全 文 :药用植物盆架树中的缩醛?
朱伟明1 , 2 , 李顺林1 , 赵 庆1 ,3 , 郝小江1
??
(1 中国科学院昆明植物研究所 植物化学与西部植物资源国家重点实验室 , 云南 昆明 650204;
2 中国海洋大学医药学院 海洋药物教育部重点实验室 , 青岛 266003 ;
3 云南中医学院 , 云南 昆明 650200)
摘要 : 夹竹桃科药用植物盆架树 ( Winchia calophylla) 茎皮的乙醇提取物 , 经石油醚脱脂后用盐酸和氨水
处理 , 再用石油醚、氯仿和正丁醇萃取。从正丁醇部分分离出 6 个化合物 , 其中 3 个为新成分 , 分别命名
为盆架丁基缩醛、异盆架丁基缩醛和盆架乙基缩醛 ; 另 3 个已知化合物依次为丁基-β-D-呋喃葡萄糖甙、丁
基-β-D-吡喃葡萄糖甙和丁基-α-D-吡喃葡萄糖甙。他们可能是人工产物。
关键词 : 盆架树 ; 夹竹桃科 ; 丁基糖甙 ; 缩醛
中图分类号 : Q 946 文献标识码 : A 文章编号 : 0253 - 2700 (2007) 06 - 708 - 05
Butyl Acetals from Medicinal Plant , Winchia
calophylla (Apocynaceae) *
ZHU Wei-Ming
1 , 2
, LI Shun-Lin
1
, ZHAO Qing
1 , 3
, HAO Xiao-Jiang
1 * *
(1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese
Academy of Sciences, Kunming 650204 , China; 2 Key Laboratory of Marine Drugs, Ministry of Education, China;
School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003 , China;
3 Yunnan Collegeof Traditional Chinese Medicine, Kunming 650200 , China)
Abstract: Three new compounds, butyl winchal , butyl isowinchal and ethyl winchal along with three known compounds,
butylβ-D-glucofuranoside, butylβ-D-glucopyranoside and butylα-D-glucopyranoside, were isolated fromthe stem barks of
Winchia calophylla dealt with hydrochloric acid and aqueous ammonia . Their structures were established by spectroscopic
methods, especially 2D NMR data . They are probably artificial products .
Key words: Winchia calophylla; Apocynaceae; Butyl glycoside; Winachal
Winchia calophyllaA . DC . (Apocynaceae) , dis-
tributed in Yunnan and Hainan Provinces of China, In-
dia, Myanmar and Indonesia, is a traditional Dai me-
dicinal plant ( Delectis Florae Reipublicae Popularis
Sinicae Agendae Academiae Sinicae, 1977) .
Results and discussion
Previously, we reported the isolations and identi-
fications of triterpenoids (Zhu et al . 2001 ) , monoter-
pene cyclo-diglycosides ( Zhu et al . 2003; 2004a) ,
iridoidglycosides (Zhu et al . 2004b) , and indole al-
kaloids (Zhu et al . 2005) from this plants . Continu-
ous studies led to the isolation and elucidation of three
new compounds, butyl winchal ( 1 ) , butyl isowinchal
(2) and ethyl winchal (3 ) , together with three known
compounds, butyl β-D-glucofuranoside ( 4 ) (Straathof
et al . 1987) , butylβ-D-glucopyranoside (5) (Usui et
al . 1973) , butylα-D-glucopyranoside ( 6) (Fabre et
云 南 植 物 研 究 2007 , 29 (6) : 708~712
Acta Botanica Yunnanica
?
?? ?Author for correspondence . E-mail : xjhao@ mail .kib. ac. cn
Received date: 2007 - 03 - 26 , Accepted date: 2007 - 08 - 30
作者简介 : 朱伟明 (1965 - ) 男 , 博士 , 中国海洋大学教授 , 主要从事天然药物化学的研究。E-mail : weimingzhu@ouc. edu. cn ?
Foundation item: Financially supported by the National Natural Science Foundation of China for Outstanding Young Scientists to X-J . Hao (39525025) .
Fig . 1 The structures of compounds 1 - 6
al . 1993) . Their structures were determined by spec-
troscopic analysis, especially 2D NMR experiments .
The high resolution EIMS showed both 1 and 2
possess the same molecular formula C15 H24 O5 at m?z
284 .1615 and 284 .1613 ( calcd . 284 .1624) , respec-
tively . EIMS of 1 gave the fragment ion peaks at m?z
266 (M+ -18 ) , 253 (M+ -31 ) and 210 ( M+ -74 ) ,
which indicated the presence of -OH, MeO- and BuO-
in the framework .
1
H NMR spectra showed the mole-
cule bearing avinyl proton (δ7 .38 , d, 1H, J = 1 .0
Hz) , acetal proton (δ 4 .71 , d, 1H , J = 5 .0 Hz) ,
oxymethine (δ4 .02 , br. t, 1H, J = 4 .6 Hz) , oxym-
ethylene (δ 3 .55 , dt, 1H, J = 6 .5 , 9 .6 Hz and
3 .83 , dt, 1H, J = 6 .5 , 9 .6 Hz) , methoxyl (δ 3 .
68 , s, 3H) , secondary methyl (δ1.08 , d, 3H, J =
7 .0 Hz) and preliminary methyl (δ0 .92 , t, 3H, J =
7 .4 Hz) . The 13 C NMR ( DEPT) spectra showed 15
signals including a -COO- , C = CH, OCHO, OCH,
OCH2 , OCH3 , three CH, three CH2 and two CH3 ,
which werevery similar to thoseof loganin (Zhu et al .
2004b) , except for the added signals of n-butoxyl and
the absence of signals ofβ-D-glucopyranosyl residue,
indicating that 1 was a iridoid . By comparing with
those of loganin, the shift effects △δ+ 4 .7 and -
0 . 56 were observed for C - 1 and H - 1 , respectively .
HMBC spectra showed the 1 H-13 C long-range correla-
tions between H - 1 (δ 4 .71 , d, 1H, J = 5 .0 Hz)
with C - 1′(δ70 .2) , and H - 1′(δ3 .55 , dt, 1H , J
= 6 .5 , 9 .6 Hz and 3 .83 , dt, 1H, J = 6 .5 , 9 .6 Hz)
with C - 1 (δ102 .5) ( Fig . 2 ) .TheKeyNOE correla-
tions between H - 5 with H - 9 , H - 7 with H - 8 , H - 1
with H - 8 , and H - 9 with H - 10 wereobserved in the
NOESY experiment (Fig . 2 ) . Thus, the structure of
compound 1 was elucidated to be methyl 1β- n-butoxy-
7β-hydroxy-8β-methyl-2-oxa-bicyclo [ 4 . 3 . 0 ]-5β, 9β-
nona-3-en-4-carboxylate .
The EIMS,
1
H and
13
C NMR spectraof compound
2 werequitesimilar to thoseof 1 , except for the down-
field shift of H - 1 ( + 0 .33 ppm) and C - 8 ( + 2 .6
ppm) , the highfield shift of C - 10 ( - 1 .4 ppm) , and
the diminution of J1 , 9 from 5 .0 to 3 .3 Hz, indicating
that 2 was the epimer of 1 at C - 1 ( Fig . 2 ) . When the
stererochemistry of 1-butoxyl substitution changed from
β- toα-form, the butoxyl group would shield C - 8 and
deshield C - 10 , which resulted C - 8 downfield shifted
and C - 10 highfield shifted . Thus, the structure of
compound 2 was determined to bemethyl 1α- n-butoxy-
7β- hydroxy-8β-methyl-2-oxa-bicyclo [ 4 . 3 . 0 ]-5β,
9β-nona-3-en-4-carboxylate .
The high resolution EIMS of compound 3 showed
themolecular ion peak at m?z 256.1298 corresponding
to themolecular formulaC13 H20 O5 (calcd . 256 .1311) .
EIMS gave the fragments at m?z 238 (M+ -18) , 225
(M+ -31) and 210 (M+ -46) corresponding to the cleav-
Fig . 2 The selected HMBC correlations of 1 - 4 and key NOESY correlations of 1
9076 期 ZHU Wei-Ming et al .: Butyl Acetals fromMedicinal Plant, Winchia calophylla (Apocynaceae)
Fig . 3 The probable formation pathway of 1 - 6
ageof HO- , MeO- and EtO- . The 1 H and 13 C NMR
spectra were very similar to those of 1 except for the
lack of signals of four protons and two methylene car-
bons in the high field, indicating that butyl in 1 was
substituted by ethyl in 3 , which was further confirmed
by HMBC experiment (Fig . 2) . Thus, the structureof
compound 3 was determined to be methyl 1β- n-ethoxy-
7β-hydroxy-8β-methyl-2-oxabicyclo [ 4 . 3 . 0 ]-5β, 9β-
nona-3-en-4-carboxylate .
These compounds probably resulted from loganin
and glucose by corresponding alcoholysis in the acidic
condition of extractions (Fig . 3) .
Experimental
General Experimental Procedures Optical rotationswere
determined ona JASCO-20 polarimeter . IR spectrawere obtained
on KBr pellets using a Bio-Rad FTS-135 spectrometer . The 1 H
and 13 C NMR spectrawererecordedonBRUKER AM-400 and?or
DRX-500 with TMS as internal standard . Thechemical shifts are
reported inδunits ( ppm) . EIMS and HRFABMS measurements
were carriedout on aVGAutoSpec-3000 spectrometer . TLC and
column chromatography were performed on plates precoated with
silicagel F254 and over silica gel H (Qingdao Marine Chemical
Ltd . , China) , respectively . Solventswere distilled prior to use .
Plant Material The stem barks of W. calophylla were
collected in Xishuangbanna, Yunnan Province of China, in the
July 2000 and were identified by Prof . Liu Hong Mao and Mr .
Cui Jing Yun . The voucher specimen was deposited in the
XishuangbannaTropical Botanical Garden, Chinese Academy of
Sciences .
Extraction and Isolation The dried and ground stem
barks (10 .5 kg) of W. calophylla were extracted four times with
95% EtOH under reflux . Removal of the solvents in vacuum
produced a concentrated syrupy ( 600 g) which was partitioned
between petroleum ether and water . The petrol . - insoluble frac-
tion was dissolved in 2 % HCl (4×500 ml ) . The acidic solution
was adjusted to pH 9 - 10 with concentrated ammonia and theob-
tained basic solution was then extracted with petroleum ether (3
×600 ml ) , chloroform (3×600 ml ) , n-butanol (3×500 ml )
in turns .
The butanol fraction (180 g) was subjected to flash column
chromatography over silica gel H eluting with ethyl acetate and
gradient EtOAc-MeOH to afford seven fractions, BO-1~BO-7 .
The fractionBO-2 (~16 g) wasseparated into two parts, BO-21
and BO-22 , by gel chromatography ( LH-20 ) eluting with
MeOH . Theresidues BO-21 (~2 g) rechromatographed over sil-
ica gel H eluting with 30∶2∶1 petroleum ether-acetone-diethyl-
amineto afford compound 3 (16 mg) . The fraction BO-3 (9 g)
was again separated into three parts, BO-31 , BO-32 and BO-33
by flash column chromatography over silica gel H (30∶1 EtOAc-
MeOH ) . The residues BO-31 (~ 2 g) rechromatographed over
reverse-phase silicagel (RP-18) eluting with3∶2 MeOH-H2 O to
give compounds 5 (410 mg) and 6 (12 mg) . ThefractionBO-32
(~2 g) gave compound 4 (362 mg) through repeated flash col-
umn chromatography over silica gel H eluting with CHCl3 -MeOH
(30∶1 ) . The residues BO-4 (~5 g) was subjected to repeated
chromatography over silicagel H and reverse-silica gel ( RP-18)
017 云 南 植 物 研 究 29 卷
to afford compound 1 (37 mg) and2 (12 mg) .
Butyl winchal ( 1 ) was obtained as oil . [α]26D - 66 .8 ( c
1 .40 , MeOH) . EIMS m?z ( % ) : 284 (M+ , 82) , 266 ( 77 ) ,
253 (37) , 234 ( 30) , 222 ( 25) , 210 ( 88 ) , 192 (48 ) , 178
(90 ) , 160 ( 39 ) , 139 ( 70) , 128 (96 ) , 109 (32 ) , 97 (51 ) ,
83 (35 ) , 71 (42) , 57 (100) .1 H NMR (500MHz, d4 -MeOH)
δ: 4. 71 ( d, J = 5 .0 Hz, 1H, H - 1 ) , 7 . 38 ( d, J = 1.0 Hz,
1H, H - 3 ) , 3 . 06 ( ddd, J = 8 .2 Hz, 1H , H - 5) , 1 . 50 - 1 .53
(m, 1H, H - 6a) , 1 .75 - 1 .78 (m, 1H , H - 6b) , 4 . 02 ( br. t,
J = 4 .6 Hz, 1H , H - 7) , 1 . 90 (t, J = 5 .0 Hz, 1H , H - 8 ) ,
2 . 23 ( ddd, J = 4 .5 , 9.0 , 9 .0 Hz, 1H , H - 9) , 1. 08 ( d, J
= 7 .0 Hz, 3H , H - 10) , 3 . 68 (s, 3H , -OCH3 ) , 3 .55 (dt, J
= 6 .5 , 9 .6 Hz, 1H, H - 1′a) , 3 .83 ( dt, J = 6 .5 , 9 .6 Hz,
1H, H - 1′b) , 1 .55 ( q, J = 7 .4 Hz, 2H, H - 2′) , 1 . 39 ( q, J
= 7.4 Hz, 2H, H - 3′) , 0 . 92 (t, J = 7 .4 Hz, 3H , H - 4′) . 13
C NMR (125 MHz, d4 -MeOH ) δ: 102 .1 ( d, C - 1 ) , 152 .8
(d, C - 3) , 113 .4 (s, C - 4) , 33 .5 (d, C - 5 ) , 42 .2 ( t, C -
6) , 75 .4 (d, C - 7) , 40.0 ( d, C - 8) , 47 .5 ( d, C - 9) , 15 .0
(q, C - 10) , 169 .6 (s, C - 11) , 70 .2 (t, C - 1′) , 32 .8 (t, C
- 2′) , 20 .4 ( t, C - 3′) , 14 .0 ( q, C - 4′) , 51 .6 ( q, MeO-) .
Butyl isowinchal (2) was obtained as oil . [α]26D + 85 .7 ( c
0 .75 , MeOH) . EIMS m?z ( % ) : 284 (M+ , 42) , 266 ( 34 ) ,
253 (17) , 234 (11 ) , 222 ( 9 ) , 210 ( 41 ) , 192 ( 16 ) , 178
(37 ) , 160 ( 10 ) , 139 ( 35) , 127 (91 ) , 109 (22 ) , 97 (29 ) ,
81 (27 ) , 71 (100) , 57 (76) .1 H NMR (500MHz, d4 -MeOH)
δ: 5. 04 ( d, J = 3 .3 Hz, 1H , H - 1) , 7 . 39 ( t, J = 1 .3 , 2 .0
Hz, 1H, H - 3) , 3. 04 ( q, J = 7.8 Hz, 1H, H - 5) , 1 . 66 -
1 .70 (m, 1H, H - 6a) , 2 . 04 - 2 .11 (m, 2H, H - 6b and H -
8) , 4 . 06 - 4.10 (m, 1H, H - 7) , 2. 21 ( q, J = 7.5 Hz, 1H,
H - 9) , 1 . 09 ( d, J = 7 .2 Hz, 3H , H - 10) , 3 . 68 (s, 3H, -
OCH3 ) , 3. 48 ( dt, J = 6 .5 , 9 .6 Hz, 1H, H - 1′a) , 3 . 79 ( dt,
J = 6 .5 , 9 .6 Hz, 1H , H - 1′b) , 1 . 54 ( q, J = 7 .5 Hz, 2H , H
- 2′) , 1 . 38 ( q, J = 7 .5 Hz, 2H , H - 3′) , 0 . 92 ( t, J = 7 .5
Hz, 3H, H - 4′) . 13 C NMR ( 125 MHz, d4 -MeOH ) δ: 102 .5
(d, C - 1) , 152 .5 (d, C - 3) , 113 .4 (s, C - 4 ) , 32.6 ( d, C
- 5) , 42 .9 (t, C - 6) , 75 .0 ( d, C - 7) , 42 .6 (d, C - 8) , 46 .5
(d, C - 9) , 13 .6 ( q, C - 10) , 169 .6 (s, C - 11) , 70 .2 (t, C
- 1′) , 32 .8 (t, C - 2′) , 20 .3 (t, C - 3′) , 14 .6 ( q, C - 4′) ,
51 .6 ( q, MeO) .
Ethyl winchal ( 3 ) was obtained as oil . [α]26D - 33 .4 ( c
0 .95 , MeOH) . EIMS m?z ( % ) : 256 (M+ , 20) , 238 ( 19 ) ,
225 (15) , 210 ( 21) , 192 ( 14) , 178 ( 20 ) , 160 (14 ) , 139
(20 ) , 126 (21) , 111 (19) , 99 (100) , 81 (22) , 71 (62) . 1 H
NMR (500 MHz, d4 -MeOH) δ: 4 . 74 ( d, J = 4 .8 Hz, 1H, H
- 1) , 7 . 67 ( d, J = 1 .0 Hz, 1H, H - 3 ) , 3 . 61 ( dd, J = 7 .1 ,
9 .8 Hz, 1H , H - 5) , 1 . 77 - 1 .82 (m, J = 4.8 , 13 .6 Hz, 1H,
H - 6a) , 2 . 22 ( ddd, J = 1 .3 , 8 .0 , 13 .6 Hz, 1H, H - 6b) ,
4 . 02 ( br. t, J = 4 .6 Hz, 1H , H - 7 ) , 1. 52 - 1 .56 (m, J =
4 .9 , 7 .0 , 8 .0 Hz, 1H , H - 8) , 1 . 91 (ddd, J = 4 .8 , 9 .0 ,
9 .0 Hz, 1H , H - 9 ) , 1 . 00 ( d, J = 6 .9 Hz, 3H, H - 10 ) ,
3 . 68 (s, 3H , -OCH3 ) , 3 . 04 ( q, J = 7.1 Hz, 1H , H - 1′a) ,
3 . 86 ( q, J = 7 .1 Hz, 1H, H - 1′b) , 1. 12 ( t, J = 7 .1 Hz,
3H, H - 2′) . 13 C NMR (125 MHz, d4 -MeOH)δ: 102.2 ( d, C
- 1) , 152.5 (d, C - 3) , 113 .5 ( s, C - 4) , 32 .5 ( d, C - 5 ) ,
42 .9 (t, C - 6) , 75 .2 ( d, C - 7) , 42 .5 ( d, C - 8) , 46 .9 (d,
C- 9) , 13 .6 ( q, C - 10 ) , 169 .6 (s, C - 11 ) , 65 .9 ( t, C -
1′) , 15 .4 ( q, C - 2′) , 51 .6 ( q, MeO-) .
Butylβ-D-glucofuranoside (4 ) was obtained as oil . [α]14D
- 78 .0 ( c 2 .60 , MeOH ) . EIMS m?z ( % ) : 237 (M+ + 1 ,
8) , 236 (M+ , 6) , 205 (5) , 187 (4) , 175 (89) , 163 (90) ,
158 (50) , 145 (38 ) , 129 ( 51 ) , 116 ( 77 ) , 101 (92 ) , 91
(85) , 86 (89 ) , 69 ( 95) , 55 ( 100 ) . 1 H NMR ( 500 MHz,
C5 D5 N) δ: 3 .47 (dd, J = 6 .7 , 15 .5 Hz, 1H, H - 1a) , 3 . 89
(dd, J = 7 .0 , 15 .5 Hz, 1H , H - 1b) , 1 . 48 - 1 .54 ( m, J =
6 .7 , 7 .0 , 7.3 Hz, 2H, H - 2) , 1 . 26 - 1 .33 (m, J = 7 .3 Hz,
2H, H - 3) , 0 .77 ( t, J = 7 .3 Hz, 3H , H - 4 ) , 5 . 42 - 5 .45
(m, 1H , H - 1′) , 4 . 78 - 4.82 ( m, 2H, H - 2′and H - 5′) ,
4 . 89 - 4.93 (m, 2H, H - 3′and H - 4′) , 4 . 32 ( dd, J = 6 .8 ,
11 .0 Hz, 1H, H - 6′a) , 4 . 47 ( dd, J = 3 .5 , 11 .0 Hz, 1H, H
- 6′b) . 13 C NMR ( 125 MHz, C5 D5 N) δ: 68 .2 ( t, C - 1 ) ,
32 .7 (t, C - 2) , 19 .7 (t, C - 3) , 14 .0 (q, C - 4) , 110 .1 (d,
C- 1′) , 82 .2 (d, C - 2′) , 78 .0 ( d, C - 3′) , 82 .7 ( d, C -
4′) , 72 .2 ( d, C - 5′) , 65 .6 (t, C - 6′) .
Butylβ-D-glucopyranoside (5 ) was obtained as oil . [α]14D
- 13 .9 ( c 0 .485 , MeOH) . EIMS m?z ( % ) : 237 (M+ + 1 ,
22) , 205 (22) , 187 ( 19 ) , 163 ( 66) , 144 (68) , 131 ( 22 ) ,
116 ( 100) , 103 (29) , 98 (62) , 85 (65) , 69 (48) , 56 (45) .
1 H NMR ( 400 MHz, C5 D5 N) δ: 4. 05 ( ddd, J = 2 .6 , 6 .8 ,
15 .2 Hz, 1H, H - 1a) , 3 . 61 ( ddd, J = 2 .5 , 7.8 , 15 .2 Hz,
1H, H - 1b) , 1 . 53 - 1 .59 (m, J = 6 .8 , 7 .5 , 7 .8 Hz, 2H, H
- 2) , 1 . 28 - 1.33 (m, J = 7 .4 , 7 .5 Hz, 2H , H - 3) , 0 .76 ( t,
J = 7 .4 Hz, 3H , H - 4) , 4. 76 (d, J = 7 .8 Hz, 1H, H - 1′) ,
4 . 15 (t, J = 7 .8 , 8 .9 Hz, 1H, H - 2′) , 4 . 21 ( t, J = 8 .9 Hz,
1H, H - 3′) , 3 .97 (t, J = 8 .9 Hz, 1H, H - 4′) , 3 . 89 - 3 .91
(m, J = 2.5 , 5 .8 Hz, 1H, H - 5′) , 4. 50 ( dd, J = 2 .0 , 11 .8
Hz, 1H, H - 6′a) , 4 . 32 ( dd, J = 5 .8 , 11.8 , 1H, H - 6′b) .
13 C NMR (100 MHz, C5 D5 N)δ: 69 .8 ( t, C - 1 ) , 32.5 (t, C
- 2) , 19 .8 (t, C - 3 ) , 14 .3 ( q, C - 4) , 104 .8 ( d, C - 1′) ,
75 .3 ( d, C - 2′) , 78 .5 ( d, C - 3′) , 71 .9 ( d, C - 4′) , 78 .7
(d, C - 5′) , 63 .0 ( t, C - 6′) .
Butylα-D-glucopyranoside ( 6) , was obtained as oil . [α]14D
+ 63 .4 ( c 0 .359 , MeOH) . EIMS m?z ( % ) : 237 (M+ + 1 ,
20) , 205 (25) , 187 ( 16 ) , 163 ( 69) , 144 (63) , 131 ( 28 ) ,
116 ( 100) , 103 (31) , 98 (60) , 85 (70) , 69 (45) , 56 (41) .
1176 期 ZHU Wei-Ming et al .: Butyl Acetals fromMedicinal Plant, Winchia calophylla (Apocynaceae)
1 H NMR ( 400 MHz, C5 D5 N ) δ: 4. 03 - 4 .07 ( m, J = 6 .5 ,
15 .5 Hz, 1H , H - 1a) , 3 . 38 ( dd, J = 6 .5 , 15 .5 Hz, 1H , H
- 1b) , 1 . 75 - 1 .77 (m, J = 6 .5 , 7 .2 Hz, 2H , H - 2) , 1 .52 -
1 .55 (m, J = 6.5 , 7 .2 Hz, 2H, H - 3 ) , 1 . 02 ( t, J = 7 .2
Hz, 3H , H - 4) , 5 . 19 ( d, J = 3 .4 Hz, 1H, H - 1′) , 4 . 83
(br.s, 1H, H - 2′) , 5 . 13 (t, J = 4 .8 , 9 .6 Hz, 1H, H - 3′) ,
3 . 65 - 3 .68 (m, J = 9 .1 Hz, 1H , H - 4′) , 3 . 61 - 3 .64 (m, J
= 6 .1 , 9 .3 Hz, 1H, H - 5′) , 4. 47 ( br . d, J = 18 .0 Hz,
1H, H - 6′a) , 4 . 31 ( br. d, J = 18 .0 Hz, 1H , H - 6′b) . 13 C
NMR (100MHz, C5 D5 N)δ: 68 .2 (t, C - 1) , 32 .7 ( t, C - 2) ,
19 .8 (t, C - 3 ) , 14 .3 ( q, C - 4) , 101.3 ( d, C - 1′) , 75 .1
(d, C - 2′) , 76 .8 ( d, C - 3′) , 70 .2 ( d, C - 4′) , 76 .8 (d, C
- 5′) , 62 .8 ( t, C - 6′) .
Acknowledgements: The authors are grateful to the National
Natural Science Foundationof China for OutstandingYoung Scien-
tists for its financial support . The authors are also grateful to the
Analyzinggroup in the State KeyLaboratory of Phytochemistry and
Plant Resources in West China for NMR and MS measurements .
References:
Dele ?ctis Florae Reipublicae Popularis SinicaeAgendae Academiae Sinicae
Edita, 1977 . Flora Reipublicae Popularis Sinicae [ M ] . Beijing:
Sciences Press, 63 : 95—97
Fabr ?e J , Betbeder D, Paul F et al . 1993 . Regiospecific enzymic acyla-
tion of butylα-D-Glucopyranoside [ J ] . J Carbohydr Res, 243 ( 2) :
407—411
Stra ?athof AJJ , Romein J , Rantwijk FV et al . 1987 . Preparation of Long-
Chain Alkyl D-Glucosides by Alcoholysisof 1 , 2∶5 , 6-Di-O-Isopropy-
lidene-α-D-Glucofuranose [ J ] . Starch-St?rke, 39 (10 ) : 362—368
Usui ?T , YamaokaN , Matsuda K et al . 1973 . 13 C nuclear magnetic reso-
nance spectraof glucobioses, glucotrioses, and glucans [ J ] . J Chem
Soc, Perkin Trans 1 , 2425—2438
Zhu ?WM (朱伟 明 ) , He HP ( 何红平 ) , Fan LM ( 范黎 明 ) et al .
2005 . Components of stem barks of Winchia calophylla and their
bronchodilator activities [ J ] . J Integ Plant Biol , 47 ( 7) : 892—896
Zhu ?WM ( 朱伟明 ) , Lu CH (鲁春华 ) , WangY ( 汪冶 ) et al . 2004a .
The monoterpenoids and their glycosides from Winchia calophylla
[ J ] . J Asian Nat Prod Res, 6 (3 ) : 193—198
Zhu ?WM ( 朱伟明 ) , He HP (何红平 ) , Wang Y H ( 王跃虎 ) et al .
2004b . Loganin derivatives from Winchia calophylla [ J ] . Acta Bot
Yunnan ( 云南植物研究 ) , 26 ( 6) : 683—686
Zhu ?WM ( 朱伟明 ) , Shen YM ( 沈 月毛 ) , Hong X ( 洪鑫 ) et al .
2001 . Triterpenoids from the dai medicinal plant Winchia calophylla
[ J ] . Acta Bot Sin (植物学报 ) , 44 ( 3) : 354—358
Zhu ?WM (朱伟明 ) , Wang BG (王斌贵 ) , Kang WY ( 康文艺 ) et al .
2003 . Two new monoterpene diglycosides from Winchia calophylla
A . DC [ J ] . Chin ChemLett, 14 (10 ) : 1029—1032
217 云 南 植 物 研 究 29 卷