP $), SSNM !
% *+,-./
0%# 2.2.2
!123
456789%:;<= 4 >= 5= 4 , ?@,
AB5CD0, ED>F G>HI(= 4)$JKL
, ($ ), -MN+/?@FG(HI0% #, OPQDR?@S489#789MT UV, 5WXUV 3.4 kg hm−27 4.7%(= 5)
, ( FFP$), SSNM !FG05 CYZ, N+/QDR?@4%89#, 2006 [ N+ 2.61%, \89]UV 3.3%,- ^_`abc04defg%98 3
+ Table 3 Effect of wheat residue returned and site-specific nitrogen management on P content in rice plants (%) &A Year Treatment ) Mid-tillering
Panicle initiation
Heading *+ Maturity A1B1 0.43 d 0.33 c 0.33 c 0.30 c A1B2 0.47 bc 0.37 bc 0.40 b 0.39 ab A1B3 0.45 cd 0.34 c 0.37 b 0.36 ,- Average 0.45 0.35 0.37 0.35 A2B1 0.49 b 0.34 c 0.35 c 0.31 c A2B2 0.53 a 0.43 a 0.44 a 0.40 a A2B3 0.49 b 0.39 b 0.40 b 0.38 b 2005 ,- Average 0.50 0.39 0.40 0.36 A1B1 0.47 d 0.35 d 0.35 c 0.31 c A1B2 0.54 b 0.39 c 0.42 b 0.40 a A1B3 0.52 bc 0.37 cd 0.39 b 0.37 b ,- Average 0.51 0.37 0.39 0.36 A2B1 0.50 cd 0.39 c 0.36 c 0.32 c A2B2 0.57 a 0.44 a 0.45 a 0.41 a A2B3 0.54 b 0.42 b 0.41 b 0.38 b 2006 ,- Average 0.54 0.42 0.41 0.37 A1; A2./; B1; B201!(FFP); B3!(SSNM); 234567 P<0.05 8,9:;<=>?@ A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; B1: no N applied; B2: farmer fertili- zer-N practice (FFP); B3: site-specific nitrogen management (SSNM). Values followed by a different letter are significantly different from the control at P<0.05. 8 :
1429 2005 2006 4 +!# Fig. 4 Proportion of phosphorus accumulation in leaf, stems, and grains at maturity A1; A2./; 0N; FFP01!; SSNM! A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. 2005 2006 5
!
+$%$%& Fig. 5 Effect of wheat residue returned and site-specific N management on P transportation from vegetative organs to panicle of rice during grain filling A1; A2./; 0N; FFP01!; SSNM! A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. 1430 ! $ 34% 2.2.3
,
, , ! 8.2 #$%&( 6)() *+,
FFP, SSNM !,- (./0%12/34,
56 789:;, .< ( 2.3
2.3.1
*+, , ,-=>?@#ABCDE F (GH*+,
FFP , SSNMF ,-=>?IJK, LMN (O 4)(P,-:>=)( 2005 2006 6
!
+()* Fig. 6 Effect of wheat residue returned and site-specific nitrogen management on P harvest index A1; A2./; 0N; FFP01!; SSNM! A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. 4
, Table 4 Effect of wheat residue returned and site-specific nitrogen management on K content in rice plants(%) &A Year Treatment ) Mid-tillering
Panicle initiation
Heading *+ Maturity A1B1 3.71 d 3.14 d 2.06 c 1.29 d A1B2 4.04 b 3.51 bc 2.55 b 1.65 b A1B3 4.26 a 3.59 b 2.57 b 1.48 c ,- Average 4.00 3.41 2.39 1.47 A2B1 3.89 c 3.38 c 2.17 c 1.38 cd A2B2 4.37 a 3.62 b 2.70 a 1.62 b A2B3 4.29 a 3.79 a 2.73 a 1.80 a 2005 ,- Average 4.18 3.60 2.53 1.60 A1B1 3.62 d 3.28 e 2.08 d 1.27 d A1B2 4.16 b 3.47 d 2.47 c 1.55 b A1B3 4.11 b 3.65 c 2.52 bc 1.54 b ,- Average 3.96 3.47 2.36 1.45 A2B1 3.85 c 3.47 d 2.15 d 1.42 bc A2B2 4.42 a 3.89 a 2.88 a 1.53 b A2B3 4.36 a 3.74 ab 2.66 b 1.82 a 2006 ,- Average 4.21 3.70 2.57 1.59 A1; A2./; B1; B201!(FFP); B3!(SSNM); 234567 P<0.05 8,9:;<=>?@ A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; B1: no N applied; B2: farmer fertil- izer-N practice (FFP); B3: site-specific nitrogen management (SSNM). Values followed by a different letter are significantly different from the control at P < 0.05. 8 :
1431 2.3.2
QRC, ,-> ST%UVW:, OXVW Y Z[( 7)( \ *+ ,
, !QRCZ[
Y:>=), ]^_ Y`QRa>7bc)dbc?e !( 8), ! 19.9 kg hm−2f 5.0%(GH* +,
FFP, SSNMF ghi:>%jL kl , mnoK_Y`QR>7bc) , oK 29.3%, p>q89bc?roK 17.2%, P s7q89x bc( 2.3.3
F s,-> yz{ 9(\ *+,
, > !(| }~F ]:>7 , q89:b
! , >789:; , .<>, <F ( G)*+, > FFP
SSNMF Lkl( 9)( 3 3.1
O ,
H , ,-=)%CK , AB< !(EAC]A ! , <%JQ ¡w% , aN¢7f£¤LvwQ¥¦A A) , §¨¦©ª«7 , ¬yz CA®B[12-15](<,-¯>=)@#ABC D, °±¬2n:¯> 2/²,³u´; µ²A ¶·¸2¹º», A¼ º, ½¯>w% ¡[16-18]( O, u´«? !, F OX\¾(°±¬E ¿ÀÁfZ[ÂñÄ(NR)¼º, ½, -©, ],-Å©) ![14,19](ÆÇ[20] O, ,-w%© !2
,-ÀO 2005 2006 7
Fig. 7 Proportion of potassium accumulation in leaf, stems and panicles at maturity A1; A2 ; 0N
; FFP
; SSNM
A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. 1432 34 2005 2006 8
!# Fig. 8 Effect of wheat residue returned and site-specific nitrogen management on K transport from vegetative organs to panicle of rice during grain filling A1; A2 ; 0N
; FFP
; SSNM
A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. 2005 2006 9
$%&!# Fig. 9 Effect of wheat residue returned and site-specific nitrogen management on K harvest index A1; A2 ; 0N
; FFP
; SSNM
A1: minimum tillage, no wheat residue returned; A2: minimum tillage, all wheat residue returned; 0N: no N applied; FFP: farmer fertilizer-N practice; SSNM: site-specific nitrogen management. Ãļº !JÈ, µÉ²ÀOÃļº ÊËf,vw:ÌÍTδ, ÏÐÇ[21] ɲw%ÑÒIδ, Ó¯>, ¯ >OX4ÔÕIδ, .<,-sw%© u´, Ö×>ؽ N ©b
¯ÙÚ
Û Ü, 7u´?(Prettykm[22]O, >S T%UÎvwÝVW:, ÞJuE Îs>©u´(ßàáâã, ,-¯>©) !, _Y`QRacä ãYå=)(%1,-w% !2±¬, \æç]^ABCضèØ w%“»”, µ_Yd89éêCÀÁ¼º ¿ , ©u´w%ë , Ö× !89x¼º , ¿xsw%©“ì ë”, ؽvwq89xcä [19-20]( 3.2
ßàO, FFP F íî,-© ) ! , p°oK , P,-s 8
:
! 1433 J“ï𔩠, ñå%ò7:(< SSNM ó)mJ FFP 60%, ©)ô² FFP 90%õö, P SSNM ©u´, ½ q89cb, ( áâã, ó)*+, ¯ ¯>bc?fDEHF ; )÷ø, SSNM f DE FFP; !0 SSNM, f !¥(PG SSNM D ¯ùu´?, <µúûüÑÒ\¤ ÔqÕIδ( b´ SSNM ýþ, STà ó, ²²¤)ó(ßà:,
Cßà
0 9538 gA BCó´ SPAD ¤² 40, O Lnn, SSNM ýþ ùu´«?D FFP e, )J !( [23]s¦#f , 4fgABCó´ SPAD % ² 36f 39, s! LCCD² 3.0f 3.5( À#ú# SPAD f LCC ó´, 2/$^ fu´?«[24](%
&(pn
áâã,
H, *+ABC( ), Ó)À#*+(¶ *&¤AB :¯ ¯Có;, \+ SSNMýþ, (T,-( 4 .*+, ABC=)f ¯¯>ÜÛ)K, ¯>=)/ABC D(f56 D2u ´«?f¯, û0óa]´¥ JuE¯©u´«?( References [1] Li Q-K(). Fertilizer Issues in the Sustainable Develop- ment of China Agriculture ( !#). Jiangxi: Science and Technology Press, 1997 (in Chinese) [2] Kumar K, Goh K M. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield and ni- trogen recovery. Adv Agron, 2000, 68: 197−319 [3] Ocio J A, Brookes P C, Jenkinson D S. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol Biochem, 1991, 23: 171−176 [4] Peng S, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cass- man K G. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Res, 1996, 47: 243−252 [5] Hussain F, Bronson K F, Yadvinder S, Bijay S, Peng S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron J, 2000, 92: 875−879 [6] Wang G H, Dobermann A, Witt C, Sun Q Z, Fu R X. Perfor- mance of site-specific nutrient management for irrigated rice in southeast China. Agron J, 2001, 93: 869−878 [7] Wang Z-Z($%&), Dong B-S(()), Wu J-M(*+,). Effect of the straw returned into soil in rice and wheat planting area of Taihu region. J Anhui Agric Sci (-./0), 2002, 30(2): 269−271 (in Chinese with English abstract) [8] Kludze H K, Delaune R D. Straw application effects on methane and oxygen exchange and growth in rice. Soil Sci Soc Am J, 1995, 59: 824−830 [9] Ocio J A, Brookes P C, Jenkinson D S. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol Biochem, 1991, 23: 171−176 [10] Liu T-X(120), Ji X-E(345). Effect of crop straw burning on soil organic matter and soil microbes. Soil (67), 2003, 35(4): 347−348 (in Chinese with English abstract) [11] Bao S-D(89:). Analysis of Soil and Agrichemical (67; <=). Beijing: China Agriculture Press, 2000. p 12 (in Chinese) [12] Zhang Z-J(>%?). Effect of long-term returning straw on crop yield and soil fertility. Chin J Soil Sci (67@A), 1998, 29(4): 154−155 (in Chinese with English abstract) [13] Eagle A J, Bird J A, Horwath W R. Rice yield and nitrogen effi- ciency under alternative straw management practices. Agron J, 2000, 92: 1096−1103 [14] Wit C, Cassman K G, Olk D C. Crop rotation and residue ma- nagement effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil, 2000, 225: 263−278 [15] Insam H, Mitchel C C, Dormaar J F. Relationship of soil micro- bial biomass and activity with fertilization and crop yield of three ultisols. Soil Biol Biochem, 1991, 23: 459−464 [16] Liu L-J(1BC), Sang D-Z(DEF), Liu C-L(1GH), Wang Z-Q($FI), Yang J-C(JKL), Zhu Q-S(MN). Effect of real-time and site-special nutrient management on rice yield and N use efficiency. Sci Agric Sin (/0), 2003, 36(12): 1456−1461 (in Chinese with English abstract) [17] Peng S-B(OPQ), Huang J-L(RST), Zhong X-H(UVW), Yang J-C(JKL), Wang G-H($XY), Zou Y-B(Z[\), Zhang F-S(>]^), Zhu Q-S(MN), Roland B, Christian W. Research strategy in proving N-fertilizer use efficiency of irriga- 1434 34 tion rice in China. Sci Agric Sin (/0), 2002, 35(9): 1095−1103 (in Chinese with English abstract) [18] Wang G-H($XY), Zhang Q-C(>_`), Huang C-Y(RLa). SSNMA new approach to increasing fertilizer N use efficiency and reducing N loss from rice fields. J Zhejiang Univ (Agric Life Sci) (b?E00A·cde/0f), 2003, 29(1): 67−70 (in Chinese with English abstract) [19] Huo Z(gh), Wang P($i), Fu J-F(jkl). Effects of two N-fertilizer on the growth of summer maize with straw in the field. Acta Agric Boreali-Sin (Wm0A ), 2005, 20(1): 100−104 (in Chinese with English abstract) [20] Yang C-M(Jno), Yang L-Z(Jpq), Tan T-M(rst), Ou-Yang Z(uvh). Effect of nutrient regimes on dry matter production and nutrient uptake and distribution by rice plan. Chin J Soil Sci (67@A), 2004, 35(2): 199−202 (in Chinese with English abstract) [21] Tian X-Y(4w), Shi X-J(xyz). The effects of different fer- tilizers on the absorption and utilization of rice and wheat. J Chongqing Normal Univ (Nat Sci) ({|}0~0A·/ 0f), 2003, 20(2): 44−47 (in Chinese with English abstract) [22] Prettykm K M. Potassium and Crop Quality. Saskatchewan, Canada: Potash and Phosphate Institute, 1980. pp 165−178 [23] Xu W (). Study and Demonstration on Site-Specific Nitro- gen Management in Rice. MS Dissertation of Yangzhou Univer- sity, 2006 (in Chinese with English abstract) [24] Yoshida S. Fundamentals of Rice Crop Science. Los Banns, Philippines: International Rice Research Institute, 1981. pp 255−269