免费文献传递   相关文献

Carbon, nitrogen and phosphorus stoichiometry of typical plants in karst area of Maocun, Guilin

不同基因型甘蔗种质资源的表型遗传多样性(英文)



全 文 :广 西 植 物 Guihaia Aug.2015,35(4):556-563           http://journal.gxzw.gxib.cn 
DOI:10.11931/guihaia.gxzw201403017
杨翠凤,张春雅,杨丽涛,等.不同基因型甘蔗种质资源的表型遗传多样性[J].广西植物,2015,35(4):556-563
YangCF,ZhangCY,YangLT,etal.Phenotypicandgeneticdiversityofsugarcane(SaccharumL.)protospeciesandlandraces[J].Guihaia,2015,35(4):
556-563
Phenotypicandgeneticdiversityofsugarcane
(SaccharumL.)protospeciesandlandraces
YANGCuiGFeng1,ZHANGChunGYa1,YANGLiGTao1,2,LIYangGRui2∗
(1.AgriculturalCollege/StateKeyLaboratoryofConservationandUtilizationofSubtropicalAgroGbioresources,GuangxiUniversity,
Nanning530005,China;2.SugarcaneResearchCenter,ChineseAcademyofAgriculturalSciences/KeyLaboratoryofSugarcane
BiotechnologyandGeneticImprovement(Guangxi),MinistryofAgriculture/GuangxiAcademyofAgricultural
Sciences/GuangxiKeyLaboratoryofSugarcaneGeneticImprovement,Nanning530007,China)
Abstract:Inordertoexploregeneticdiversityandrelationshipamongdiferentsugarcanespecies,selectexcelentsugG
arcanegermplasmandparentalcombinationforhybridization,thepresentstudywasconductedforgeneticdiversityaG
nalysisusing18genotypesofprotospeciesandlandracesofsugarcane(Saccharumspp.)with14quantitativetraits.
Theresultsshowedthatthephenotypicandgeneticdiversityofsugarcanewashighlysignificantinsucrose%cane,
stalkweight,leafwidth,stalkdiameterandfiber%canebycoeficientofvariationandcorrelationanalysisof14
quantitativetraits.Fourprincipalcomponentsofquantitativetraitsnamedqualityfactor,growthfactor,maturityfacG
torandphotosyntheticfactor,respectively,wereextractedfromprincipalcomponentanalysis,andthecumulativeconG
tributionrateoffourprincipalcomponentswas83.48%.Tendesirablegenotypesofsugarcanehadhighervaluesof
quantitativetraitsthantheaveragesinfactoranalysisinturnasfolows:Sampana→Tiangeda→HeqingcaoGanzhe→
GuilinZhuzhe→Tanzania→Mango→Guzhizhe→Dadaozailai→Tuojianghong→Chunnee.The18accessionscouldbe
dividedintofiveclustersbasedonthegeneticdistance,andpotentialhybridmaybedevelopedbycrossingSampana
withTiangedaand/orSampanawithHeqingcaoGanzhe.ItsuggestedthatweshouldnotonlyconsiderthecompleG
mentaryofmaintraits,butalsogeneticdistancewhenweselectparentsforcrossinginsugarcanebreeding.ThepresG
entstudyprovedthatfactoranalysiswasgoodtohelptheparentalselectionanddeterminecrossingcombinationsin
sugarcanebreedingprogram.
Keywords:sugarcane;quantitativetraits;geneticdiversity;factoranalysis
CLCnumber:Q944,Q945.4  Documentcode:A  ArticleID:1000G3142(2015)04G0556G08
不同基因型甘蔗种质资源的表型遗传多样性
杨翠凤1,张春雅1,杨丽涛1,2,李杨瑞2∗
(1.广西大学农学院/亚热带农业生物资源保护与利用国家重点实验室,南宁530005;2.中国农业科学院甘蔗研究中心/
农业部广西甘蔗生物技术与遗传改良重点实验室/广西农业科学院/广西甘蔗遗传改良重点实验室,南宁530007)
摘 要:为探明甘蔗原种和地方种的遗传多样性和亲缘关系,以期筛选出优良甘蔗种质和优良杂交亲本.该研
究对18份甘蔗原种和地方种的14个数量性状进行了表型遗传多样性分析.结果表明:通过14个数量性状的
收稿日期:2014G08G20  修回日期:2014G11G10
基金项目:国家“863”计划课题(2013AA102604);国家国际合作项目(2009DFA30820,0S2013ZR0130);广西自然科学基金(2011GXNSFF018002);广
西科学研究与技术开发计划项目(桂科产1123008G1);广西农科院团队项目(桂农科2011YT01).
作者简介:杨翠凤,女,博士研究生,广西桂林人,研究方向为甘蔗生理生化与分子生物学,(EGmail)yangcuifeng1988@163.com.
∗通讯作者:李杨瑞,教授,主要从事甘蔗研究,(EGmail)liyr@gxaas.net.
变异系数(coeficientofvariance,CV)和性状之间的相关分析,18份甘蔗原种和地方种的数量性状遗传变异主要
来自甘蔗蔗糖分、单茎重、叶宽、茎径和纤维分;对14个数量性状进行主成分分析提取获得了4个主成分因子,
分别命名为“品质因子”、“生长因子”、“成熟度因子”和“光合因子”,主成分因子累积贡献率达83.482%;进一步
通过对主成分因子开展综合评价分析,获得数量性状综合表型高于平均水平的10份材料,依次为Sampana→甜
圪塔→合庆草甘蔗→桂林竹蔗→坦桑尼亚→芒戈→古芝蔗→大岛再来→托江红→春尼;聚类分析基于不同的遗
传距离可将18份种质聚为5个类别,潜在的优良杂交组合是Sampana和甜圪塔或Sampana和合庆草甘蔗,表明
在甘蔗遗传育种亲本选择上既要考虑各性状主要因子的互补,又要保持一定的遗传距离.该研究认为,在甘蔗
育种工作中,利用因子分析法进行表型遗传多样性分析,将更加有助于亲本和杂交组合的选择.
关键词:甘蔗;数量性状;遗传多样性;因子分析
  Sugarcaneisanimportantcashcropofthetropics
andsubtropics,andisgrowninmorethan90countries
between40°Nand32°5′S,encompassinghalfofthe
globe(Waclawovskyetal.,2010;Silvaetal.,2012).
Itprovides60%-70%oftheworld’ssugar(Prabuet
al.,2011;Silvaetal.,2012)andproducesnumerous
valuablebyGproductslikeethanolusedasafuel,alcohol
usedinpharmaceuticalindustry,bagasseusedinpaper
industryandaquaculture,andpressmudusedasarich
sourceoforganicnutrientsforcropproduction (Li
2010;Yangetal.,2012;AlonsoGPippoetal.,2013).It
hasbeendemonstratedthatmodernsugarcanevarieties
arehighlycomplexpolyploidsderivedfromafewcrosG
sescarriedoutmorethanacenturyagobetweenthe
highsugarcontentspeciesSaccharumofficinarum (x
=10,2n=8x=80)andthewildspeciesS.spontaneG
um (x=8,2n=5x-16x=40-128)andbackcrossed
withS.officinarum (Bhatetal.,1985;D’Hontet
al.,1996,2002;D’Hont2005).However,previous
studieshavealsoshowedthatsugarcanebelongstothe
genusSaccharumL.composedofhybridsderivedfrom
S.officinarum (Nobleclones),S.sinense (Chinese
clones),S.barberi (NorthIndianclones)andS.
spontaneum (Haetal.,1999;Irvine1999;Brownet
al.,2002;Selvietal.,2003;Cuadradoetal.,2004).At
presentnotmorethan15varietiesofS.officinarum
specieshavebeenusedasparents,andonly2genotypes
ofS.spontaneum andS.barberihavebeenutilized
(Li,2010).Consequently,mostofthesugarcanevarieG
tiesaroundtheworldhavethesameancestors.The
factthatonlyafewinnovativeparentshavebeenused
insugarcanebreedingleadstohighgeneticsimilarityin
commercialsugarcanecultivarsandthegeneticbasis
tendedtonarrow(Selvietal.,2003;Cordeiroetal.,
2003;Hemaprabhaetal.,2006;Lavanyaetal.,2010).
ParentselectionisthefirststepinplantbreedingproG
gramthroughhybridization,soitisurgenttointroduce
protospeciesorlandracestobroadenthegeneticbase
andthenimprovethepotentialtraitsofmodernsugarG
canevarieties(Salemetal.,2008).
Morphologicaltraitsarevaluabletoolstoidentify
genotypesastheyreflectexternalresemblancemore
thangeneticrelatedness(Demeyetal.,2003;Pereraet
al.,2012;Ahmedetal.,2012).Morphologicaltraits
arephenotypiccharacteristicsofgeneticvariations,and
thereareaseriesofcomplexaspectslikegeneexpresG
sionandregulation,andontogenyintheprocessfrom
genotypetophenotype(Lietal.,2010;Liuetal.,
2010).TheregulationofgeneticvariationcanbereG
vealedbyreasonablesamplingandadoptingefective
mathematicalstatisticalmethods(Liuetal.,2010;
Hussainetal.,2010;Pereraetal.,2012).ManyreG
searchershavestudiedthemorphologicalgeneticdiverG
sityincropssuchassorghum,wheat,rice(DurrishahG
waretal.,2012;Khodadadietal.,2011;Rampantet
al.,2011).Principalcomponentanalysis(PCA)and
clusteranalysisasthemainmeanshavebeenwidely
usedindiversityanalysisandsatisfactorytraitsselecG
tion(Ahmedetal.,2010;Iiyasetal.,2010;Smiulahet
al.,2013).
Mostofthereportsonmorphologicalandgenetic
diversityofsugarcanehaveaimedatthecommercial
varietiesinoneparticularregionorcountry(Wagihet
al.,2004;Sajadetal.,2009;Pereraetal.,2012),while
referencesonstudyingprotospeciesorlandracesare
verylimited.Inthepresentstudy,18sugarcaneprotoG
speciesorlandraceswereemployedtoinvestigatethe
geneticdiversitybasedon14quantitativetraitsbyuG
7554期           杨翠凤等:不同基因型甘蔗种质资源的表型遗传多样性
singPCA,factoranalysisandclusteranalysismethods
toprovideareferenceforappropriateparentselection
insugarcanebreeding.
1 MaterialsandMethods
1.1Plantmaterials
Eighteensugarcaneaccessionsofprotospeciesand
landracesconservedinSugarcaneResearchCenter,ChiG
neseAcademyofAgriculturalSciences/SugarcaneReG
searchInstitute,GuangxiAcademyofAgriculturalSciG
ences,including7sugarcaneprotospeciesnamelyManG
go(S.barberi),Chunnee(S.barberi),Loethers(S.
officinarum),Robustum (S.robustum),Heqingcao
Ganzhe (S.sinense),Luzhe (S.sinense),Guilin
Zhuzhe(S.sinense)and11landracesnamelySampaG
na,Jiagudao,Tanzania,Tuojianghong,HekouQingpi,
Luoguzhe,Guzhizhe,Senbaina,Dadaozailai,Tiangeda,
HongpiS17,wereselectedforexperiment.
TheexperimentwascarriedoutattheSugarcane
ResearchInstitute,GuangxiUniversity,Nanning,China
(22°13′-23°32′Nand107°45′-108°51′E)during
January2011andDecember2012.Theexperimentwas
laidoutinarandomizedblockdesignwith3replicaG
tions.Eachvarietywasaccommodatedinaplothaving
3rowsof5minlengthwithspacing1.2mbetween
rows.ThefieldmanagementwasdoneasforcommerG
cialsugarcaneproduction.Observationswererecorded
for14agronomictraitsviz.leaflength,leafwidth,leaf
length/width,plant height,stalk diameter,stalk
weight,fieldbrix,juicebrix(aftermiling),gravitypuG
rity,juiceyield,reducingsugar%juice,sucrose %
cane,sucrose%juiceandfiber%cane.ThestandardiG
zationofdatawasaccordingtoCaietal.(2006).
1.2Statisticalanalysis
Coeficientofvariationwascalculatedaccordingto
folowingformula:CV=
SD
X ×100
WhereCV=Coeficientofvariation;SD=StandG
arddeviation;X=Mean.
TheoriginaldatawereorganizedbyusingExcel
program,andthenanalyzedbyusingSPSS(18.0)for
ANOVA (AnalysisofVariance),correlationanalysis,
principalcomponentanalysis(PCA),factoranalysis
andclusteranalysis(Steeletal.,1980;Xue,2006).
2 ResultsandAnalysis
2.1Analysisoncoefficientofvariation
CoeficientofvariationforquantitativetraitisaG
doptedtoreflectthediscretedegreeandphenotypicdiG
versity.Thecoeficientsofvariationforthe14quantiG
tativetraitsinthepresentstudywereshowedinTable
1.Thehighestvaluewasrecordedforfiber%cane
(34.07%),folowedbystalkweight,stalkdiameter,
sucrose%juice,sucrose%cane.Plantheightshowed
relativelylowcoeficientofvariation,andjuiceyield
thelowest.Thisindicatedthattheheritablevariation
ofquantitativetraitsmainlycamefromfiber%cane,
stalkweight,stalkdiameterandsucrosecontent.This
viewwasconsistentwithChaudhary(2002),Sajadet
al.(2009),andAhmedetal.(2012).Sajadetal.
(2009)foundthatfiber%caneisthehighestcontribG
utortogeneticdiversity,however,whichwasopposite
totheresultsreportedbyAhmedetal.(2012)that
canefiber(%)showedlowgeneticadvanceandheritaG
bilityvalues,indicatingdificultyofimprovementof
thistraitbythemeansofdirectselection.ThediferG
encesmaybeduetodiferentgenotypesusedandexG
perimentalconditions.Inthepresentstudy,plant
heightshowedalowcoeficientofvariation.Sajadet
al.(2009)andAhmedetal.(2012)alsoreportedsimiG
larresultsintheirstudies.
2.2Correlationanalysis
Correlationanalysisamongphenotypictraitsmay
reflectbiologicalprocessesthatareofconsiderableevoG
lutionaryinterest,correlationcanbetheresultofgeG
netic,functionalandphysiologicalorevendevelopmenG
talcharacters(Wagneretal.,2000;Soomroetal.,
2006).
ThedatainTable2revealedthatthecorrelations
ofleafwidthwithfieldbrix,juicebrix,sucrose%juice
andsucrose%canewerepositivelysignificantat0.05
level,andthatwithstalkweightwaspositivelyand
highlysignificantat0.01level.Stalk weightwas
positivelyandhighlysignificantlycorrelatedwithleaf
855 广 西 植 物                  35卷
Table1 Geneticdiversityevaluationonquantitativetraits
Trait Minimum Maximum Variationamplitude Mean Standarddeviation Coeficientofvariation(%)
Leaflength(cm) 106.9 183.93 77.03 153.63 19.62 12.77
Leafwidth(cm) 3.81 6.69 2.88 5.13 0.77 15.01
Leaflength/width 21.73 40.69 18.96 30.40 5.04 16.57
Plantheight(cm) 234.1 344 109.9 299.88 28.15 9.39
Stalkdiameter(mm) 9.66 29.37 19.71 18.02 5.17 28.71
Stalkweight(kg) 0.49 2.3 1.81 1.44 0.45 31.09
Fieldbrix(%) 12.07 20.03 7.96 16.06 2.88 17.91
Canebrix(%) 9.72 17.14 7.42 14.49 1.90 13.13
Juiceyield(%) 53.38 77.14 23.76 70.60 4.73 6.7
Juicegravitypurity(%) 53.04 89.12 36.08 79.03 9.79 12.39
Fiber%cane 1.24 3.58 2.34 2.10 0.71 34.07
Reducingsugar%juice 0.14 2.67 2.53 0.87 0.15 17.24
Sucrose%juice 7.4 17.42 10.02 13.05 2.74 21.02
Sucrose%cane 5.83 14.69 8.86 11.15 2.30 20.65
Table2 Correlationanalysisamongquantitativetraits
A B C D E F G H I J K L M N
A 1
B 0.332 1
C 0.493∗G0.637∗∗ 1
D G0.044 0.016 G0.04 1
E 0.048 0.23 G0.087 0.4 1
F 0.306 0.679∗∗ G0.362 0.555∗ 0.589∗ 1
G 0.586∗ 0.557∗ G0.025 G0.187 0.132 0.301 1
H 0.079 0.477∗ G0.423 0.193 0.101 0.563∗ 0.446 1
I G0.289 0.254 G0.479∗ 0.374 0.351 .642∗∗ G0.268 0.535∗ 1
J G0.113 G0.075 G0.036 G0.364 G0.395 G0.411 G0.292 G0.467 G0.3 1
K 0.233 0.468 G0.249 0.095 0.379 0.607∗∗ 0.311 0.562∗ 0.650∗∗G0.513∗ 1
L 0.366 0.580∗ G0.274 0.164 0.28 0.679∗∗ 0.577∗ 0.844∗∗ 0.531∗ G0.557∗0.863∗∗ 1
M 0.292 0.550∗ G0.309 0.2 0.28 0.691∗∗ 0.534∗ 0.892∗∗ 0.584∗ G0.576∗0.837∗∗0.992∗∗ 1
N G0.321 G0.313 0.115 0.008 0.517∗ G0.292 G0.188G0.598∗∗ G0.353 0.058 G0.363 G0.540∗ G0.553∗ 1
 Note:LettersAGNrepresentleaflength,leafwidth,leaflength/width,plantheight,stalkdiameter,stalkweight,fieldbrix,canebrix,juiceyield,reducingsugar%juice,juice
gravitypurity,sucrose%juice,sucrose%cane,fiber%cane,respectively.∗significantat0.05level; ∗∗highlysignificantat0.01level.
width,juiceyield,gravitypurity,sucrose%juiceand
sucrose%cane,whilepositivelyandsignificantlycorG
relatedwithstalkdiameter,plantheightandjuicebrix.
Juicebrixwassignificantlyandpositivelycorrelated
withleafwidth,stalkweight,juiceyield,gravitypuriG
ty,sucrose%juiceandsucrose%canebutwassignifG
icantlyandnegativelycorrelatedwithfiber% cane.
Juiceyieldwassignificantlyandpositivelycorrelated
withstalkweight,gravitypurity,juicebrix,sucrose%
juiceandsucrose%canewhilesignificantlyandnegaG
tivelywithleaflengthandleafwidth.Gravitypurity
waspositivelyandsignificantlycorrelatedwithstalk
weight,juiceyield,jucebrix,sucrose%juiceandsuG
crose%canewhilenegativelyandsignificantlywith
reducingsugar%juice.Sucrose%canewaspositively
andsignificantlycorrelated withleaf width,stalk
weight,fieldbrix,juicebrix,juiceyieldandgravitypuG
ritybutwasnegativelyandsignificantlycorrelatedwith
reducingsugar%juiceandfiber%cane.Thevariation
ofsucrose%juicewasinaccordancewiththatofsuG
crose%cane.Fiber%canewassignificantlyandnegG
ativelycorrelatedwithcanebrix,sucrose%juiceand
sucrose%cane.Reducingsugar%juicewassignifiG
cantlyandnegativelycorrelatedwithgravitypurity,suG
crose%juiceandsucrose%cane.
Basedonthepresentstudy,sucrosecontent,stalk
9554期           杨翠凤等:不同基因型甘蔗种质资源的表型遗传多样性
weight,leafwidthandbrixaredesiredselectionparamG
eterstoevaluatetheagronomicperformanceofthe
sugarcanevarieties,folowedbyjuiceyield,gravitypuG
rity,fiberandreducingsugar.Khanetal.,(2007,
2012),Mahmoodetal.,(1990),Ramdoyal(1991)and
Soomroetal.,(2006)alsoreportedsimilarresultsin
sugarcane.
2.3Principalcomponentanalysis
Theeigenvalueofcorrelation matrix,variance
contributionrateandprincipalfactorswereobtained
viaprincipalcomponentanalysis(Table3).Basedon
theprincipleofeigenvaluesgreaterthan1,fourindeG
pendentfactorswereextractedfromthe14quantitative
traits,whichexplained83.48%ofthetotalvariationin
thedependencestructure.Factorloadingsthatgreater
than0.5wereconsideredimportant.Asummaryofthe
compositionofvariablesofthefourextractedfactors
withloadingaregiveninTable4.
FactorIincludedsixvariableswhichaccounted
for44.16% ofthetotalvariation.Thesixvariables
weresucrose%cane,sucrose%juice,juicebrix,fiber
%cane,gravitypurityandjuiceyield.Thesignofthe
loadingvaluesindicatesthedirectionoftherelationship
betweenthefactoranditsrelatedcharacters.ThenegG
ativesignoffiber%caneindicatedthenegativecorreG
lationcoeficientswitheachoftheothervariablesin
factorI(Table4).Eachvariablehadahighloadingin
thefactorandalofthemwereassociatedwithcane
quality,therefore,thisprincipalcomponentcouldbe
caledqualityfactor.
FactorIIwasresponsiblefor16.41%ofthetotal
variationinthedependencestructure.Itincludedfour
characters,namelystalkdiameter,plantheight,stalk
weightandreducingsugar%juice.ThehighestloadG
ingvalueinthefactorisstalkdiameter,folowedby
plantheight,stalkweightandreducingsugar%juice
inturn.Thevariablesofthisprincipalcomponentwere
regardedasgrowthfactor.TheseresultswereinagreeG
mentwiththefindingofElGGeddawietal.,(1992)and
Husseinetal.(2012).
FactorIIIwasmadeupoffieldbrixandleaf
length.Themaximumloadingvaluewasfieldbrix,
whichwasslightlyhigherthanthesecond,leaflength.
AsthevariablesoffieldbrixconcernedwithcanemaG
turity,itwasreferredtoasmaturityfactor.ItaccounG
tedfor13.14%ofthetotalvariationinthedependence
structure.
FactorIVcontainedtwovariables,namelyleaf
lengthandleafwidth.BothvariableshadahighloadG
inginthefactor.FortheleafisthekeyorganforphoG
tosynthesisanditplaysanimportantroleonplant
growthandmetabolism.Thisprincipalcomponentwas
feasiblycaledphotosyntheticfactor. 
Principalcomponentanalysisbasedondiferent
agronomictraitswouldgetdiferentresults.Many
componentanalyseshavebeenperformedforcomplex
traitsbasedonmorphologicalandphysiologicalcharacG
terizations(Petrasovitsetal.,2007;Khanetal.,2012).
Forsugarcane,previousstudiestendedtofocusoncane
yieldcomponents (Husseinetal.,2012;Smiulah,
2013),whilethisstudyliedemphasisoncaneitsown
traitsinordertoexplorethegoodtraitsofcaneitself
andrevealedthathighersucrosecontentandstalk
weight,endowedwithhigherfiber%cane,gravitypuG
rity,leaflengthandleafwidthweretheimportant
characterswhichshouldbeconsideredforsugarcane
genotypeselection.
Takingadvantageofprincipalcomponentanalysis
byplantbreedershasthepotentialofincreasingthe
comprehensionofthecasualrelationshipofvariables
andcanhelptodeterminethedesirabletraitstobeseG
lectedinabreedingprogram (Husseinetal.,2012;
Smiulah,2013).
2.4Factoranalysis
Thefactoranalysisof18accessionswasdoneby
utilizingtheComprehensiveEvaluationModelF=a1F1
+a2F2+a3F3+...+amFm(Xue2006),wherea1=
44.156%,a2=16.413%,a3=13.141%,a4=9.772%,
obtainedfromTable3,andFmmeansfactorscore(“0”
isthemeanoffactorscoreandstandarddeviationis
“1”.PositivevaluesindicateaboveGaverage,andnegaG
tivevaluesindicatebelowGaverage).Thefactorscoreof
eachaccessionwasusedinaboveequationforcalculatG
ingthecompositescoreFvalue(Table5).TheperG
formancesofthe18accessionsinphenotypictraits
wereevaluated,andrankedindescendingfromsuperior
065 广 西 植 物                  35卷
Table3 Eigenvaluesinprincipal
componentcorrelationmatrix
Principal
component
Characteristic
root
Variance
contribution
(%)
Cumulative
contribution
(%)
1 6.182 44.156 44.156
2 2.298 16.413 60.569
3 1.840 13.141 73.710
4 1.368 9.772 83.482
5 0.959 6.852 90.334
6 0.716 5.112 95.446
7 0.315 2.253 97.699
8 0.190 1.357 99.056
9 0.087 0.620 99.675
10 0.021 0.149 99.824
11 0.014 0.100 99.924
12 0.006 0.045 99.969
13 0.004 0.029 99.998
14 0.000 0.002 100
Table4 Principalcomponentloadmatrix
Trait
Thefirst
principal
compoG
nent
ThesecG
ondprinG
cipal
compoG
nent
The
third
principal
compoG
nent
The
fourth
principal
compoG
nent
Sucrose%cane 0.893 0.241 0.250 0.207
Sucrose%juice 0.867 0.234 0.329 0.206
Canebrix 0.853 0.061 0.077 0.257
Fiber%cane G0.808 0.486 G0.053 0.046
Juicegravitypurity 0.737 0.334 0.152 0.187
Juiceyield 0.662 0.350 G0.517 0.251
Stalkdiameter G0.046 0.927 0.112 0.216
Plantheight 0.226 0.645 G0.278 G0.157
Stalkweight 0.566 0.587 0.146 0.360
Reducingsugar%juce G0.499 G0.559 G0.130 0.235
Fieldbrix 0.263 0.017 0.857 0.236
Leaflength 0.205 0.018 0.846 G0.244
Leaflength/width G0.232 0.010 0.330 G0.886
Leafwidth 0.360 0.087 0.408 0.774
toinferiorbasedontheFvaluesinTable5.
TengenotypesshowedpositiveFvalues,which
couldberegardedasexcelentgermplasminthisreG
search,andthelistswereSampana→Tiangeda→
HeqingcaoGanzhe→GuilinZhuzhe→Tanzania→ManG
go→Guzhizhe→Dadaozailai→Tuojianghong→Chunnee.
ELGGeddwayetal.,(2002)andArainetal.,(2011)
statedthatsugarcanevarietiesaregreatlyafectedby
geneticmakeGup.AccordingtoKeerioetal.,(2003),
unlessthegeneticpotentialitiesofavarietyarehigh,
mereprovisionsofgrowingconditionssuchasfertiliza
Table5 Factoranalysis
Species
Factorscore
F1 F2 F3 F4 F Ranking
Sampana 1.281 0.606 0.816 G0.328 0.74 1
Tiangeda 0.894 G0.037 1.098 0.842 0.615 2
HeqingcaoGanzhe 1.19 G0.71 0.58 G0.133 0.472 3
GuilinZhuzhe 0.475 0.663 0.771 0.159 0.436 4
Tanzania 0.424 1.203 0.274 0.042 0.425 5
Mungo 0.886 G0.631 0.956 G0.494 0.365 6
Guzhizhe 0.997 G0.105G0.564 G0.5 0.3 7
Dadaozailai G0.871 2.134 0.158 2.202 0.202 8
Tuojianghong 0.131 G1.569 0.406 1.809 0.03 9
Chunnee 0.232 0.624 G0.394G1.407 0.015 10
Loethers G0.112 0.22 G0.276 0.193 G0.031 11
HongpiS17 0.314 G0.857G1.179G0.275G0.184 12
Luoguzhe G0.338G0.197G0.673G0.153G0.285 13
Robustum G0.597 1.27 G0.399G1.999G0.303 14
HekouQingpi G1.118 0.631 G1.677 0.676 G0.545 15
Senbaina G0.606G1.219G0.891 0.385 G0.547 16
Luzhe G0.394G1.183G1.288G0.133 G0.55 17
Jiagudao G2.788G0.842 2.281 G0.888G1.156 18
tion,irrigationetc.wil notleadtoappreciableimG
provementincaneorsugaryield.Hence,thetopaccesG
sionsshouldbepaidmoreattentiontoinpractical.
2.5Clusteranalysis
In Q clusteranalysisthe18genotypes were
groupedintofiveclustersA,B,C,DandEbasedon
theEuclideansquareddistanceof5G10(Fig.1),while
clustersA,B,CandDgottogetherintoonegroupat
Euclideansquareddistanceof15,andclusterEasan
independentgroup.Cluster A included Heqingcao
Ganzhe,Guzhizhe,Senbaina,Loethers,HongpiS17and
Chunnee.ClusterBconsistsofTiangedaandMango.
Sixclonesviz.Tanzania,Robustum,Luoguzhe,Guilin
Zhuzhe,SampanaandDadaozailaifelintoClusterC.
TwogenotypesLuzheandHekouQingpicameinto
ClusterD.ClusterEconsistedoftwogenotypesTuoG
jianghongandJiagudao.
Clusteringanalysiscanclearlyrevealthegenetic
relationshipbetweendiferentaccessionsandprovide
thebasisforevaluationofscreening(Kashifetal.,
2007;Sajadetal.,2009).Sajadetal.(2009)suggesG
tedthatoneparentmayselectfromeachclusterto
produceahybridhavingdesirableresults.Itisnotwise
tocrossinintraGclusterfortheaccessionsarenotgeG
1654期           杨翠凤等:不同基因型甘蔗种质资源的表型遗传多样性
neticalydiverseenoughtoproduceagoodhybrid.AcG
cordingtotheresultoffactoranalysis,theknowndeG
sirablegenotypesviz.Sampana,TiangedaandHeqingG
caoGanzhebelongtodiferentclusterssotheseaccesG
sionscanbecoupledtodevelopapotentialhybrid.
WhileotherwelGbehavedgenotypeslikeTanzania,
GuilinZhuzheandSampanagatheredintoonegroup,
whichdenotedthatthesegenotypesaregeneticaly
moresimilarsotheyarenotsuggestedtobeusedtoG
gethertoproduceahybridcombination.ThemostdisG
tantclusterisE.Asthegenotypesinthisclusterare
notverygood,therefore,theyarealsonotsuggestedto
becrossedwithotherclusterstobreedasugarcanehyG
bridcombination.Kashifetal.(2007)statedthegenoG
typeswithhighindexscoresandfalingintodiferent
clusterscanbecrossedtohavemaximumvariabilityof
goodcombinationsofcharacters.Similarly,ifoneisinG
terestedinimprovingaspecificcharacterwhichisunG
desirableorotherwiseweakongenotype.Thegenetic
divergenceinformationwilbehelpfultoselectparent
combinationsinsugarcanebreeding (Douleetal.,
1997;Kadianetal.,1997;Vermaetal.,2000).Inthis
study,apotentialhybridcombinationmaybedeveloped
bycrossingSampanawithTiangedaand/orSampana
withHeqingcaoGanzhe.
Fig.1DendrogrambasedonEuclideansquareddistance
(Qclusteranalysis) 18genotypesweregroupedintofiveclusG
tersA,B,C,DandEatEuclideansquareddistanceof5G10,while
clustersA,B,CandDgottogetherintoonegroupatEuclidean
squareddistanceof15,andClusterEbecameanindependentgroup.
3 Conclusions
Basedonthepresentstudy,coefficientofvariG
ation,correlationanalysis,principalcomponentaG
nalysis(PCA),factoranalysisandclusteranalysis
wereeffectiveforinvestigatingthe phenotypic
traitsindifferentgenotypesofsugarcane.EspecialG
lyfactoranalysiswasprovedtobehelpfulforpaG
rentalselectioninsugarcanebreeding.
Bycomprehensiveconsiderationoftheresults
ofcoefficientofvariation,correlationanalysisand
principalcomponentanalysis,thephenotypicand
geneticdiversityofsugarcanemainlycamefrom
sucrose%cane,stalkweight,leafwidth,stalkdiG
ameterandfiber % cane.Itinferredthatthese
traitscouldbeusedasdesiredselectionparameters
toevaluatetheagronomicperformanceofsugarG
canegermplasms.Fourprincipalcomponentsof14
quantitativetraitswereobtained,viz.qualityfacG
tor,growthfactor,maturityfactorandphotosynG
theticfactor.
Combiningconsiderationoffactoranalysisand
clusteranalysismightbeeffectivetoselecttheadG
mirableparentsforhybridization.Severaldesirable
genotypeswereobtainedsuchasSampana,TiangeG
da,HeqingcaoGanzhe,GuilinZhuzhe,andpotential
hybridcombinationsmightbedevelopedbycrossG
ingSampanawithTiangedaand/orSampanawith
HeqingcaoGanzhe.Itisconcludedthatscreening
parentsnotonlyneedstoconsiderthecomplemenG
taryofmaintraits,butalsoneedstokeepcertain
geneticdistance.
References:
AlonsoGPippoW,LuengoCA,AlberterisLAM,etal.2013.PractiG
calimplementationofliquidbiofuels:thetransferabilityofthe
Brazilianexperiences[J].EnergyPolicy,60:70-80
AhmedAO,ObeidA.2012.Investigationonvariability,broad
sensedheritabilityandgeneticadvanceinsugarcane(Saccharum
spp.)[J].IntJAgricSci,2(9):839-844
ArainMY,PanhwarRN,GujarN,etal.2011.Evaluationofnew
candidatesugarcanevarietiesforsomequalitativeandquantitative
traitsunderThattaagroGclimaticconditions[J].Anim &Plant
Sci,21(2):226-230
265 广 西 植 物                  35卷
AhmedAO,ObeidA,DafalahB.2010.TheinfluenceofcharG
actersassociationonbehaviorofsugarcanegenotypes(SacG
charumSpp)forcaneyieldandjuicequality[J].WorldJ
AgricSci,6(2):207-211
BhatSR,GilBS.1985.Theimplicationof2negggametesinnobilG
isationandbreedingofsugarcane[J].Euphytica,34:377-384
BrownJS,SchnelRJ,TaiPYP,etal.2002.Phenotypicevaluation
ofSaccharumbarberi,S.robustum,andS.sinensegermplasm
fromtheMiami,FL,USAworldcolection[J].SugarCaneInG
tern,9:3-16
CuadradoA,AcevedoR,MorenoDES,etal.2004.GenomereG
modelinginthreemodernS.offcinarum,S.spontaneumsugarG
canecultivars[J].JExpBot55(398):847-854
CordieroGM,PanYB,HenryRJ.2003.Sugarcanemicrosatelite
fortheassessmentofgeneticdiversityinsugarcaneGermplasm
[J].PlantSci,165:181-189
CaiQ,FangYH.2006.SugarcaneGermplasmResourceDescription
StandardandDataStandard[M].Beijing:ChinaAgriculture
Press,7:7-40
ChaudharyRR.2001.GeneticvariabilityandheritabilityinsugarG
cane[J].NepalAgricResJ,4&5:56-59
D’HontA,GrivetL,FeldmanP,etal.1996.Characterisationof
thedoublegenomestructureof modernsugarcanecultivars
(Saccharumspp.)bymolecularcytogenetics[J].MolGenGenG
et,250:405-413
D’HontA,PauletF,GlaszmannJC.2002.OligoclonalinterGspecifG
icoriginof‘NorthIndian’and‘Chinese’sugarcanes[J].Chrom
Res,10:253-262
D’HontA.2005.UnravelingthegenomestructureofpolyploidsuG
singFISHandGISH;examplesofsugarcaneandbanana[J].
CytogeneGenRes,109:27-33
DemeyJR,ZambranoAY,FuenmayorF,etal.2003.RelaciónenG
trecaracterizacionesmolecularymorfologicaenunacolecciónde
yuca[J].Interciencia,28(12):684-689
DouleRB,BalasundaramN.1997.Variability,heritabilityandgeG
neticadvanceforyieldandqualityattributesinsugarcane[J].In
Sugar,47(7):499-502
Durrishahwar,Noor M,HidayatGurGRahman,etal.2012.
CharacterizationofsorghumgermplasmforvariousmorphoG
logicalandfodderyieldparameters[J].AfrJBiotechnol,11
(56):11952-11959
ELGGeddawayIH,DarweshDG,ElGSherbinyAA,etal.2002.
Effectofrowspacingandnumberofbuds/seedsettsongrowth
charactersofratooncropsforsomesugarcanevarieties[J].Pak
SugarJ,17:7-14
ElGGeddawiIH,NasrSM,AboGDouhAM.1992.Factoranalysisof
yieldcomponentsofsugarcane[J].PakSugarJ,3:11-14
FaivreGRampantO,BruschiG,AbbruscatoP,etal.2011.AssessG
mentofgeneticdiversityinItalianricegermplasmrelatedtoagG
ronomictraitsandblastresistance(Magnaportheoryzae)[J].
MolBreed,27:233-246
HaS,MooreP,HeinzD,etal.1999.Quantitativechromosome
mapofthepolyploidSaccharumspontaneumbymulticolorfluoG
rescenceinsituhybridizationandimagingmethods[J].Plant
MolBiol,39:1165-1173
HemaprabhaG,NatarajanUS,BalasundaramN,etal.2006.STMS
basedgeneticdivergenceamongcommonparentsanditsuseiniG
dentifyingproductivecrosscombinationsforvarietalevolutionin
sugarcane(Saccharumspp.)[J].SugarcIntern,24(6):22-27
HussainK,NisarMF,NawazK,etal.2010.Morphologicaltraits
vs.geneticdiversity:reliablebasisforsugarcanevarietiesidentifiG
cation[J].TheBIOL (EGJ.LifeSci),1(2):41-43
IrvineJE.1999.Saccharumspeciesashorticulturalclasses[J].
Theor&ApplGenet,98:186-194.
IiyasMK,KhanFA.2010.DeterminingsucroserecoveryinSaccaG
rumofficinarumL.usingregressionandcorrelationanalyses[J].
AfrJBiotechnol,9(20):2985-2988
KhanIA,BibiS,YasminS,etal.2012.CorrelationstudiesofagroG
nonmictraitsforhighersugaryieldinsugarcane[J].PakJBot,
44(3):969-971
KhanFA,IqbalMY,SultanM.2007.Morphogeneticbehaviourof
someagronomictraitsofsugarcane(SaccharumofficinarumL.)
[J].PakJAgricSci,44(4):600-603
KadianSP,ChanderK,SabharwalPS.1997.Geneticvariabilityand
heritabilityinsugarcane[J].IndSugar,46(12):973-975
KashifM,KhanFA.2007.Divergenceinsugarcane(Saccharum
officinarumL.)basedonyieldandqualitytraits[J].PakJBot,
39(5):1559-1563
KeerioHK,PanhwarRN,MemonYM,etal.2003.Qualitativeand
quantitativeperformanceofsomepromisingandcommercialsugG
arcanevarietiesunderagroGclimaticconditionsofThatta[J].PaG
kistanJApplSci,3(10-12):670-673
LavanyaDL,HemaprabhaG.2010.AnalysisofgeneticdiversityaG
monghighsucrosegenotypesofsugarcane(Saccharum spp.)
derivedfrom CoC671usingsugarcanespecificmicrosatelite
markers[J].ElectrJPlantBreed,1(4):399-406
LiL,LiuT,LiuB,etal.2010.NorthernTianshanArabidopsis
thaliananaturalpopulationphenotypicchangeenvironmentdeG
pendonthecharacteristics[J].PlantActaEcolSin,34(11):
1310-1331
LiuXL,MaL,CaiQ,etal.2010.Yunnansugarcanevarieties
phenotypictraitsanalysisofgeneticdiversity[J].JPlantGene
Resour,11(6):703-708
LiuXL,MaL,CaiQ,etal.2010.Sugarcanevarietiesresources
phenotypicgeneticdiversity[J].Biodiversity,18(1):37-43
LiYR.2010.ModernSugarcaneScience[M].Beijing:ChinaAgriG
culturePress,6:1-125
MahmoodT,NazirMS,AshfaqM,etal.1990.CorrelationinsugG
arcane[J].JAgricRes,28:359-363
MiransariM,HabibiM,NajiAM,etal.2011.Geneticdiversityof
wheat(Triticumaestivum L.)genotypesbasedonclusterand
principalcomponentanalysesforbreedingstrategies[J].AustrJ
CropSci,5(1):17-24
PrabuG,KawarPG,PagariyaMC,etal.2011.Identificationof
waterdeficitstressupregulatedgenesinsugarcane[J].Plant
MolBiolRep,29:291-304
PereraMF,AriasME,CostilaD,etal.2012.Geneticdiversity
assessmentandgenotypeidentificationinsugarcanebasedon
DNAmarkersandmorphologicaltraits[J].Euphytica,185
(10):491-510
PetrasovitsLA,PurnelMP,NielsenLK,etal.2007.Productionof
polyhydroxybutyrateinsugarcane[J].PlantBiotechnolJ,5:
162-172
RamdoyalK.1991.GeneticcorrelationandrepeatabilityforagronoG
(下转第602页Continueonpage602)
3654期           杨翠凤等:不同基因型甘蔗种质资源的表型遗传多样性