A New ent-Kauranoid Diterpenoid from Hicriopteris glauca (Gleicheniaceae)
全 文 :蕨类植物里白中一个新的对映 - 贝壳杉烷型二萜化合物 ?
张鹏涛1 , 2 , 何 隽1 , 许 刚1 , 涂 琳1 , 郭 娜1 ,
赵 昱1 , 彭丽艳1 , 赵勤实1??
(1 中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室 ,
云南 昆明 650204; 2 中国科学院研究生院 , 北京 100049)
摘要 : 从蕨类植物里白 ( Hicriopteris glauca) 的丙酮提取物中分离得到 10 个化合物 , 包括一个新的对映 -
贝壳杉烷型二萜化合物 , 其化学结构通过各种波谱学方法鉴定为 ent-2-β-hydroxyl-16-ene-kauran-19-oic acid
( 1)。
关键词 : 蕨类植物 ; 里白 ; 对映 - 贝壳杉烷二萜 ; ent-2-β-hydroxyl-16-ene-kauran-19-oic acid
中图分类号 : Q 946 文献标识码 : A 文章编号 : 0253 - 2700 (2009) 02 - 183 - 04
A New ent-Kauranoid Diterpenoid from
Hicriopteris glauca (Gleicheniaceae)
ZHANG Peng-Tao
1 , 2
, HE Juan
1
, XU Gang
1
, TU Lin
1
, GUO Na
1
,
ZHAO Yu1 , PENG Li-Yan1 , ZHAO Qin-Shi1 * *
(1 State KeyLaboratory of Phytochemistry and Plant Resources in West China, Kunming Instituteof Botany, Chinese Academy of Sciences,
Kunming 650204 , China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049 , China)
Abstract: A new ent-kauranoidditerpenoid, ent-2-β-hydroxyl-16-ene-kauran-19-oic acid (1) , wasisolatedformthe ace-
tone extract of Hicriopteris glauca together with 9 known compounds . Their structures were elucidated by comprehensive
NMR and MS analysis .
Key words: Fern; Hicriopteris glauca; ent-kauranoid diterpenoid; ent-2-β-hydroxyl-16-ene-kauran-19-oic acid
Hicriopteris glauca (Thunb .) Ching, which be-
longs to family Gleicheniaceae, is widely distributed in
the south of China ( Luo et al. , 1959) .The rhizomeof
this plant has been used to treat fracture and stomach-
ache in Chinese folk medicine (Wu et al. , 2006) . To
thebest of our knowledge, only onemetabolite ( ponas-
terone A) has been reported from this plant up to now
(Takemoto et al. , 1973 ) . As a part of our systematic
phytochemical studies onmetabolites fromthe fern pla-
nts (Li et al. , 2006; 2007 ) , thechemical constituents
of H. glaucawere investigated and a new ent-kauranoid
diterpenoid, ent -2 -β-hydroxyl-16 -ene-kauran-19-oic
acid ( 1 ) , was isolated together with 9 known com-
pounds, 19-hydroxyl-17-nor-16-ene-kauranone ( 2 )
(Vieira et al. , 2002 ) , ent-16β, 17 , 19-trihydroxyl-
kaurane (3) , (Tadayuki et al. , 1983) , ent-16β, 17-
dihydroxyl-kauran-19-oic acid ( 4 ) ( Kazuo et al. ,
1976 ) , ent-16α, 17-dihydroxyl-kauran-19-oic acid
(5) ( Wu et al. , 1996) , (6 S, 13 S ) -cleroda-3 , 14-
diene-6 , 13-diol (6 ) ( Tadashi et al. , 1997 ) , trans-4-
云 南 植 物 研 究 2009 , 31 (2) : 183~186
Acta Botanica Yunnanica DOI : 10 .3724?SP. J . 1143 .2009.09020
?
?? ?Author for correspondence; E-mail : qinshizhao@ mail . kib. ac. cn; Tel : + 86 - 871 - 5223058
Received date: 2009 - 02 - 09 , Accepted date: 2009 - 02 - 25
作者简介 : 张鹏涛 (1981 - ) 男 , 在读硕士研究生 , 主要从事天然产物化学研究。 ?
Foun ?dation items: Theproject of State Key Laboratory of Phytochemistry and Plant Resources in West China ( P-06-04) , Kunming Instituteof Bota-
ny, CAS, and the 973 Program (No . 2009CB522300)
p-hydroxyphenylbut-3-en-2-one ( 7 ) ( Toshiya et al. ,
1991 ) , p-Coumaric acid ( 8 ) ( Ann and Kelvin,
1978) , Aesculetin ( 9 ) ( Cussans and Huckerby,
1975) , and apigenin (10) (Shen et al. , 1993) . Re-
ported herein, was the isolation and structural elucida-
tion of the new diterpenoid from H. glauca ( Thunb .)
Ching (Fig . 1) .
Fig . 1 Structureof compound 1
Results and Discussion
Compound 1 was obtained as colorless powder; its
molecular formula was determined to be C20 H30 O3 by
negative HR-ESI-MS ( [ M-H ] - 317 .2116 , calcd .
317 .2116 ) and 13 C NMR spectrum, which indicated
six degrees of unsaturation . The IR spectrum showed
absorption of hydroxyl group bands (3426 cm- 1 ) , car-
bonyl group ( 1696 cm- 1 ) , and double bond ( 1657
cm
- 1 ) . The 1 H and 13 C NMR spectra ( Table 1 ) of 1
showed 20 carbon resonancesdueto one carboxylic acid
group (δC 181 .2 ) , one terminal double bond (δC
156 .0 , 103 .8 ; δH 4 .75 and 4.79 , s, each 1H ) , 3
quaternary sp3 carbons, 4 methines ( including anoxy-
genated one) , 8 methylenes, and 2 methyls . Consider-
ing the characteristic quaternary carbons atδC 45 .3 ,
45 .8 , and 42 .1 ascribable for C - 4 , C - 8 , and C -
10 , three typical methines atδC 57 .6 , 56 .4 , and 45 .2
for C - 5 , C - 9 , and C - 13 , two methyls atδC 29 .4
and 17 .4 for C - 18 and 20 , together with the charac-
teristic terminal double bond, compound 1 can be as-
cribed to be a typical kauranoid diterpenoid ( Enriquez
et al. , 1996; Herz et al. , 1983; Ohno et al. , 1979) .
The
1
H and
13
C NMR data (Table 1) of 1 is very
similar to thoseof kaur-16- en-19-oic acid, an ent-kau-
ranoid diterpenoid previously isolated from various spe-
cies of Helianthus (Herz et al. , 1983; Ohno et al. ,
1979) . Theonly differenceobserved in the1 H and 13 C
NMR spectra was the presence of one oxymethine (δC
65 .0 ; δH 4 .08 , m) in 1 instead of the methylene car-
bon atδC 19 .2 in kaur-16- en-19-oic acid . In addition,
the chemical shift value of C - 1 and C - 3 was also
downshift fromδC 40 .8 and 37 .8 in kaur-16- en-19-oic
acid toδC 50 .7 and 48.5 in 1 , respectively . There-
fore, compound 1 was deduced to be the 2-hydroxyl
derivative of kaur-16- en-19-oic acid, which can be
confirmed by the 1 H-1 H COSY correlations of H - 2
with H - 1 and H - 3 together with the HMBC correla-
tions of H - 2?C - 1 , H - 1?C - 2 , H - 2?C - 3 , H - 3?C
- 2 , H - 2?C - 4, and H - 2?C - 10 . In addition, the
fragments obtained by the
1
H-
1
H COSY experiment, H
- 1?H - 2?H - 3 , H - 5?H - 6?H - 7 , and H - 9?H - 11?
H - 12?H - 13 , together with the HMBC correlations
from H - 20 to C - 1 , C - 5 , C - 9 , and C - 10 , fromH
- 18 to C - 3 , C - 4 , andC - 5 , fromH - 17 to C - 13 ,
C - 15 , and C - 16 , and fromH - 9 to C - 8 and C - 10
confirmed the structure of compound 1 furthermore .
The relative stereochemistry of 1 was determined
on the basis of ROESY experiment to be the samewith
kaur-16- en-19-oic acid . The obvious NOE correlations
of H - 9?H - 1β, H - 9?H - 15 , H - 5?H - 1β, H - 15?H
- 12β, and H - 5?H - 18 indicated that these protons
were allβ-oriented . In thesamespectrum, the correla-
tions between H - 3αand H - 2 , H - 2 and Me - 20 , H
- 14αand Me- 20 , and between H - 1αand H - 11 also
suggested theα-orientation of the H - 2 , and Me- 20 .
Table 1 13 C and 1 H NMR data (CD3 OD, δ in ppm, J in Hz) for 1
No . 13 ?C 1 H No . 13 OC 1 FH
1 ?α 50 .7 t 2 .19 ( m) 11 >19 4. 6 t 1 L. 65 ( m)
1 ?β 0.69 (t, 11.3) 12 %α 34 4. 1 t 1 L. 64 ( m)
2 ?65 .0 d 4 .08 ( m) 12 &β 1 L. 47 ( m)
3 ?α 48 .5 d 2 .39 ( m) 13 >45 ,. 2 d 2 L. 61 ( m)
3 ?β 0.93 (t, 11.3) 14 %α 40 4. 8 t 1 L. 98 ( m)
4 ?45 .3 s 14 &β 1 L. 12 ( m)
5 ?57 .6 d 1 .04 ( m) 15 >50 4. 1 t 2 L. 02 ( m)
6 ?22 .8 t 1 .83 ( m) 16 >156 C. 0 s
7 ?42 .4 t 1 .50 ( m) 17 >103 F. 8 t 4 L. 79 (s)
8 ?45 .8 s 18 >29 ,. 4 q 4 L. 75 (s)
9 ?56 .4 d 1 .11 ( m) 19 >181 C. 2 s 1 H.12 (3H , s)
10 ?42 .1 s 20 >17 ,. 4 q 0 H.98 (3H , s)
481 云 南 植 物 研 究 31 卷
Fig . 2 Key HMBC ( → ) and COSY ( ━ ) correlations of 1
On the basis of all the above evidence, the structureof
1 was established and named as ent-2-β-hydroxyl-16-
ene-kauran-19-oic acid .
Experimental
General Experimental Procedures Both 1D and 2D
NMR experiments were performed on a Bruker AM-400 or on a
DRX-500 spectrometer . Chemical shifts (δ) was expressed in
ppmwith reference to the solvent signals . MS was recorded on a
VG Auto Spec-3000 or on a Finnigan MAT 90 intrument . IR
spectra were recorded on a Bio-Rad FTS-135 spectrometer for
KBr pellets . UV data wereobtained on aUV 210A spectrometer .
Optical rotations weremeasured witha Horiba SEPA-300 polarim-
eter or a Perkin-Elmer model 241 polarimeter .Columnchromatog-
raphy was performedeither on silicagel (200 - 300 mesh, Qingdao
Marine Chemical, China) , silicagel H (10 - 40μm, QingdaoMa-
rineChemical , China) , or MCI gel CHP20P (75 - 150μm, Mit-
subishi Chemical Corporation, Tokyo , Japan) . Semi-preparative
HPLC was performed on a Hewlett Packard instrument ( column:
ZorbaxSB-C18 , 250× 9.4 mm; UV detector) . Fractions were
monitored by TLC , and spots werevisualized by heating silica gel
plates sprayed with 10% H2 SO4 in EtOH .
Plant Material The fronds of Hicriopteris glauca
(Thunb .) Ching were collected from Caiyanghe, Simao town,
Yunnan province, P . R . China, in May 2005 , andwas identified
by Prof . Xiao Cheng .
Extraction and Isolation The dry aerial parts of Hicriop-
teris glauca (Thunb .) Ching (20 kg) werepowderedand extract-
edwith acetone ( 3× 30 L ) for 24 hours at room temperature .
The acetoneextractwas concentrated invacuo to give acrudeex-
tractwhich was then suspended in H2 O and extracted with EtO-
Ac . The organic layer was concentrated in vacuo . The residue
(650 g) wasthen subjectedto column chromatography ( CC) over
silicagel (200 - 300 mesh) eluted with petroleum ether-acetone
(from1∶0 to0∶1) togivefractionsA-E . FractionB was subject-
ed to silica gel chromatography eluted with Petroleum ether?i-
PrOH (10∶1) to obtain four fractions (B1 -B4 ) . Fraction B1 was
purified by silical gel CC using CHCl3?EtOAc ( 10∶1 ) to yield
compounds 2 (12 mg) and6 (70 mg) . FractionB2 was seperated
on Sephadex LH-20 eluted with CHCl3?MeOH ( 1∶1) , and the
further purified by semi preparative HPLC (MeOH?H2 O, 82∶18 ,
3 ml?min) gave1 (50 mg) and 4 ( 27 mg) . Fraction B3 was sub-
jected to silica gel eluted with CHCl3?i-PrOH (10∶1 ) to yield 3
(17 mg) . Fraction B4 was chromatographed over acolumn of Rp
C- 18 silica gel eluted with MeOH?H2 O ( 80∶20 ) to give 5 (6
mg) . Fraction C was subjected to Sephadex LH-20 eluted with
CHCl3?MeOH (1∶1) to yield compounds 8 (31 mg) and 10 ( 25
mg) , further purified by Rp C - 18 with MeOH?H2 O (70∶30) to
give 7 (14 mg) and 9 (19 mg) .
Known components were fully characterized by comparison
of the1 H and13 C NMR datawith thosereported in the literature .
Compound 1: colorless powder; [α]22D = - 65 .6 ( c =
1 .5 , CHCl3 ) ; IR (KBr)νmax 3426 , 2929 , 2854 , 1696 , 1657 ,
1470 , 1448 cm- 1 ; 1 H and 13 C NMR data, seeTables 1; nega-
tive FABMS: m?z 317 [M-H ] - ) ; HRFAB-MS m?z 317 .2116
(calcd . for C20 H29 O3 317 .2116 ) .
References:
Ann ?EL , Kelvin TJ , 1978 . Production , in electrical discharges, of fluo-
rine cyanide, fluoroacetylene, and relatedsubstances as monitored by
microwave spectroscopy [ J ] . Journal of the Chemical Society,
Chemical Communications, 7 : 335
Cuss ?ans NJ , Huckerby TN , 1975 . Carbon-13 NMR spectroscopy of het-
erocyclic compounds . IV . 20 MHz study of chemical shifts and car-
bon-proton coupling constants in a series of hydroxy, methoxy, and
glucosyl coumarins [ J ] . Tetrahedron, 31 : 2719
Enri ?quez RG, MirandaG, EliasO et al., 1996 . The unambiguous detec-
tion of kaurenic derivatives in aqueous infusions of Montanoa tomento-
sa by GC-MS and 2D-NMR spectroscopy [ J ] . Planta Medica, 62 :
569—571
Herz ?W, Kulanthaivel P , Watanabe K , 1983 . ent-Kauranes and other
constituents of three Helianthus species [ J ] . Phytochemistry, 22 :
2021—2025
Kazu ?o Y , Hiroshi K , Toshiko K et al. , 1976 . Structures of steviaditer-
pene-glucosides: application of carbon-13 NMR [ J ] . Tetrahedron
Letters, 13 : 1005—1008
Luo ?XR , Gao YZ, Chen WQ et al. , 1959 . Florae Reipublicae Poplaris
Sinicae [M ] . Beijing: Science Press, 2 : 160
Li X ?L , Yang LM , Zhao Y et al. , 2007 . Tetranorclerodanes and clero-
dane-type diterpene glycosides from Dicranopteris dichotoma [ J ] .
J ournal of Natural Products, 70 : 265—268
Li X ?L , Cheng X , Yang LM et al. , 2006 . Dichotomains A and B: two
new highly oxygenated phenolic derivatives from Dicranopteris dicho-
toma [ J ] . Organic Letters, 8 : 1937—1940
5812 期 ZHANG Peng-Tao et al. : A New ent-Kauranoid Diterpenoid from Hicriopteris glauca
Ohno BN , Mabry TJ , Zabel V et al. , 1979 . A new rearranged kaurenoid
lactone and diterpene acids from Tetrachyron orizabaensis and Heli-
anthus debilis [ J ] . Phytochemistry, 18 : 1687—1689
Shen BCC, Chang YS, Li-Kang H , 1993 . Nuclear magnetic resonance
studies of 5 , 7-dihydroxyflavonoids [ J ] . Phytochemistry, 34 : 843
Tada shi A , Tadashi O, Yoshikazu H et al. , 1997 . Biologically active
clerodane-type diterpene glycosides from the root-stalks of Dicranop-
teris pedata [ J ] . Phytochemistry, 46 : 839—844
Tada yuki K , Takao T, Takao M et al. , 1983 . Chemical and chemotaxo-
nomic studiesof pterophytes . XLIV .: Chemical studies on substances
from Microlepia marginata [ J ] . Chemical & Pharmaceutical Bulle-
tin, 31 : 1494—1501
Take moto T, OkuyamaT , J inH et al. , 1973 . Steroids . XVIII . Isolation
of phytoecdysones fromJapanese ferns . I [ J ] . Chemical & Pharma-
ceutical Bulletin, 21 : 2336—2338
Tosh ?iya M , Akiko J , Shigeru K et al. , 1991 . Acetylated flavonol glyco-
sides from Zingiber zerumbet [ J ] . Phytochemistry, 30 : 2391—2392
Viei ?ra HS, Takahashi JA , De O et al. , 2002 . Novel derivatives of kau-
renoic acid: preparation and evaluation of their trypanocidal activity
[ J ] . J ournal of the Brazilian Chemical Society, 13 : 151—157
Wu Y ?C , Hung YC , Chang FR et al. , 1996 . Identification of ent-16β,
17-Dihydroxykauran-19-oic acid as an anti-HIV principle and isola-
tion of the new diterpenoids annosquamosins A and B from Annona
squamosa [ J ] . Journal of Natural Products, 59 : 635—637
Wu Z ?Y ( 吴征镒 ) , Zhou TY (周 太炎 ) , Xiao PG (肖 培根 ) ed .,
1991 . Essentials of New China Materia Medica ( 新华本草纲要 )
[ M ] . Shanghai : Shanghai Scientific and Technical Publishers,
Vol . 3 : 160
* * * * * * * * * * * * * * *
(上接第 162 页)
Szek ?eres M, 2003 . Brassinosteroid and systemin: two hormones perceived
by the same receptor [ J ] . Trends in Plant Science, 8 : 102—104
Timo &thy JS, Philip JO, Anne MS et al. , 2006 . Gain-of-function pheno-
types of many CLAVATA3?ESR genes, including four new family
members, correlate with tandem variations in the conserved CLAVA-
TA3?ESR domain [ J ] . J ournal of Plant Physiology, 140 : 1331—
1344
van ?der Krol AR , Lenting PE , Veenstra J et al. , 1988 . An antisense
Chalcone synthase gene in transgenic plants flower pigmentation [ J ] .
Nature, 333: 866—869
Wu J 0S, Erin LK , Gabriele M et al. , 2007 . NaRALF , a peptide signal
essential for the regulation of root hair tip apoplastic pH in Nicotiana
attenuata, is required for root hair development and plant growth in
native soils [ J ] . The Plant J ournal , 52 : 877—890
Yang =H , Matsubayashi Y , Nakamura K et al. , 1999 . Oryza sativa PSK
gene encodes aprecursor of phytosulfokine-alpha, a sulfated peptide
growth factor found in plants [ J ] . Proceedings of the National Acad-
emy of Sciences of the United States of America, 96 (23) : 13560—
13565
Yang ?H , Matsubayashi Y , Nakamura K et al. , 2001 . Diversity of Arabi-
dopsis genes encoding precursors for phytosulfokine, a peptide growth
factor [ J ] . Journal of Plant Physiology, 127 (3 ) : 842—851
YangHP , Yoshikatsu M, Hidetoshi H et al. , 2007 . Molecular cloning
and characterization of OsPSK , ageneencodinga precursor for phyt-
osulfokine-α, required for rice cell proliferation [ J ] . Plant Molecu-
lar Biology, 44 : 635—647
Zhan ?gGY (张国裕 ) , Kang JG (康俊根 ) , Zhang YG ( 张延国 ) et
al. , 2006 . Cloning and sequence analyzing of a gene ( RALF) from
broccoli [ J ] . Acta Horticulturae Sinica ( 园艺 学 报 ) , 33 ( 3 ) :
561—565
681 云 南 植 物 研 究 31 卷