全 文 : ACTA AGRONOMICA SINICA 2008, 34(5): 809−817 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
:
(30671225, 30771274)
(BK2006069)
:
1975– !#$%!& ()
*
*+$,(Corresponding author):
-./(Tel: 0514-87979317, E-mail: jcyang@yzu.edu.cn
Received(0123): 2007-07-24; Accepted(45236: 2007-11-05.
DOI: 10.3724/SP.J.1006.2008.00809
*
(
, 225009)
: 2004 2005
!#$2%(Cd)
& 63(()*)+ 9538(+), 2 % Cd -. 6 /(*)01+ 7 /(+)2345$
678459:;< Cd, =>? 150 mg kg−1(Cd@), AB; Cd?CD(CK)$Cd@E, CdFGH
I! CK JK 6.2%~8.9%, Cd -.HI!CDJK 38.3%~47.1%$L4MNLMOPNQRSTUSH
VWX, YZ[\G] Cd@ CK^_QR`a$Cd@QRbc Cd-.def, ghi%
jklmnopQRqJ, rCmn1s[tuvN_QRwx$ Cd yzq, de{|}k Cd -.
~
[mQK Cd,
I[,~: 1--1-=> QR¡ Cd$¢MAE CdC£¤
v¥A,i%j¦k§¨I_QRwx$© CdCªfjwxVWj8k(de{|}k),
«kdef¬~®¯°±²,³TU CdVW´µ$
: ; ; °; ~;
Comparisons in Agronomic and Physiological Traits of Rice Genotypes
Differing in Cadmium-Tolerance
HUANG Dong-Fen, XI Ling-Lin, YANG Li-Nian, WANG Zhi-Qin, and YANG Jian-Chang*
(Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China)
Abstract: Cadmium (Cd) is one of major contaminants in agricultural soil, threatening agricultural production and human health.
To understand agronomic and physiological characteristics of rice genotypes differing in Cd-tolerance would have great signifi-
cance in selecting or breeding a Cd-tolerant cultivar. In this study, two Cd-tolerant rice genotypes of Shanyou 63 (indica hybrid)
and Yangjing 9538 (japonica) and two Cd-susceptible genotypes of Yangdao 6 (indica) and Wuyunjing 7 (japonica) were
pot-grown at a farm of Yangzhou University, Yangzhou, Jiangsu Province in 2004 and 2005. 150 mg kg−1 Cd was added into pot
soil before seedling transplanting (Cd treatment), and no Cd addition was taken as control (CK). Under the Cd treatment, the grain
yield was reduced by 6.2–8.9% for the Cd-tolerant genotypes and by 38.3–47.1% for the Cd-susceptible ones when compared
with their respective CKs. The reduction in grain yield was mainly attributed to the reductions of panicles per pot and spikelets per
panicle. The differences in seed-setting rate and 1 000-grain weight were not significant between the Cd treatment and CK. The
Cd treatment markedly inhibited the tillering of the Cd-susceptible genotypes, resulting in the reduction in dry matter accumula-
tion during the whole growth period. Cd little affected the translocation of non-structural carbohydrate from culms and sheaths
and harvest index. For Cd-susceptible genotypes, the Cd treatment significantly reduced root oxidation activity and photosynthetic
rate, activities of superoxide dismutase and catalase of leaves, and obviously increased contents of superoxidate radical and hy-
drogen peroxide and ethylene evolution rate of leaves, and the concentration of 1-aminocylopropane-1-carboxylic acid in root
bleedings from the tillering to jointing stages, while the Cd treatment much less affected the above physiological traits for the
Cd-tolerant genotypes. The differences in the above traits at heading and afterwards and abscisic acid content in leaves during the
whole growth period were not significant between the Cd treatment and CK. The results indicate that the effects of Cd on rice
810 34
growth and development are mainly during the early growth period (from tillering to jointing), and more tillers, stronger root ac-
tivity and antioxidative defense system, and less ethylene synthesis in the plants during this period would be considered as agro-
nomic and physiological traits of Cd-tolerant genotypes of rice.
Keywords: Rice; Cadmium-tolerant genotype; Reactive oxygen species; Root activity; Ethylene
(Cd)
[1]
Cd
, Cd
[2-3]!#$%&()*+,-.
/%& 01, Cd 2
343
56
789:, #$
Cd
;<=>?@ 28
A hm2, BCD Cd EF?G ; H 14.6 I kg,
J;&D +KL M-NOP
QR[4-5]
SC4, $TUJ CdVW XYZ[\+]^
_`JV abcdS ef[6-11]gC
4, #LefW0h, Cd J F ijH
klmnopq[12]Jrsabt Cduvw, x
yHk
, zxyHk {6|}
~J Cd 6Hk ;+Dv
efdc Cd+ Cd
/ F+DvD pq, _Cd
Hk +v5
1
1.1
2004 + 2005 Co; ¡¢
£ab¤¥ 6¦(§)Z¨© 63(ª«
§)Z¬[ 7 ¦()+ 9538()® 4
,¤¥D 150~155 d; rs Cd
¯D°0
+ Fm|}/pq[12]5 ± 10²11
³´k, oµ, 6± 10²11³¶¢·¡¸¡T
¹ 25 cm, º 30 cm, B¡»@¼½
¾sr 16 kg
(Cd¿À<0.3 mg kg−1)B¡¢ 3Á, ¨© 63BÁ 1
µ, ÂÃHkBÁ 2µ¶¢Ä 3 dB¡ÅÆ 1 g
+ KH2PO4 0.5 g, ¶¢w 7 dB¡ÅÆ 0.5 g, Ç
]B¡ÅÆ 1 g¶¢w8D¡¸TÈÉ
1~2 cmÊ
1.2 Cd
˵¶¢Ä 1 ,±, ¡¸rsWt Cd,
Ì r s Cd ¿ À 150 mg kg−1( Í , _
CdCl2·2.5H2O ÎÏrÐÑ)ÒÓÔÕW
Ö×Ø, Ùrs Cd¿ÀÚ100 mg kg−1, CdJ;
ÏDvÛ ijHklpqn., ¼
Cd Hk, ºc Cd ¿À¡TÈÉÊ, pH È
É 6.0, ÌrsÏ CdabÜÝ_½ Cd
rs
(6t Cd)JÞ (CK)ßàáâãäáå
(DTPA)æçè, rs DTPA-Cd ¿Àét Cd Ä
0.032 mg kg−1, t Cdw 82.6 mg kg−1Buv
ê 40¡, ÂW 30¡æë]ì, 10¡ík
: îÜÝ·ïÇ, ð¥oñòó, _ô Cd
õóö÷
1.3
·øù, úuvûè 10 ¡, B 7 d Ö
×xüB¡ ýþ]þW(¶¢w 20 d)Z
+ïÇ, æëçèýxü]þ1
?î ( )Z@ (H2O2)+
å
(ABA)EFZá
Z?V(SOD)
+@ (CAT)_`W 1-
1-å(ACC)¿ÀÞ Srivalli2[13]
çè! 2O
−
+ H2O2EF` SOD+ CAT,
#$%+ Bollmark2[14-15]& ()* çè
! ABAEF, !á
+ Y
+Ï ACC ¿À çè ,-.[16]+[17]úu
vBü
êçè 5(ü)
](]þ/(¶¢w 10 d)Z]þWZ
ZïÇZøù+0ù, LI-64001234
Ñ5(6$ LI-COR 78D )çèýxü]þ
14Ñ, úuv
êçè 6 ; úu
væ 6Áçè9:ÍV;
+(<)
Þ=>?2 [18] æ+çè<
](ïÇ+ùæúuv@Aë 3¡,
BöCDr, EwFGHICJ,@
A, XKXÍL<]MAZýNZZ
Ç(ùOP)], 70QRQÍ·S
, E
wTU, @ 100V¼, W
, HNO3t HClO4 (4X
1)Yw , ZHXY4[5(Solar S4 + Graphite
Furnace System 97, Thermo Elemental, USA)çèú
:\ CdEF, úëH
êçè 4ü
ùúuvæ 10 ¡: , æÂW 3 ¡í
kMïÇ+ù æë@A, ]Zý]
NZÇ 3:]^QÍw, _ Yoshida2 [19]çèý
ÏNW `aPbÑV(NSC)EF
5 :
811
ýNV;[cd(ïÇýNW NSCeù
ýNW NSC)/ïÇýNW NSC × 100%
YfgdOPÍ
/ù9:]hÍ
1.4
SAS (version 6.12; SAS Institute, Cary, NC,
USA)ab9:]ì , Pd0.05 .}ijp
(LSD0.05)abÜk}ilC am
noxp , q-r F5U , Âs5
C ÜkLt
2
2.1
L 1 u, Cd uvJ F ij/l
mnopqCduvw, ¨© 63+ 9538
Fvd CK¯w 6.2%~8.9%, ÏJÞpq6}i; x
6 ¦+¬[ 7 ¦ Fd CK wyc
38.3%~47.1%, ÏJÞpq}i(L 1)1]ì
d, M Cd Rz¯{|}i ( <10%)
¨© 63+ 9538 W Cd /, Cd R
z¯}i ( >30%) 6 ¦+¬[ 7
¦W} Cd/~ FP]ì, Cd
/ B¡Ç+BÇP() Cdu
v¯k}i¯w Cduvw Cd/ B
¡Ç+BÇd CK|, ~Ï CK½
}ipqCduvJú/ a
+P
k
½}iij| CdJ F ijD
ÄWC amnoxp, p]ìL|, F
+ú FPCÀlk½}ipq(F<1)
1
Table 1 Effect of cadmium (Cd) treatment on the grain yield and its components of rice genotypes
Grain yield
Genotype
Treatment
Panicles per pot
Spikelets per panicle
Seed-setting rate (%)
1000-grain weight (g)
g pot−1 %
2004
CK 21 a 147 a 88.9 a 27.2 a 74.6 a 100.0 6
Yangdao 6 Cd 14 b 132 b 90.3 a 27.6 a 46.0 b 61.7
CK 22 a 151 a 85.4 a 26.8 a 76.0 a 100.0 63
Shanyou 63 Cd 21 a 148 a 84.6 a 27.1 a 71.3 a 93.8
CK 26 a 116 a 87.6 a 29.3 a 77.4 a 100.0 7
Wuyunjing 7 Cd 17 b 95 b 88.1 a 29.7 a 42.3 b 54.6
CK 24 a 126 a 86.7 a 25.6 a 67.1 a 100.0 9538
Yangjing 9538 Cd 23 a 123 a 85.5 a 25.4 a 61.4 a 91.5
2005
CK 23 a 151 a 85.4 a 26.8 a 79.5 a 100.0 6
Yangdao 6 Cd 15 b 136 b 84.6 a 26.7 a 46.1 b 58.0
CK 24 a 162 a 81.5 a 26.2 a 83.0 a 100.0 63
Shanyou 63 Cd 22 a 163 a 81.7 a 26.3 a 77.1 a 92.9
CK 25 a 121 a 85.4 a 27.5 a 71.0 a 100.0 7
Wuyunjing 7 Cd 15 b 108 b 83.7 a 27.7 a 37.6 b 52.9
CK 23 a 130 a 82.6 a 24.9 a 61.5 a 100.0 9538
Yangjing 9538 Cd 21 a 128 a 83.0 a 25.1 a 56.0 a 91.1
() !#$%& Cd()*(CK)+, P=0.05-./01234
Values within a column for a genotype followed by a different letter are significantly different between Cd treatment and CK at P=0.05.
2.2
Cd uv|}c Cd / ]þ0D
( 1)Ï CK , Cd uv¯®y/Lh
]þ0DZ]þF]þÇdº, ~
]þxÇyCd J Cd /
]þ0Dijn. Cduv¯ º]þ
CK, ~ÇÏ CK½}ipq( 1)
Ïýþ 0D, Cd uv|}9wycÍ
V; =(L 2)Cd JÍV;
ij, Cd
/|}o Cd/ïÇ, Cdu
vw Cd/ 6¦+¬[ 7¦ ÍV;
d CK ](¯wc 40.2%+ 45.1%; Cd /
812 5 346
¨© 63 + 9538 ÍV;
, Cd uvw](d
CKwyc 3.2%+ 9.2%CduvJýNV;[c
+Yfg½}iij(L 2)| Cd @
]þ 0D , pV;D < ¯w , JV;
[c ij{n.
cd]ì/J Cd XY< p
q , ïÇ+ùçècúuvú
Cd ¿À`Â=F, amL 3(rsWét Cd
JÞ , @Aúlç6Ø Cd, q5é
)L 3 ,, ZýN]ZÇ/OPW Cd¿
Àú/lk½}ipq , ~ú
Cd=F, Cd/}iº Cd/
|\
JCd XYF`\Í
Cd ]^
F Cd /Ï Cd /l½}ip(,
Cd =FÍV;
Fè Cd /
ú Cd=Fº, 6\Í
CdX
Y<, xÂV;D <ZÍV;
=Fo
1 Cd
Fig. 1 Effect of Cd treatment on the increase or decrease of stems and tillers of rice
78 29:.;<4Data presented are averages between the two years.
2
Table 2 Effect of cadmium (Cd) treatment on the dry matter weight and mater translocation of rice
Genotype
Treatment
=>?@
Mid-tillering
(g pot−1)
AB@
Jointing
(g pot−1)
C@
Heading
(g pot−1)
DE@
Maturity
(g pot−1)
FGH
Matter translocation
(%)
IJK
Harvest index
CK 6.23 a 31.8 a 98.5 a 157.0 a 58.6 a 0.49 a 6
Yangdao 6 Cd 3.69 b 19.5 b 58.9 b 92.2 b 56.5 a 0.50 a
CK 6.59 a 32.6 a 96.9 a 153.0 a 86.8 a 0.52 a 63
Shanyou 63 Cd 6.23 a 31.8 a 93.8 a 145.0 a 88.4 a 0.51 a
CK 5.86 a 30.1 a 95.2 a 155.0 a 43.6 a 0.47 a 7
Wuyunjing 7 Cd 3.45 b 17.2 b 54.6 b 85.1 b 45.3 a 0.47 a
CK 5.51 a 27.9 a 85.8 a 131.0 a 39.6 a 0.49 a 9538
Yangjing 9538 Cd 4.89 b 24.8 b 79.3 a 122.0 a 37.8 a 0.48 a
() !#$%& Cd()*(CK)+, P=0.05-./0123478 29:.;<4
Values within a column for a genotype followed by a different letter are significantly different between Cd treatment and CK at P=0.05.
Data presented are averages between the two years.
5
:
813
3 !
Table 3 Cadmium (Cd) concentration and accumulation in different organs of rice under Cd treatment
L Root
MNO Stem + leaf
/P
Panicle/grain
Genotype QR
Conc.
(μg g−1)
ST
Accum.
(mg pot−1)
QR
Conc.
(μg g−1)
ST
Accum.
(mg pot−1)
QR
Conc.
(μg g−1)
ST
Accum.
(mg pot−1)
UST
Total Cd
(mg pot−1)
C@ Heading
6 Yangdao 6 338.0 a 4.21 d 14.87 a 0.76 c 1.29 a 0.010 c 4.98 c
63 Shanyou 63 342.0 a 6.35 a 14.74 a 1.07 a 1.28 a 0.027 a 7.45 a
7 Wuyunjing 7 340.0 a 4.15 c 14.32 a 0.68 d 1.25 a 0.009 c 4.84 c
9538 Yangjing 9538 336.0 a 5.47 b 14.98 a 0.97 b 1.26 a 0.018 b 6.46 b
DE@Maturity
6 Yangdao 6 352.0 a 4.84 c 14.54 a 0.67 c 0.68 a 0.03 c 5.54 c
63 Shanyou 63 356.0 a 6.62 a 14.57 a 1.03 a 0.67 a 0.05 a 7.70 a
7 Wuyunjing 7 348.0 a 4.49 d 14.22 a 0.64 c 0.69 a 0.03 c 5.16 c
9538 Yangjing 9538 350.0 a 5.78 b 14.49 a 0.91 b 0.66 a 0.04 b 6.73 b
() !#$%& Cd()*(CK)+, P=0.05-./0123478 29:.;<4& 3? Conc.
V Accum.=W8 ConcentrationV Accumulation:XY4
Values within a column for a genotype followed by a different letter are significantly different between Cd treatment and CK at P=0.05.
Data presented are averages between the two years. Conc. and Accum. are the abbreviation of Concentration and Accumulation in Table 3,
respectively.
2.3 !#$%&()*+
Cd uv|}wycDÄ <(L
4)!Da, CdJ(<) ij
ïÇ_w, úHk CduvÏ
CKl½}ipqCduvw, î]þ· Cd
/¯w À|}o Cd
/]þ/, Cd / 6 ¦+
¬[ 7¦ Cduv¯ <](d CK¯
wc 52.5%+ 49.1%; Cd /¨© 63 +
9538 Cd uv¯ <](d CK wyc
14.9%+ 22.8%(L 4)
Ï< no, Cd uvww
ycDÄW !4Ñ(L 5)!D a
, Cd J!4Ñ ij., îïÇ_
w, úHk!4Ñ Cduv+ CKl½}i
pq]þ· CdJ!4Ñ ij, Cd
/|}o Cd/¡üL| CdJ
D ijLhÄWïÇ_w Cd
JDvÛ ij>6|}, q_¯v¢£ï
ÇÄ çèam
4 #$%&
Table 4 Effect of cadmium (Cd) treatment on root oxidation activity of rice (μg α-NA g−1 FW h−1)
Genotype
Treatment
=>Z@
Early-tillering
=>?@
Mid-tillering
AB@
Jointing
C@
Heading
[E@
Milky stage
\E@
Waxy stage
CK 132.0 a 138.0 a 113.0 a 105.0 a 87.6 a 45.9 a 6
Yangdao 6 Cd 70.9 b 62.8 b 83.7 b 101.0 a 85.3 a 47.8 a
CK 126.0 a 132.0 a 107.0 a 98.6 a 78.9 a 36.7 a 63
Shanyou 63 Cd 106.0 b 127.0 a 105.0 a 99.3 a 78.2 a 37.4 a
CK 138.0 a 143.0 a 120.0 a 113.0 a 88.6 a 50.3 a 7
Wuyunjing 7 Cd 72.4 b 58.9 b 95.5 b 107.0 a 89.5 a 48.9 a
CK 132.0 a 141.0 a 126.0 a 112.0 a 85.3 a 45.6 a 9538
Yangjing 9538 Cd 113.0 b 134.0 a 124.0 a 115.0 a 84.2 a 43.8 a
() !#$%& Cd()*(CK)+, P = 0.05-./0123478 29:.;<4
Values within a column for a genotype followed by a different letter are significantly different between Cd treatment and CK at P = 0.05.
Data presented are averages between the two years.
814 5 346
2.4 ,-./#0,-
Cd uv}i¤tc Cd /]þ+
!W?î( 2O− )+@ (H2O2)E
F, J Cd/!W 2O
−
+ H2O2EF½}ii
j(L 6)
Cd uv¤cú/]þ+
!?V(SOD)+@ (CAT)
(L 7)Ï CK, Cduv¯ Cd/!
5
Table 5 Effect of cadmium (Cd) treatment on photosynthetic rate in rice leaves (μmol CO2 m−2 s−1)
Genotype
Treatment
=>Z@
Early-tillering
=>?@
Mid-tillering
AB@
Jointing
C@
Heading
[E@
Milky stage
\E@
Waxy stage
CK 17.9 a 18.5 a 18.9 a 20.1 a 15.4 a 7.64 a 6
Yangdao 6 Cd 8.51 b 7.94 b 13.5 b 18.9 a 14.6 a 7.59 a
CK 16.8 a 17.5 a 17.7 a 19.7 a 11.2 a 5.23 a 63
Shanyou 63 Cd 13.7 b 16.3 a 16.1 a 19.5 a 11.5 a 5.35 a
CK 18.5 a 18.9 a 18.5 a 21.5 a 15.3 a 8.32 a 7
Wuyunjing 7 Cd 9.42 b 8.75 b 14.1 b 20.6 a 14.8 a 8.39 a
CK 16.7 a 17.6 a 18.4 a 20.9 a 14.9 a 7.26 a 9538
Yangjing 9538 Cd 12.9 b 15.3 a 17.3 a 19.6 a 14.5 a 7.27 a
() !#$%& Cd()*(CK)+, P = 0.05-./0123478 29:.;<4
Values within a column for a genotype followed by a different letter are significantly different between Cd treatment and CK at P = 0.05.
Data are averages between the two years.
6
(
)(H2O2)
Table 6 Effect of cadmium (Cd) treatment on contents of superoxide radical (
) and hydrogen peroxide (H2O2) in rice leaves (nmol g−1 FW)
H2O2
Genotype
Treatment =>?@
Mid-tillering
AB@
Jointing
C@
Heading
=>?@
Mid-tillering
AB@
Jointing
C@
Heading
CK 3.48 b 3.52 b 3.17 a 35.9 b 37.4 b 41.2 a 6
Yangdao 6 Cd 6.87 a 5.49 a 3.08 a 63.8 a 50.6 a 43.6 a
CK 3.51 a 3.63 a 3.29 a 37.5 a 39.6 a 42.5 a 63
Shanyou 63 Cd 3.85 a 3.71 a 3.32 a 40.3 a 41.5 a 41.8 a
CK 3.32 b 3.57 b 3.43 a 32.7 b 35.5 b 39.9 a 7
Wuyunjing 7 Cd 6.14 a 5.18 a 3.36 a 56.9 a 48.3 a 40.5 a
CK 3.35 a 3.44 a 3.28 a 34.5 a 36.3 a 37.5 a 9538
Yangjing 9538 Cd 3.76 a 3.53 a 3.30 a 35.9 a 37.2 a 38.1 a
() !#$%& Cd()*(CK)+, P = 0.05-./0123478 29:.;<4
Values within a column for a genotype followed by a different letter are significantly different between Cd treatment and CK at P = 0.05.
Data are averages between the two years.
7
(SOD)(CAT) !
Table 7 Effect of cadmium (Cd) treatment on activities of superoxide dismutase (SOD) and catalase (CAT) in rice leaves
SOD (U g−1 FW min−1)
CAT (mg H2O2 g−1 FW min−1)
Genotype
Treatment =>?@
Mid-tillering
AB@
Jointing
C@
Heading
=>?@
Mid-tillering
AB@
Jointing
C@
Heading
CK 387 a 369 a 383 a 87.2 a 79.5 a 86.4 a 6
Yangdao 6 Cd 396 a 375 a 384 a 91.5 a 84.6 a 85.3 a
CK 384 b 362 b 376 a 85.3 b 75.3 b 87.8 a 63
Shanyou 63 Cd 425 a 383 a 375 a 98.6 a 86.9 a 88.6 a
CK 368 b 355 a 397 a 85.4 a 80.6 a 90.5 a 7
Wuyunjing 7 Cd 379 a 363 a 392 a 88.8 a 84.8 a 91.8 a
CK 362 b 362 b 381 a 86.2 b 81.7 b 88.4 a 9538
Yangjing 9538 Cd 394 a 384 a 378 a 97.4 a 93.5 a 89.3 a
() !#$%& Cd()*(CK)+, P = 0.05-./0123478 29:.;<4
Values within a column for a genotype followed by a different letter are significantly different between Cd treatment and CK at P = 0.05.
Data are averages between the two years.
5 :
815
SOD CAT
, Cd
Cd CK
Cd
!#$%&(), *Cd+,-
!./01$2345
2.5 ABA
Cd6789ABA:;<
=>(?
8)* Cd -, Cd 89@ABCDE
CK F<
, G Cd
H Cd
IJKLMK89@ABCDE(? 8)
89@ABCDENOPQRST, Cd
- CdU(VWXY ACCZ[!6
, CdACCZ[*CdCK]
<
(^ 2)R_I`?, U(VWX ACC
Z[89@ABCDEa[bR_(r = 0.99**)
Cd * Cd -89@ABCDEa,
U(@Acde0ffACCcd;g _
8
(ABA)(ETH)
Table 8 Effect of cadmium (Cd) treatment on ABA content and ethylene (ETH) evolution rate of rice leaves
ABA (ng g−1 FW)
ETH (pmol g−1 FW h−1)
Genotype
Treatment
Mid-tillering
Jointing
Heading
Mid-tillering
Jointing
Heading
CK 75.3 a 83.5 a 68.7 a 98.6 b 101 b 76.4 a 6
Yangdao 6 Cd 71.8 a 80.6 a 67.9 a 153.0 a 138 a 79.3 a
CK 73.2 a 75.7 a 65.4 a 89.6 a 105 a 78.5 a 63
Shanyou 63 Cd 76.7 a 78.3 a 64.8 a 93.4 a 107 a 74.3 a
CK 68.9 a 72.5 a 56.8 a 87.5 b 113 b 69.6 a 7
Wuyunjing 7 Cd 66.3 a 70.1 a 57.2 a 135.0 a 149 a 64.0 a
CK 70.1 a 73.4 a 58.9 a 83.8 a 105 a 65.1 a 9538
Yangjing 9538 Cd 72.7 a 75.7 a 57.6 a 85.4 a 103 a 67.4 a
() !# Cd$%&(CK)( P = 0.05)*+,-./0123 245*670
Values within a column for a genotype followed by a different letter are significantly different between Cd treatment and CK at P = 0.05.
Data are averages between the two years.
2 Cd 1-!#$%-1-&
(ACC)(
Fig. 2 Effect of Cd treatment on 1-aminocylopropane-1- carboxylic acid (ACC) concentration in root bleedings of rice
89
:+ !# Cd$%&(CK)( P = 0.05)*+,-./0
MT;
; J;
; H;
0123 245*670
Bar superscripted followed by different letters within the same measure date are significantly different between Cd treatment and CK at P = 0.05.
MT: Mid-tillering; J: Jointing; H: Heading. Data are averages between the two years.
816 < 34=
3
hij?, Cd 6kl;=>*]
m*no* Cd +,-, Cd R6
l;[Cd l;/6\(p Cd)l;]
aq Cd
* Cd+,-3qIJrstduv
wxuyzv{|} Cd {l
~ Cd6k} Cd
~*eYK*YK
(u), Cd 6k=>h,
PE&*!a
_ Cd6
k=>*Km* ,
e. ij, Cd 6l
, } Cd ¡¢Pc, £¤¥
¦§¨©ª«¬ ¡¢¦, ®¯°b
±[20-21]*eYK, k²:³;!
a, U´IJµuI%¶!a:³%c
·¸[22]Cd¹º6»¼:³%c} ¡¢
l
, ®rsk*K,
k~½·¸¾½¿ÀÁ~, , ÂK Cd
6kÃÄÅÆ=>nÇÈÉÊ4} ,
*eKk6 Cd ËÌ45!Í, Cd
6k!o; ÎÏÐ , kÑ
6CdËÌÒÓ, Cd6k
{ÍÔÕI`Ö, eYKk²6 CdË
Ì45oÇ×ØÙOHk Cd
ÍÚÂ, ÛÜÝÞÊßR6IJv(CdIJv
/6\IJv)R6xuyzv(Cd xuyz
v/6\xuyzv)
Áàá CdkâÉãä
åæ
eçè6CdÏéH!gij, ê
ë Cd+,-$23¤gl #´$%&
ìíî´ïð$ñòñó(DNA)ôV}
Cd6ls[23-25]G6
Cdk%õö÷!I`høù
úû , eYKU($%5´89ücDE´
SOD CATR6ý(Cd/6\), Cd
Öaq Cd, 89 2O
−
H2O2:;
R6ý(Cd/6\), Cdîq Cd
U(Ñ01#$%()4
5} Cd Cdþ´R6IJvR6
xuyzvg
êÁ, ABA @A}6
>ÌS ,
Á
(stress hormones)[26-27]høùúû , * Cd+,-
7ø
89 ABA:;p Cd6\
, N Cd+,Ê4+,ª,
kÑ01 ABA
¦%Cd 6k@A
l, *]m*no, * Cd +,-,
Cd U(VWXY ACC Z[89@
ABCDE
, Cd * Cd
CK ]<
ij, *-
01@AÊ
ÁÏ$()(ROS)
d, ROSÊ ¡¢ñóí ´
ï$%ïôV[28-30]3ÂN, * Cd +,-,
CdCd*$23d
#$%ìÔm*!, Ê4kÑ01@
Ad45 #_(ÊêÁ@Acd|´#$
%&()45}k Cd
$
ijêÁ, ¼U(´l;!a%
&k¾alâÉ, 6 Cd(45, *Ñ7
)*¿À;g[1,31]hij?: Cd
S, +,* Cd +,-U($%
5 ´¢l;m*
, 7)* Cd
¿À; Cd -
aq Cd , G
7)* CdZ[*7]Ö<
./lâ)* Cd (;¢l4
50 123(¼al(âÉ)Ê4*l
â)*(4Ã)56 Cd ¿À;!a, G./Ã
; Cd(;0Oa»PQ6qç7à
¾àal Cd89âÉ À:;<«=,
à¾à Cd 89(k>Y Cd Z[!î)âÉ,
0O?@l;Á·A; È«= , l
;aâÉ, ÃkB®CDYEFCd-g,
ȧ Gq CdHICDJK
4
LM Cd 6kl;=>*]m*
no, ./lâ)*Cd(;
Cdµ¢l45 123(, Cd+,tdu
vwxuyzv{|} Cd {l
~* Cd+,-eYKIJyz
I%g´U(589#$%&()45µ
@Acd|} Cd k~ãä
$
5
:
817
References
[1] Hu H, Wang J, Fang W, Yuan J, Yang Z. Cadmium accumulation
in different rice cultivars and screening for pollution-safe culti-
vars of rice. Sci Total Environ, 2006, 370: 302−309
[2] Zhao Q-G(>?@), Zhou B-Z(AB ), Yang H(CD). Studies
on environment quality and safe problems in agriculture in Ji-
angsu province. Soil (EF), 2002, 1: 1−8 (in Chinese)
[3] Wang K-R(GHI). Comparative study on Cd phytotoxicity to
different genes of rice. Rural Ecol-Environ (JKLMNO),
1996, 12(3): 18−23 (in Chinese with English abstract)
[4] Gu J-G(PQR) , Zhou Q-X(AST). Cleaning up through phy-
toremediation: a review of Cd contaminated soils. Ecol Sci (LM
UV), 2002, 21(4): 352−456 (in Chinese with English abstract)
[5] Li K-Q(WXY), Liu J-G(Z[@), Lu X-L(\]^), Yang
J-C(C[_), Zhu Q-S(`ab). Uptake and distribution of cad-
mium in different rice cultivars. J Agron-Environ Sci (JcNO
UVVd), 2003, 22(5): 529−532 (in Chinese with English ab-
stract)
[6] Wu Q-T(eSf), Chen L(gh), Wang G-S(Gij). Differ-
ences on Cd uptake and accumulation among rice cultivars and
its mechanism. Acta Ecol Sin (LMVd), 1999, 19(1): 104−107
(in Chinese with English abstract)
[7] Zhao B-H(>kl), Zhang H-X(mln), Xi L-L(opq), Zhu
Q-S (`ab), Yang J-C (C[_). Concentrations and accumula-
tion of cadmium in different organs of hybrid rice. Chin J Rice
Sci ( @)UV), 2006, 20(3): 306−312 (in Chinese with
English abstract)
[8] Wu F B, Dong J, Jia G X, Zheng S J, Zhang G P. Genotypic dif-
ference in the responses of seedling growth and Cd toxicity in
rice (Oryza sativa L.). Agric Sci China, 2006, 5: 68−76
[9] Juwarkar A A, Nair A, Dubey K V, Singh S K, Devotta S.
Biosurfactant technology for remediation of cadmium and lead
contaminated soils. Chemosphere, 2007, 68: 1996−2002
[10] Pagliano C, Raviolo M, Vecchia F D, Gabbrielli R, Gonnelli C,
Rascio N, Barbato R, Rocca N L. Evidence for PS II donor-side
damage and photoinhibition induced by cadmium treatment on
rice (Oryza sativa L.). J Photochem Photobiol B: Biology, 2006,
84: 70−78
[11] Liu J G, Liang J S, Li K Q, Zhang Z J, Yu BY, Lu X L, Yang J C,
Zhu Q S. Correlations between cadmium and mineral nutrients in
absorption and accumulation in various genotypes of rice under
cadmium stress. Chemosphere, 2003, 52: 1467−1473
[12] Xi L-L(opq). Effects of Cadmium and Lead on the Grain
Yield and Quality of Rice and Their Distributions in the Plants.
MS Dissertation of Yangzhou University, 2006. pp 20−35(in
Chinese with English abstract)
[13] Srivalli B, Sharma G, Khanna-chopra R. Antioxidative defense
system in an upland rice cultivar subjected to increasing intensity
of water stress followed by recovery. Physiol Plant, 2003, 119:
503−512
[14] He Z-P(rst). Experimental Guidance on Chemical Control in
Crop Plants (JuvwVxyz{|}). Beijing: Beijing Agri-
cultural University Press, 1993. pp 60−68 (in Chinese)
[15] Bollmark M, Kubat B, Eliasson L. Variations in endogenous cy-
tokinin content during adventitious root formation in pea cuttings.
J Plant Physiol, 1988, 132: 262−265
[16] Yang J, Zhang J, Wang Z, Liu K, Wang P. Post-anthesis develop-
ment of inferior and superior spikelets in rice in relation to ab-
scisic acid and ethylene. J Exp Bot, 2006, 57: 149−160
[17] Yang J-C(C[_), Chang E-H(~), Tang C(), Zhang
H(m), Wang Z-Q(G
). Relationships of ethylene evolu-
tion rate and 1-aminocylopropane-1-carboxylic acid concentra-
tion in grains during filling period with appearance quality of rice.
Chin J Rice Sci ( @)UV), 2007, 21(1): 77−83 (in Chinese
with English abstract)
[18] Yang J-C(C[_), Wang Z-Q(G
), Zhu Q-S(`ab). Effect
of nitrogen nutrient on rice yield and its physiological mechanism
under different status of soil moisture. Sci Agric Sin ( @JcU
V), 1996, 29(4): 58−66 (in Chinese with English abstract)
[19] Yoshida S, Shioya S. Photosynthesis of rice plant under water
stress. Soil Sci Plant Nutr, 1975, 21: 169−180
[20] Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U,
Bracale M, Sgorbati S, Citterio S. Thiol-peptide level and pro-
teomic changes in response to cadmium toxicity in Oryza sativa
L. roots. Environ Exp Bot, 2007, 59: 381−392
[21] Lin A J, Zhang X H, Chen M, Cao Q. Oxidative stress and DNA
damages induced by cadmium accumulation. J Environ Sci, 2007,
19: 596−602
[22] Murata Y, Matsushima S. Rice. In: Evans L T ed. Crop Physiol-
ogy. Cambridge: Cambridge University Press, 1975. pp 75−99
[23] Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laere A
V, Vangronsveld J. Induction of oxidative stress and antioxidative
mechanisms in Phaseolus vulgaris after Cd application. Plant
Physiol Biochem, 2005, 43: 437−444
[24] Nouairi I, Ammar W B, Youssef N B, Daoud D B M, Ghorbal M
H, Zarrouk M. Comparative study of cadmium effects on mem-
brane lipid composition of Brassica juncea and Brassica napus
leaves. Plant Sci, 2006, 170: 511−519
[25] Gomes-Junior R A, Moldes C A, Delite F S, Pompeu G B, Gratao
P L, Mazzafera P, Lea P J, Azevedo R A. Antioxidant metabolism
of coffee cell suspension cultures in response to cadmium.
Chemosphere, 2006, 65: 1330−1337
[26] Davies P J. The plant hormones: their nature, occurrence and
function. In: Davies P J ed. Plant Hormones, Biosynthesis, Signal
Transduction, Action! Dordrecht, The Netherlands: Kluwer Aca-
demic Publishers, 2004. pp 1−15
[27] Wilkinson S, Davies W J. ABA-based chemical signaling: the
co-ordination of responses to stress in plants. Plant Cell Environ,
2002, 25: 195−210
[28] Yakimova E T, Kapchina-Toteva V M, Laarhoven L J, Harren F
M, Woltering E J. Involvement of ethylene and lipid signalling in
cadmium-induced programmed cell death in tomato suspension
cells. Plant Physiol Biochem, 2006, 44: 581−589
[29] Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C,
Sandermann H, Kangasjarvi J. Ozone-sensitive Arabidopsis rcdl
mutant reveals opposite roles for ethylene and jasmonate signal-
ing pathways in regulating superoxide-dependent cell death.
Plant Cell, 2000, 12: 1849−1862
[30] Tambussi E A, Bartoli C G, Beltrano J, Guiamet J J, Araus J L.
Oxidative damage to thylakoid proteins in water stressed leaves
of wheat (Triticum aestivum). Physiol Plant, 2000, 108: 398−404
[31] Liu J G, Zhu Q S, Zhang Z J, Xu J K, Yang J C, Wong M H.
Variations in cadmium accumulation among rice cultivars and
types and selection of cultivars for reducing cadmium in the diet.
J Sci Food Agric, 2005, 85: 147−153