全 文 :应用与环境生物学报 2005, 11(1):115~ 122
ChinJApplEnvironBiol=ISSN1006-687X 2005-02-25
RESPONSESOFCONIFERSTODROUGHTSTRESS*
DUANBaoli, YINChunying&LIChunyang**
(ChengduInstituteofBiology, ChineseAcademyofSciences, Chengdu 610041, China)
Abstract Droughtstressisoneofthemajorenvironmentalstressesthatafectplantsurvivalandgrowth.Theefectsofdrought
canbemitigatedbyanumberofstrategies, includingmorphological, physiologicalandmolecularacclimationtodrought.Many
speciesexhibitchangesinpartitioninginfavorofthestructuresinvolvedinwateruptakeandtransport, andincreasewateruse
efficiency(WUE)inresponsetowaterdeficits.Greaterallocationtorootsystemmayincreasetheamountofsoilwateraccessi-
bleforaplant.Changesinfoliagearea/sapwoodarearatioalsoinvolveinthewaterpotentialgradientfromroottoshoot.Syn-
thesisandaccumulationofosmoprotectantscanincreasethedroughttoleranceofplant.Osmoticadjustmentinresponseto
droughtstressallowsthenormalfunctioningofphysiologicalprocessestotakeplace.Xanthophylscycle-dependentthermal
dissipationandtheintegratedsystemofenzymaticandnon-enzymaticantioxidantsareinvolvedinthephotoprotectivemecha-
nismsduringtheperiodsofdrought.Water-stressrelatedgenesareinducedbyabscisicacid(ABA), whichapparentlyisin-
volvedinthesignaltransductionduringdroughtstress.Inthisreview, weexaminetherolesofmorphologicalchanges, osmotic
adjustment, xylemcavitation, photosynthesis, WUE, ABAandmolecularmechanismforacclimationandadaptationofconifers
todroughtstress.Moreover, theuseofphysiologicalcharacteristicsasselectioncriteriafordroughttoleranceisalsodiscussed.
Duringwaterstress, drought-tolerantmechanismsarenotindependentandtheyareneededtointegratediferentaspectsabout
wholeplantresponses.Ref99
CLC Q949.665 ∶ Q945.78
Keywords conifers;droughtstress;morphologicalstructure;physiologicalresponse;molecularmechanism
松科植物对干旱胁迫的反应*
段宝利 尹春英 李春阳**
(中国科学院成都生物研究所 成都 610041)
摘 要 水分亏缺是制约树木生长的重要环境因子 , 植物通过形态 、生理以及分子水平来适应水分亏缺.渗透调节使
植物在低水势下维持正常生理活动 ,是植物忍耐水分亏缺的重要生理机制.干旱胁迫下 , 植物形态结构变化有利于水
分吸收和传导 ,从而提高水分利用效率;同时 ,生物量向根部的分配增加 ,叶面积 /边材面积比发生变化 , 这种生物量分
配转移提高了根和茎向叶片输水能力 ,从而防止气穴现象;干旱胁迫容易引起光能过剩 , 过剩的光能会对光合器官产
生潜在的危害.依赖于叶黄素循环的热耗散是光保护的主要途径;同时酶促及非酶促系统也是防止光合器官破坏的重
要途径;脱落酸作为一种激素逆境信号 , 活化了与抗旱诱导有关的基因.本文从形态变化 、渗透调节 、气穴现象 、光合作
用 、水分利用效率 、脱落酸以及分子机理等方面阐述了松科植物对干旱胁迫的响应 , 并对耐旱指标的筛选进行了讨论.
干旱胁迫下 , 各耐旱机理相互制约 , 需要联合各个方面的因素来考虑整个植物对干旱的反应.参 99
关键词 松科;干旱胁迫;形态结构;生理响应;分子机理
CLC Q949.665 ∶ Q945.78
Plantsareoftensubjectedtotheperiodsofsoilandatmos-
phericwaterdeficitduringtheirlifecycle.Theincreasedfrequency
ofsuchphenomenaislikelytooccurinthefutureevenoutsideto-
daysarid/semi-aridregions[ 1].Covering11% oftheearthster-
restrialsurface[ 2] andcontainingabout800Pgcarbon[ 3] , thebore-
alforestisoneoftheearthslargestterrestrialbiomes, andisalso
ofenormouseconomicimportance.Intheborealforest, evena
Received:2004-03-16 Accepted:2004-04-22
*SupportedbytheChinaNationalMajorFundamentalScienceProgram
(No.G2002CB111504), andtheProgramof100DistinguishedYoung
ScientistsandKnowledgeInnovationProjectofCAS(No.KSCX2-
SW-115)
**Correspondingauthor(E-mail:licy@cib.ac.cn)
decreaseinwatercontentofthesurfacehorizonsofsoilcansubject
halow-rootedseedlingstoseveredroughtstress.Evidence
showedthattrees, especialyconifers, inthestageofseedlings
tendtoexperiencedroughtstress[ 4].Becausedroughtstressinhib-
itsthegrowthofconiferseedlings, anyphysiologicalormorphologi-
caladjustmentthatamelioratesthegrowthreductionduetowater
stresswilimprovetheirrateofplantationestablishment[ 4].Suc-
cessfulestablishmentofseedlingsdependspartlyontheirdrought
resistance[ 5].Thus, abetterunderstandingoftheresponsesofco-
niferoustreestodroughtstresscanbeofimportanceforunder-
standingtheresponseofconiferousforeststoglobalclimate
change, andalsoisessentialtoevaluateitsintroductioninthe
semi-aridzones.Despitealotofpublicationsondroughttoler-
anceofconifers, theadaptivemechanismsutilizedbyconifersto
surviveunderdroughtstressconditionsarenotwellunderstood.
Theaimofthisreviewistosummarizetheresultsofthenumerous
studiesofwaterrelationsofconifersunderdroughtstress.Accord-
ingtopreviousstudies, drought-tolerantmechanismofconifers
canbedividedintoseveralaspectsaspresentedinthefollowing
chapters.
1 MorphologicalResponses
Ithasbeenobservedthat, inacommondroughtstressenvi-
ronment, plantsoriginatingfromxerichabitatshaveslowerratesof
shootgrowththanthosefrommesichabitats.Thistrendhasbeen
observedinconiferousplants[ 6].Presumably, slowershootgrowth
andasmalerleafsurfaceareaexposedtotheatmospherecanre-
ducethedangeroflethaldesiccationbyextremeatmosphericand
soildrought.Therefore, aslowrateofshootgrowthisacommon
evolutionaryresponseofplantstohabitatswhereenvironmental
stressisfrequent.
Changesinbiomassdistributionareusualyinterpretedasac-
climationstodroughtstress.Foranindividualtree, totalleafareais
closelycorrelatedwiththecross-sectionalareaofthewater-con-
ductingportion(sapwood)ofthemainstemandisexpressedasthe
leaf/sapwoodarearatio(Al/As).Originally, theworkwasreferredas“pipemodeltheory” whichcharacterizedthesapwoodconducting
tissueasapipeconductingwatertoleaves[ 7].Itwashypothesized
thatforaspecificenvironmenteveryleafwouldrequireaspecifica-
mountoftranspirationalwatertomaintainopenstomataforphotosyn-
thesis, andthataspecificamountofconductingtissuewasrequired
tosupplythewater.Clearly, therelationbetweensapwoodareaand
leafareademonstratesabasicoptimizationincarbonacquisitionand
allocation.AdeclineinAl/Asinresponsetodrierclimatesmaybe
themostsignificantresponsetoincreasingaridity[ 7, 8].Thisshiftin
biomassallocationincreasesthephysicalcapacityofrootsandstems
tosupplyleaveswithwater(leafspecifichydraulicconductance)
andmaintainsminimumleafwaterpotentialabovethelevelsthat
causexylemcavitation.Whiteheadetal.[ 8]interpretedthefoliageto
sapwoodarearatiointermsofhydraulicresistanceandpredicted
thattheratioshoulddecreaseinresponsetodrierair, andsuggested
thatplantsindryenvironmentshavelowerAl/Asthanplantsinwet
environments.Thisstudyreflectsrelativelygreaterevaporativede-
mandsinmorexericareas.
Rootsystemdevelopmentcanalsoadapttodrought.Theroots
canactasawaterreservoirandtoproduceadeeptaprootisan
advantageforatreetosurviveinadryregion[ 9 , 10].Maximizing
growthoftherootsisimportantinestablishmentofyoungseed-
lings[ 9].Generaly, treesnativetoaridenvironmentsoftenhavea
highroot/shootratio.Themoreistheexposuretodrought, the
higheristheratiobetweenrootandshootmassshiftedfurtherinfa-
voroftheroots[ 11].Cregg[ 12]alsofoundthat, duringlimitedwater
supply, seedlingsfromaridandsemi-aridregionsshowedahigh-
erallocationofdrymatertorootsthanthosefromhumidregions.
Somemodificationsmayalsotakeplaceinthestructureofleavesas
aresponsetodrought[ 13].Underwaterdeficits, plantstendtopro-
duceseedlingswithshorterneedles, lesssurfacearea, andfewer
stomataperneedle[ 12].
2 PhysiologicalResponses
2.1 OsmoticAdjustment
Itiswellestablishedthatmaintenanceofcelturgorisapre-
requisiteforalmostalformsoflifeastheyprovideamechanismfor
theexpansionofcelenvelope.Plantscanregulateturgorbysolute
accumulation, osmoticadjustment(OA)andelasticadjustmentof
theircellwals[ 14].
Onexposuretoosmoticstressasaresultofdrought, plants
accumulatearangeofmetabolicalybenignsolutes, colectively
knownascompatiblesolutesorosmolytes.Astheresultofthenet
soluteaccumulation, theosmoticpotentialofthecellislowered,
whichinturnattractswaterintothecelandthusmaintainturgor
pressure.Inhigherplantssoluteaccumulationincludeslowmolec-
ularweightsugars, organicacids, polyolsandnitrogencontaining
compounds, suchasaminoacids, amides, proteinsandquaternary
ammoniumcompounds.Inducedbywaterstress, changesinfree
aminoacidconcentrationsandsimultaneouslyanaccumulationin
pralinewereobservedinsomeconifers[ 15 ~ 17].Theseresultssug-
gestthattheaminoacidandproline(PRO), actingasosmolytes,
haveanimportantroleinplantadaptationtodroughtstress.Gener-
ally, theprimaryfunctionofpolyaminesisturgormaintenancebut
theymayhaveotherprotectiveeffectsonmacromoleculesinde-
hydratingcels.Someauthorsreportedpolyaminesplaytheroleof
notonlypromotingosmoticadjustment, butalsostablingmem-
brane[ 18, 19].Droughtstressdecreasesmembranestabilityandin-
creasesleakageofions, aminoacidsandothermaterialsfrom
cells[ 20 , 21].Thereisanexperiment[ 18]showedtheprotectiveaction
ofpolyaminesonmembraneintegrityandosmoticadjustment.For
example, spermineandspermidinewerefedintothexylemof1.5
-year-oldjackpine(PinusbanksanaL.)for7 daysandplants
weredroughtedbywithholdingwaterfor12 days, theresults
showedthatthespermidineandsperminepromotedtheOAandre-
ducedmembranedamageinjackpineunderdrought.Thisprotec-
tiveabilityofpolyamineswasalsoprovedbysimilarexperi-
ment[ 19].
AwealthofstudiessuggestedthatOAcontributestodrought
resistanceinmanyconifers[ 22 ~ 26].Evidence[ 26]showedthatthea-
bilityofOAandturgormaintenanceunderdroughtstresscouldbe
ausefulcriterionfortheearlyselectionofdroughttolerantgeno-
types.ThekeyroleofOAisturgormaintenanceduringwaterdefi-
cits, whichisessentialformaintenanceofturgor-relatedprocess,
especialystomatalregulation[ 24].Foranygivenleafwaterpoten-
tial, aleafwithamorenegativeosmoticpotentialhasmoreturgor
pressuretoexpendandcanthereforewithstandgreaterdehydration
beforeacriticallossofturgoroccurs.Alowercelularosmoticpo-
tentialalsoconservesthecellularvolumeandmaintainsgradientsof
waterpotentialfavorableforwaterinflux[ 27].Plantgrowingunder
waterdeficitsmaycontributetotheirosmoticadjustmentbymain-
tainingthetissuewatercontentabovethevaluescriticalforcelular
damage.Theconifersmoretoleranttodroughtmayhaveahightis-
116 应 用与 环 境生 物学 报 ChinJApplEnvironBiol 11卷
suetolerancetolowrelativewatercontent(RWC)[ 28].
Highelasticityalowscelwalltoshrinkaroundshrinkingcy-
toplasm.Thesqueezingofthecelwallaroundthecytoplasmmain-
tainsgreaterturgorataparticulartissuewatercontent.Markedre-
ductionsinboththesaturatedandturgor-lossvolumesandlarge
increasesintheelasticcoeficientsofthewhitesprucetissuesindi-
catedthatelasticadjustmentwascriticalforturgormainte-
nance[ 28].Ashighercellelasticitypermitsalowercelularosmotic
potentialforturgormaintenanceunderwaterstress[ 29] , increasesin
theelasticmodulusofcelwalsmayprovideaneffectivemecha-
nismofwaterstresstolerance.
2.2 XylemCavitation
Thereareseveralexplanationsforxylem cavitations.The
leadingexplanationistheair-seedinghypothesis[ 30] , which
proposesthatembolismsaretriggeredbyairaspiratedintoavessel
viapitsinthewalwhereitadjoinsanairspace.Onceinsidethe
vessel, theairdisruptsthecohesionofthewatercolumn, thereby
causingasuddenretractionofthewatercolumnandleavingbehind
avesselfilledwithwatervaporandair.Cavitationshavebeen
viewedasaseriousdysfunction[ 31, 32].However, someexperiments
haveshowedthatcavitationwasanadaptivemechanismasthewa-
terreleasedfromthelumensofxylemconduitsbycavitationcould
acttobuferleafwaterstatusovershorttimeperiodsandthereby
conservingsoilwaterandoptimizingstomatalconductance[ 33].
However, similarinformationislittleknownonconifers.
Ithasbeensuggestedthatstomatamaycontroltheriskofxy-
lemembolism[ 34 , 35].Adeclineinstomatalconductanceinresponse
toachemicalorhydraulicsignalfromtheroots[ 36, 37] reducesthe
transportofwaterinthexylemandhenceavoidsthecriticalten-
sionscausingcavitation.InmatureScotspine, thestomatalclosure
inresponsetosoildrynessatathresholdsoilwaterdeficitpreven-
tedthedevelopmentofsubstantialxylemembolisminaboveground
woodytissue[ 38].However, thereisacontraryexperiment.Forex-
ample, withthestudyofScotspineandSitkaspruceafter3weeks
ofdroughttreatment, cavitationratesinScotspinecontinuedtoin-
crease, althoughthelowstomatalconductanceswereobservedin
bothScotspineandSitkaspruce[ 39].Sothemechanismforthe
controlofstomatalaperturealsoremainspoorlyunderstood.
Cochard[ 40]reportedthevulnerabilityofaspeciestoairem-
bolismwasconsistentwithitsecophysiologicalbehaviorunderwa-
terstress, drought-tolerantspeciesbeinglessvulnerablethan
drought-avoidingspecies.Highratesofcavitationhavealsobeen
foundinlargevesselortracheidsize[ 41].Thelargeststemstended
tocavitatebeforethesmalestoneswhenabranchexperienced
drought[ 41].Inaddition, evidence[ 42]showedrootxylemwithless
negativepressuresiscommonlymorevulnerabletocavitationthan
stemxylemaslessxylemnegativepressureisessentialtoembol-
ism.Ithasalsobeenreportedthatthepitmembraneflexibilityac-
countedforvariationinvulnerabilitytocavitations[ 40].Sperryand
Tyree[ 43]concludedlessvulnerabilitytocavitationwouldoccurina
morerigidmembranewithsmallerwaterconductingpores.
Thereisincreasingevidencethatrefilingoftracheidsafter
cavitationoccursdespiteofthepersistenceofnegativepressuresin
adjacentconduits[ 44, 45].Forexample, PeaandGrace[ 31] withheld
waterfrom5 -to6 -year-oldScotspinefor25 days, and14
daysafterre-watering, theyfoundacompleterecoveryofxylem
densitytothepre-droughtvalue, indicatingcompleterefilingof
tracheidsaftercavitationoccured.Buttherefilingwasnotob-
servedinotherexperiments[ 39 ~ 42].SperryandTyree[ 43] suggest
thatconiferslacktheabilitytorefillcavitatedtracheidsbecause
theycannotgenerateapositivexylempressure.Themechanismof
refilingoftracheidsfollowingdrought-inducedcavitationremains
unclear.
2.3 Photosynthesis
Wateravailabilityisanimportantdeterminantofseedlingsur-
vival[ 46, 47].Acommonresponsetowaterstressisadecreasein
stomatalconductancewhichdecreasestranspiration, photosynthesis
andgrowth.Lowgasexchangerateshavebeensuggestedtobean
attributeofdroughtadaptationinPseudotsugaspecies[ 48].Thiscan
notbegivenasageneralrule, sinceinthestudyofconiferousspe-
cies, thedroughtresistantP.macrocapahadthelowestgasex-
changerates, butexhibitedtheleastconservativewaterecono-
my[ 49].Thecapacityforphotosyntheticacclimationtowaterdeficit
isknowntovaryinpopulationsofconifersspecies[ 50 ~ 52].Black
sprucepopulationsthathavegreaterdehydrationtoleranceareable
tomaintainhigherphotosyntheticcapacityunderdrought, andgrow
fasterondrysitesthanpopulationswithmorelimiteddehydration
tolerance[ 53].Treesoccurringnaturallyondrysitesaregenerally
moredehydrationtolerantandmoreabletomaintainhighgasex-
changeratesunderdroughtconditionsthantreesofthesamespe-
ciesoccupyingmoremesicsites[ 54 ~ 56].
Muchworkonacclimationtowaterstressintreeshasfocused
ontheroleofstomatainlimitinggasexchangeinresponseto
stress[ 50 ~ 52].Becausemesophylprocessesinvolvedinthetransfer
ofCO2 intothechloroplastsandCO2 fixation, therehavebeensev-
eralstudiesofphotosyntheticaswellasstomatalacclimationtowa-
terstressinconifers[ 56 , 57].However, ahandfulofstudieshavefo-
cusedontheroleofstomatalandnon-stomatalacclimationtonet
photosyntheticunderwaterstressinconiferstrees[ 57].Eastman
andCamm[ 47]proposedthatlimitationstophotosynthesisinneedles
ofsprucetreesexposedtodroughtstresswerecausedfirstbystom-
atalandthenbynon-stomatallimitations.Inthestudyofblack
spruce, Stewartproposedthatstomatallimitationwaslessthanme-
sophylllimitationinblackspruce, thesimilarresultswereob-
servedinotherconifers[ 49~ 52, 57 ~ 58].Astheresult, ithavebeen
concludedthathighphotosyntheticcapacityratherthanreduced
stomatalwouldbeausefulindicatorwhenbreedingforincreased
droughtresistanceinblackspruce.
Underdrought, stomataclosureandtheinactivationofthe
Calvin-Bensoncycleenzymesoccurduetowaterstress, whichre-
sultsinadecreaseinphotonutilizationandanincreaseinphotoin-
hibition.Consumptionoflightenergyforphotorespiration, theflow
ofelectronsfromacceptorsinphotosystemI(PSI)tomolecular
oxygenandthepH-dependentdissipationofenergyoperateto
protectthephotosyntheticmachineryfromphotoinhibition.Previous
studyshowedthatacceptorsiderestrictionofelectronflowwasa
117 1期 DUANBaolietal:ResponsesofConiferstoDroughtStress
primaryresponsetowaterstressinwhitespruceseedlings[ 59].Dur-
ingwaterstress, changesinchlorophylfluorescenceinyoung
sprucetreesdemonstratethedown-regulationofprimaryphoto-
chemistryandaneedforenergydissipationtoavoidphotoinhibitory
damage[ 47].Thereisalsoevidencethatdroughtstressleadstoan
increaseintheproductionoffreeradicalinneedles, whichmay
contributetophotosyntheticapparatusinjury.Inordertocounteract
thetoxicityofactiveoxygenspecies, plantsareequippedwithboth
enzymaticandnon-enzymaticmechanismsforreactiveoxygen
species(ROS)scavenging.Superoxidedismutase(SOD)catalyses
thedismutationofsuperoxidetohydrogenperoxideandoxygen.
Andhydrogenperoxidewillbefurtherdetoxifiedbycatalase(CAT)
and/orperoxidases(POX)towaterandoxygen.Non-enzymatic
antioxidantsincludelipophiliccompounds, i.e., carotenoidsand
tocopherols, whichmaintainROSinlowamounts, therebyprotec-
tingphotosyntheticapparatusfromoxidativedamage[ 60].Inaddi-
tiontoantioxidants, thephotosyntheticapparatusisdirectlyprotec-
tedbyxanthophylscyclepigmentsviolaxanthin, antheraxanthin
andzeaxanthin.Studies[ 60, 61] haveshownthatdroughttolerance
specieshavealargerxanthophyllcyclepoolsizesuggestingthat
xanthophylcycledissipatesexcessexcitationenergyasheatinthe
antennacomplexes, therebyprotectingthereactioncentersfrom
photooxidation.Altheseresultsproposedthatxanthophyllcycle-
dependentthermaldissipation, andtheintegratedsystemofenzy-
maticandnon-enzymaticantioxidantsarethetwobiochemical
processesamongthephotoprotectivemechanisms.
2.4 Water-useEficiency
Water-useefficiency(WUE)isameasuretoassessdrought
adaptation.Itcanbedefinedeitherastheratioofdrymatteraccu-
mulationandwaterconsumptionoveraseason, orastheratioof
photosynthesisandtranspirationoveraperiodofsecondsormi-
nutes.WUEseemsgenerallytohaveahighcorrelationwithplant
growth.However, therelationshipmaybepositiveornegative.In-
creasingplantWUEhasbeenshowntoeitherincreaseordecrease
biomassproductivity[ 6, 62 ~ 64].PlantscanachieveahighWUE
througheitherhighnetphotosynthesis, orlowtranspiration, or
both.Bothprocessesareatleastpartialyregulatedbystomatal
conductance[ 65].Thedecreasesofphotosynthesiswhilestomata
fullyopenwouldresultinanegativecorrelationbetweenWUEand
productivity[ 66].Alternatively, whenthewatersupplyislimited,
plantsthatuseafinitewatersupplymoreefficientlybyproducing
greaterbiomassforagivenquantityofwatertranspiredwouldgrow
morerapidly, resultinginapositivecorrelationbetweenWUEand
productivity[ 53].Therefore, underwaterdeficits, plantswitha
highWUEshouldhavehigherbiomassproductivityor/andagrea-
terabilitytosurvivethanplantswithalowWUE[ 66].
Ontheotherhand, someresults[ 67]challengetheviewthata
greaterWUEisadvantageousinwater-limitedhabitats.Forex-
ample, Warrenetal.[ 67] reportedthatP.pinaster, themore
drought-tolerantspeciesisnotmoreeficientintheuseofwater
thanP.radiata.Inthisinstance, droughttoleranceofP.pinaster
canbeequatedwithavoidanceofwaterstress, probablyviaagrea-
terroot/shootratioanddevelopmentofadeeptaproot.
Theheavier13CisotopeofatmosphericCO2 isdiscriminateda-
gainstduringphotosynthesis, mainlybecauseofdifusionalfrac-
tionationandenzymaticfractionation.Carbondioxidemolecules
containing12Carelighterand, therefore, difuseintotheleafata
fasterratethancarbondioxidemoleculescontaining13C.Theribu-
lose-1, 5-bisphosphatecarboxylasediscriminateagainst13Cand
uses12C.Discriminationisrelatedtotheratioofinternaltoexter-
nalCO2 concentration(Ci/Ca), andCi/Caisafunctionofphoto-
syntheticcapacityandstomatalconductance[ 68].Typicaly, plants
withafavorablewaterstatushaveahighCi/Caandaredepletedin
13CwhereasplantsexposedtodroughtstresshavealowCi/Caand
areenrichedin13C, reflectingthetrade-ofbetweenphotosynthe-
sisandtranspiration.
Thecarbonisotoperatioofplanttissueprovidesanintegrated
measureofinternalplantphysiologicalandexternalenvironmental
propertiesinfluencingphotosyntheticgasexchangeoverthetime
whenthecarbonwasfixed[ 69].Theanalysisofcarbonisotoperatio
hasbeenusedasatoolinthestudyofwater-useprocessesinthe
needlesofconifers[ 70].Advancesintheunderstandingoftherela-
tionshipbetweenstablecarbonisotopecompositionandWUEare
essentialtoevaluatevariationamongpopulationsinimportanttraits
relatedtodroughttolerance[ 68].Geneticvariationincarbonisotope
discriminationmayreflectdiferencesinWUEassociatedwithvari-
ationinphotosynthesisorstomatalconductance.Recentstudies
haveshownsignificantandgeneticvariationincarbonisotopedis-
criminationinanumberofconiferspecies[ 62, 71 ~ 75].Undersimilar
ambientconditions, itwaspredictedthatpopulationfrommesic
habitatswouldhavehighercarbonisotopediscriminationvalues,
whereaspopulationfromxerichabitatsshouldhavelowercarboni-
sotopediscriminationvalues, reflectingthemechanismsforgreater
waterconservation[ 73].Buttheresultshavenotalwaysbeencon-
sistent[ 53].Thismaybebecausecarbonisotopediscriminationval-
uesofC3 plantscanbecorrelatedwithenvironmentalvariationor
withgeneticdiference.
Carbonisotopediscriminationvaluesshouldbenegativelyre-
latedtoproductivitywhenvariationincarbonisotopediscrimination
isaresultofchangesincarboxylationeficiency.Incontrast, if
variationincarbonisotopediscriminationisrelatedprimarilyto
variationinstomatalconductance, thenvaluesshouldbepositively
correlatedwithgrowth, aswasfoundintheworkofFlanaganand
Johnsen[ 73].Negativecorrelationsbetweencarbonisotopediscrimi-
nationandproductivityhavebeenfoundinPseudotsugamenz-
iesi[ 71] , PiceamarianaandLarixoccidentalis[ 64] grownunderlim-
iting-wateravailability[ 73].However, carbonisotopeanalysispro-
videsnoinformationaboutthespecificleaf-levelphysiological
differencesthatmayhavecausedanydifferencesinCi, Forexam-ple, areducedCimayarisefromareducedstomatalconductance,
orfromanincreasedintrinsicleafphotosyntheticcapacity.Thus,
thephysiologicalbasisofdiferencesinWUEcannotbedeter-
minedfrom carbonisotopediscriminationmeasurementsalone.
Therefore, theuseofcarbonisotopediscriminationinbreedingpro-
gramsmustbespeciesspecific[ 76].Whenthegoalistoidentify
sourcesofgeneticvariabilityforWUEtobeutilizedinplantbreed-
118 应 用与 环 境生 物学 报 ChinJApplEnvironBiol 11卷
ingprograms, itmaybedesirabletohavemoreinformationabout
thespecificphysiologicaltraitsinvolved.Also, betterunderstand-
ingoftheexacttraitsunderlyingexistingdifferencesinWUEmay
helptoidentifycandidategenestobeusedindirectgenetictrans-
formationapproachestoimprovingdroughttolerance[ 77].However,
therehavebeenfewreportsintheliteraturewheregenotypediffer-
encesinWUEhavebeenfulycharacterized.
2.5 AbscisicAcid
Abscisicacid(ABA)maybeoneofthemostimportantstress
signals, whichplaysvitalrolesinvariousstress-tolerancerespon-
ses.ABAactsasasignalfromroot-to-shootforchangesin
stomatalconductance[ 77] anditwasparticularlyconvincedbythe
splitrootexperiment[ 78] inwhichwateriswithheldfrompartofthe
rootsystem.Thestomatalconductancedeclineseventhoughthe
leavesarestillwellsuppliedwithwaterfromtherestoftherootsys-
tem, butincreasesagainwhenthedryrootisexcised.Increasing
ABAconcentrationleadstomanychangesindevelopment, physiolo-
gyandgrowth.Themaindevelopmentalandmorphologicalefectsof
ABAareinalteringtheplantinsuchawaythatlesswaterislost
throughtranspiration, asreviewedbySeter[ 79].ABAalsoimproves
watertransportamongplantpartsbyincreasingthehydrauliccon-
ductanceforwatermovementfromrootstoleaves[ 79].Atightrela-
tionshipbetweentheconcentrationofABAinthexylemsapandthe
stomatalconductancewasfoundwithvariousstudiesofconi-
fers[ 80 ~ 83]anditindicatesthatABAisinvolvedintheregulationof
stomatalconductanceduringperiodsofdrought.Forexample, inthe
studyofconiferssaplingsexposedtodrought, Jacksonetal.[ 83]re-
portedthatstomatalconductancedisplayedanegativeexponential
relationshipwithABAconcentrationinthexylemandhadnorela-
tionwithABAflux.However, acontrastexperiment[ 84] reportedthe
declineinstomatalconductancecouldnothavebeenmediatedbyin-
creasingABAbecausestomatalclosureappearedtoprecedeanyin-
creaseinABA.Thusitisalmostimpossibletocausestomatalclo-
suretoavoidtissuewaterdeficits, duetothelowsapvelocitiesfor
ABAsignaling.SoariseofABAinconifersiswhetheracontroling
factorornotinstomatalclosureneedsfurtherstudy.
Ithasbeenestablishedthatmanystress-responsivegenesare
up-regulatedbyABA[ 85, 86].ThesemayexplainABAmediates
thedrought-inducedexpressionandthecomplexnatureofABA
responsestodroughttolerance.However, theextentandthemo-
lecularbasisofABAinvolvementinstress-responsivegeneex-
pressionandstresstolerancearenotquietclearinconifers.
3 MolecularMechanism
Droughtstressisabotleneckfactorforplantgrowthandde-
velopment.Up-regulationofgeneexpressionimplicatedinrepair
ofdesiccationinjurycouldincreasethedroughttoleranceofplant.
Muchresearchinthelastdecadewasfocusedonthestress-in-
ducedgeneexpressioninordertofindanswerstothemolecular
mechanismsunderlyingplantcelulardehydrationtolerance[ 87].
Thisworkhasgeneratedinvaluableinformationonmanydiferent
plantgenesinducedbywaterstressandsubsequentlytheproteins
encodedbythesegenes.However, althoughmuchinformationon
droughtstress-inducedgeneshasbeenobtained, fundamental
knowledgeisstillackingregardingthebiologicalfunctionformany
oftheproteinsaccumulatinginresponsetodehydrationintrees,
especialyinconifers.Someofthemostprominentandsubsequent-
lymoststudiedproteinsaccumulatinginresponsetodroughtstress
inhigherplantsarethedehydrins(DHNs)[ 88].Richardetal.[ 89]
alsoreportedthatdehydrinproteinswereinducedinresponseto
wounding[ 89].DHNsaregenerallythoughttoplayanimportantrole
duringplantcellulardehydration, althoughnodirectbiochemical
evidencehasbeenpresented.Inmanysuggestionsontheirbio-
chemicalfunction, DHNshavebeenproposedtoactbyimproving
enzymestability[ 90] andaspossibleosmoregulators[ 91].Indicative
ofdehydrinsisthepresenceofoneorseverallysine-richunits
calledtheKsegmentsconservednearthecarboxyterminusofthe
proteinandrepeatedseveraltimesthroughoutthesequence[ 92].
Somedehydrinsalsopossessastringofserineresidues(S-seg-
ment).Anotherconsensussequence(DEYGNP), theY-seg-
ment, canbefoundneartheaminoterminusofmostofthede-
hydrins[ 92].The15 -amino-acidconsensussequenceoftheLys
-richmotifEKKGIMDKIKEKLPGhasbeenusedforantibodypro-
duction[ 93].Inconifers, dehydrinproteinsandgeneshavebeeni-
dentifiedfromtheseedsofPinus[ 93] andPseudotsuga[ 94] , butstud-
iesongeneexpressionarerestrictedtoneedlesofPiceaglauca
seedlings[ 89].Thus, theidentificationandcharacterizationofwater
-stress-responsivegenesprovidenewinsightsintothenatureof
themachineryinvolvedintheresponsetowaterdeprivationin
plants[ 95] anditmaybeanefectivestrategytoimproveplant
droughtstress-resistancebygenetransfer.
Genetransferbetweenecologicallydiferingspeciescanresult
inimprovedenvironmentaladaptation[ 96] asappearstobetruein
thecaseofsitkaandinteriorspruces[ 97].Incorporationofinterior
sprucegenesintothesitkasprucegenomehasproducedhybrids
thathavebothretainedthehighphotosyntheticcapabilityofsitka
spruceundernon-droughtconditions, andacquiredthegreater
droughtandfreezingtoleranceofinteriorspruce[ 97].Intheworkof
Fanetal.[ 97] , seedlingsofalsevensitkasprucepopulationswere
treatedunderidenticalenvironmentalconditions.Differencesin
physiologicalattributes(phenotypicvariation)betweenpopulations
wererelatedtotheircorrespondingSi-rDNAindex(genotypic
variation)values.ThisisconsistentwithCheveruds[ 98] argument
thatphenotypicanalysiscouldsometimessubstituteforgenetica-
nalysis.Theseresultssuggestthatgeneticestimatesprovideamore
directmethodofdefiningpopulationdifferences[ 99].Nevertheless,
cautionisrequiredinusingphysiological(phenotypic)measure-
mentsforscreeningpopulationswithunknowngeneticbackground.
4 SummaryandConclusions
Waterdeficitisafrequentlyenvironmentstressencountered
bymostplantsintheworld.Inordertowithstandperiodsoflow
wateraccessibility, woodyplantshaveevolvedanumberofaccli-
mationandadaptationresponses.Theseresponsescanbeseenat
thewholeplantlevelintheformofchangesinmorphology, growth
anddevelopment.Atthecelularlevelwaterstressinducesstoma-
119 1期 DUANBaolietal:ResponsesofConiferstoDroughtStress
talclosure, productionofosmolytes, changesinmembranephos-
pholipidcomposition, accumulationofABA, alterationingeneex-
pressionandsynthesisofnewproteins.However, detailsofthe
molecularmechanismsinplantstress-perceptionarestillunclear.
Thestrategiestoopposelossofcelularwatervarylargelyamong
andwithinthespeciesofconifers.Drought-stressedseedlingsof
coniferspopulationfromxerichabitatsshowedhigherresistanceto
droughtthandrought-stressedseedlingsofprovenancesfromme-
sichabitats[ 5 , 6 , 25, 33, 44 ~ 54 , 62, 73].Thus, itisconcludedthatconifers
populationfromxerichabitatswouldbeamoresuitablepopulation
thantheothersforestablishmentonsitespronetosoilwaterdefi-
cits.
Inthenaturalhabitatsofplantstheadverseenvironmentalfac-
torsarealmostneverpresentalone.Underconditionsofsimultane-
ousstresses, thenegativeefectsonplantsandplantadaptivere-
sponsesmaydifferfromthoseunderasingleadverseenvironmental
condition.Theproductivityvariationcausedbydroughtstressmay
dependonspeciessensitivitytodroughtstressandalotherbiologi-
calandenvironmentalfactorssinceplantproductivityrepresentsan
integrationandinteractionoftheenvironmentalfactors.Therefore,
theinteractiveeffectsofdroughtstressandotherenvironmentalfac-
torsonplantgrowthandproductivityunderfieldconditionsshould
beinvestigated.Futurestudiesshouldaddresstheunderstandingof
conifersresponsestotheinteractionsofdroughtandotherclimate
changevariables, particularlyatmospheric[ CO2 ] , temperature,
ozone, UV-Bradiationandmineraldeficiencies.
Duringwaterstress, curtailingthedetrimentaleffectsisofa
basicimportanceformechanismofsurvival.Largenumbersofex-
perimentssuggestthatonespecificmechanismdoesnotconferwa-
tertolerancesolely.Pressinggoalsforfutureresearcharetounder-
standtheroleoftheinterplayofseveralmechanismssimultaneously
onwatertolerance.Withthechangeofglobalclimate, breeders
areparticularlyinterestedinselectingthegenotypesthatcanmain-
tainnormalgrowthunderwaterstress.Thus, selectionfordrought
toleranceisareasonablestrategyondrysites.However, ithasnot
yetprovedpossibletofindanywell-definedcriterionthatcould
beusedbybreederstoselectwater-tolerantgenotypesofconifers.
Folow-upexperimentsshouldfocusongainingdetailedinforma-
tiononwhetherthedetrimentalefectsofdroughtstressarethere-
sultofchangesinphysiological/biochemicalparameters.
References
1 ChavesM, PereiraJS, MarocoJ, RodriguesML, RicardoCPP, Osrio
ML, CarvalhoI, FariaT, PicheiroC.Howplantscopewithwaterstress
inthefield? photosynthesisandgrowth.AnnBot, 2002, 89:907 ~ 916
2 BonanGB, ShugartHH.Environmentalfactorsandecologicalprocesses
inborealforests.AnnRevEcolSyst, 1989, 20(1):2 ~ 8
3 AppsML, KurzWA, LuxmooreRJ, NilssonLO, SedjoRA, Schmidt
R, SimpsonLG, VinsonTS.Borealforestsandtundra.WaterAirSoil
Pol, 1993, 70:39 ~ 53
4 BurdettAN.Physiologicalprocessesinplantationestablishmentandthe
developmentofspecificationsforforestplantingstock.CanJForRes,
1990, 20:415~ 427
5 BlakeTJ, SutonRF.Variationinwaterrelationsofblacksprucestock
typesplantedinOntario.TreePhysiol, 1987, 3:331~ 344
6 ZhangJW, MarshalJD, FinsL.Corelatedpopulationsdiferencesin
drymateraccumulation, alocationandwater-useeficiencyinthree
sympatricconiferspecies.ForSci, 1996, 42(2):242~ 249
7 MaheraliH, DeluciaEH.Xylemconductivityandvulnerabilitytocavi-
tationofponderosapinegrowingincontrastingclimates.TreePhysiol,
2000, 20:859~ 867
8 WhiteheadD, EdwardsWNR, JarvisPG.Conductingarea, foliagearea
andpermeabilityinmaturetreesofPiceasitchensisandPinuscontorta.
CanJForRes, 1984, 14:940~ 947
9 KolbP, RobberechtR.Hightemperatureanddroughtstressefectson
survivalofPinusonderosaseedlings.TreePhysiol, 1996, 16:665 ~ 672
10 BarnesAD.Efectsofphenology, wateravailabilityandseedsourceon
loblolypinebiomasspartitioningandtranspiration.Tre Physiol,
2002, 22:733~ 740
11 LarcherW.PhysiologicalPlantEcology.3rded.Berlin:Springer,
1995
12 CreggBM.Carbonalocation, gasexchange, andneedlemorphologyof
Pinusponderosagenotypesknowntodiferingrowthandsurvivalunder
imposeddrought.TreePhysiol, 1994, 14:883 ~ 898
13 DoleyD.Tropicalandsubtropicalforestsandwoodlands.In:Kozlows-
kiTTed.Waterdeficitandplantgrowth.NewYork:AcademicPress,
1981.210~ 324
14 DaintyJ.Waterrelationsofplantcels.EncyclopediaPlantPhysiol,
1976, 2:12 ~ 35
15 CyrDR, BuxtonGF, WebbDP, DumbrofEB.Accumulationoffree
aminoacidsintheshootsandrootsofthreenorthernconifersduring
drought.TreePhysiol, 1990, 6:293 ~ 303
16 NewtonRJ, SenS, PuryearJD.FreeprolinechangesinPinustaeda
L.calusinresponsetodroughtstres.TreePhysiol, 1986, 1:325~
332
17 VanceNC, ZaerrJB.Analysisbyhigh-performanceliquidchroma-
tographyoffreeaminoacidsextractedfrom needlesofdrought-
stressedandshadedpinusponderosaseedlings.PhysiolPlantarum,
1990, 79:23~ 30
18 RajasekaranLR, BlakeTJ.Newplantgrowthregulatorsprotectphoto-
synthesisandenhancegrowthunderdroughtofjackpineseedlings.
PlantGrowthRegul, 1999, 18:175 ~ 181
19 SlamMA, BlakeTJ, KocacinarF, LadaR.Ambiol, spermine, anda-
minoethoxyvinylglycinepreventwaterstressandprotectmembranesin
Pinusstrobusunderdrought.Trees-StructFunct, 2003, 17(3):278
~ 284
20 ZwiazekJJ, BlakeTJ.Efectsofpreconditioningonelectrolyteleakage
andlipidcompositioninblackspruce(Piceamariana)stressedwith
polyethyleneglycol.PhysiolPlant, 1990, 79:71~ 77
21 ZwiazekJJ, BlakeTJ.Earlydetectionofmembraneinjuryinblack
spruce(Piceamariana).CanJForRes, 1991, 21:401 ~ 404
22 KoppenaalRS, TschaplinskiTJ, ColomboSJ.Carbohydrateaccumula-
tionandturgormaintenanceinseedlingshootsandrootsoftwoboreal
coniferssubjectedtowaterstress.CanJBot, 1991, 69:2522 ~ 2528
23 ColomboSJ.Changesinosmoticpotential, celelasticity, andturgor
relationshipsof2nd-yearblacksprucecontainerseedlings.CanJFor
Res, 1987, 17:365~ 369
24 JiangY, MacDonaldSE, JanuszJ.Efectsofcoldstorageandwater
stressonwaterrelationsandgasexchangeofwhitespruce(Piceaglau-
ca)seedlings.TreePhysiol, 1995, 15:267~ 273
25 AnneNQ, FabienBL.Osmoticadjustmentinthree-year-oldseed-
lingsoffiveprovenancesofmaritimepine(Pinuspinaster)inresponse
120 应 用与 环 境生 物学 报 ChinJApplEnvironBiol 11卷
todrought.TreePhysiol, 2003, 23:397~ 404
26 SelinA.BasewaterpotentialofPiceaabiesasacharacteristicofthe
soilwaterstatus.PlantSoil, 1996, 184(2):273~ 280
27 ONeilSD.Roleofosmoticpotentialgradientsduringwaterstressand
leafsenescenceinFragariavirginiana.PlantPhysiol, 1983, 72:931
~ 937
28 MarshalJG, RutledgeRG, BlumwaldE, DumbrofEB.Reductionin
turgidwatervolumeinjackpine, whitespruceandblackspruceinre-
sponsetodroughtandpaclobutrazol.TreePhysiol, 2000, 20:701 ~
707
29 FanSH, BlakeTJ, BlumwaldE.Therelativecontributionofelastic
andosmoticadjustmentstoturgormaintenanceofwoodyspecies.Physi-
olPlantarum, 1994, 90(2):408~ 413
30 ZimmermannMH.XylemStructureandtheascentofsapmediatedby
cel-waladjustmentintherootsofjackpine.PlantPhysiol, 1983,
99:123~ 128
31 PeaJ, GraceJ.WaterrelationsandultrasoundemissionsofPinussyl-
vestrisL.beforeduringandafteraperiodofwaterstres.NewPhytol,
1986, 103:515~ 524
32 SobradoMA, GraceJ, JarvisPJ.Thelimitsofxylemembolismrecov-
eryinPinussylvestrisL.PlantCelEnviron, 1992, 43:831~ 836
33 PiolJ, SalaA.Ecologicalimplicationsofxylemcavitationforseveral
PinaceaeinthePacificnorthernUSA.FunctEcol, 2000, 14:538~
545
34 HubbardR, RyanM, StilerV, SperryJ.Stomatalconductanceand
photosynthesisvarylinearlywithplanthydraulicconductanceinpon-
derosapine.PlantCelEnviron, 2001, 24:113~ 121
35 NardiniA, TyreeMT, SaleoS.XylemcavitationintheleafofPrunus
laurocerasusanditsimpactonleafhydraulics.PlantPhysiol, 2001,
125:1700~ 1709
36 BlakeJ, FerrelWK.Theassociationbetweensoilandxylemwaterpo-
tential, leafresistance, andabscisicacidcontentindroughtedseed-
lingsofDouglas-fir(Pseudotsugamenziesi).PlantPhysiol, 1977,
39:106~ 109
37 DaviesWJ, ZhangJH.Rootsignalsandtheregulationofgrowthand
developmentofplantsindryingsoil.AnnuRevPlantPhysiol, 1991,
42:55~ 76
38 IrvineJ, PerksMP, MagnaniF, GaceJ.TheresponseofPinussylves-
tristodrought:stomatalcontroloftranspirationandhydraulicconduct-
ance.TreePhysiol, 1998, 18:393~ 402
39 JacksonGE, IrvineJ, GraceJ.XylemcavitationinScotspineandSit-
kasprucesaplingsduringwaterstress.TreePhysiol, 1995, 15:783~
790
40 CochardH.Vulnerabilityofseveralconiferstoairembolism.Tree
Physiol, 1992, 11:73~ 83
41 ZimmermannMH.XylemStructureandtheAscentofSap.Berlin:
Springer-Verlag, 1983
42 StoutDL, SalaA.XylemvulnerabilitytocavitationinPseudotsugame-
nziesiandPinusponderosafromcontrastinghabitats.TreePhysiol,
2003, 23:43~ 50
43 SperryJS, TyreeMT.Water-stress-inducedxylemembolismin
threespeciesofconifers.PlantCelandEnviron, 1990, 13:427 ~
436
44 TognetiR, MichelozziM, GiovanneliA.Geographicalvariationin
waterrelations, hydraulicarchitectureandterpenecompositionofAlep-
popineseedlingsfromItalianprovinces.TreePhysiol, 1997, 17:241
~ 250
45 BorghettiM, EdwardsWRN, GraceJ, JarvisPJ, RaschiA.Therefil-
ingofembolisedxyleminPinussylvestrisL.PlantCelEnviron, 1991,
14:357~ 369
46 CuiM, SmithWK.Photosynthesis, waterrelationsandmortalityin
Abieslasiocarpaseedlingsduringnaturalestablishment.TreePhysiol,
1991, 8:37 ~ 46
47 EastmanPAK, CammEL.Regulationofphotosynthesisininterior
spruceduringwaterstress:changesingasexchangeandchlorophyl
fluorescence.TreePhysiol, 1995, 15:229~ 235
48 ZavitovskiJ, Ferrel, WK.Efectofdroughtuponratesofphotosynthe-
sis, respiration, andtranspirationofseedlingsoftwoecotypesofDoug-
las-fir.Photosynthetica, 1970, 4:58 ~ 67
49 GrieuP, GuehlJM, AussenacG.Theefectsofsoilandatmospheric
droughtonphotosynthesisandstomatalcontrolofgasexchangeinthree
coniferousspecies.PhysiolPlant, 1988, 73:97 ~ 104
50 BoltzBA, BongartenBC, TeskeyRO.Seasonalpaternsofnetphoto-
synthesisofloblolypinefromdiverseorigins.CanJForRes, 1986,
16:1063~ 1068
51 ZwiazekJ, BlakeTJ.Effectsofpreconditioningonsubsequentwater
relations, stomatalsensitivity, and photosynthesisinosmotically
stressedblackspruce.CanJBot, 1989, 67:2240~ 2244
52 SeilerJR, CazelBH.Influenceofwaterstressonthephysiologyof
growthofredspruceseedlings.TrePhysiol, 1990, 6:69 ~ 77
53 TanW, BlakeTJ, BoyleTJB.Droughttoleranceinfaster-andslower
-growingblackspruce(Piceumuriunu)progenies:stomata1andgas
exchangeresponsestoosmoticstress.PhysiolPlant, 1992, 85:639~
644
54 LarsenJB.GeographicvariationinwinterdroughtresistanceofDouglas
-fir.SilvaeGenet, 1981, 30:4~ 5
55 SeilerJR, JohnsonJD.Physiologicalandmorphologicalresponsesof
threehalf-sibfamiliesofloblolypinetowater-stressconditioning.
ForSci, 1988, 34:487 ~ 495
56 GrossnickleSC, SutonBCS, FolkRS, GawleyJR.Relationshipbe-
tweennuclearDNAmarkersandphysiologicalparametersforSitkainte-
riorsprucepopulations.TreePhysiol, 1996, 16:547 ~ 556
57 TeskeyRO, FitesJA, SamuelsonLJ, BongartenBC.Stomataland
nonstomatallimitationstonetphotosynthesisinPinustaedaL.under
diferentenvironmentalconditions.TreePhysiol, 1986, 2:131~ 142
58 GrossnickleSC, RusselJH.Gasexchangeprocessesofyelow-cedar
(Chamaecyparisnootkatensis)inresponsetoenvironmentalvariables.
CanJBot, 1991, 69:2684 ~ 2691
59 BinderWD, FielderP.Seasonalchangesinofwhitespruceseedlings
fromdiferentlatitudesinrelationtogasexchangeandwinterstorabili-
ty.NewForest, 1996, 11:207~ 232
60 TauszM, BytnerowiczA, ArbaughMJ, WonischA, GrilD.Multivari-
atepaternsofbiochemicalresponsesofPinusponderosatreesatfield
plotsintheSanBernardinoMountains, southernCalifornia.TrePhys-
iol, 2001, 21:329 ~ 336
61 KronfuG, PollA, TauszM, HavranekWM, WieserG.Efectsofo-
zoneandmilddroughtstressongasexchange, antioxidantsandchloro-
plastpigmentsincurent-yearneedlesofyoungNorwayspruce[ Picea
abies(L.)Karst.] .Trees-StructFunct, 1998, 12(8):482 ~ 489
62 ZhangJW, MarshalJD.Populationdifferencesinwater-useeficien-
cyofwel-wateredandwater-stressedwesternlarchseedlings.Can
JForRes, 1994, 24:92~ 97
63 ZhangJW, FengZ, CreggBM, SchumannCM.Carbonisotopiccom-
position, gasexchange, andgrowthofthreepopulationsofponderosa
pinediferingindroughttolerance.TrePhysiol, 1997, 17:461 ~ 466
64 ZhangJW, FinsL, MarshalJD.Stablecarbonisotopediscrimination,
121 1期 DUANBaolietal:ResponsesofConiferstoDroughtStress
photosyntheticsgasexchange, andgrowthdiferencesamongwestern
larchfamilies.TreePhysiol, 1994, 14:531~ 539
65 CowanIR.Regulationofwateruseinrelationtocarbongaininhigher
plants.In:LangeOL, NobelCB, OsmondCB, ZieglerHeds.Physi-
ologicalPlantEcologyI:WaterRelationandCarbonAssimilation.
EncyclopediaofPlantPhysioloy, New Series, Volume 12B.New
York:Spring-Verlag, 1982.5 ~ 33
66 RichardsRA, CondonAG.Chalengesaheadinusingcarbonisotope
discriminationinplant-breedingprograms.In:EhleringerJR, Hal
AE, FarquharGDeds.Stableisotopesandplantcarbon-waterrela-
tions.NewYork:AcademicPress, 1993.451 ~ 462
67 CharlesR, WarenJF, McGrathMAA.Wateravailabilityandcarbon
isotopediscriminationinconifers.Oecologia, 2001, 4(127):476 ~
486
68 FarquharGD, EhleringerJR, HubickKT.Carbonisotopediscrimina-
tionandphotosynthesis.PlantMolBiol, 1989, 40:503 ~ 537
69 BrodribbT, HilRS.Thephotosyntheticdroughtphysiologyofadi-
versegroupofsouthernhemisphereconiferspeciesiscorrelatedwith
minimumseasonalrainfal.FunctEcol, 1998, 12:465 ~ 471
70 HultineKR, MarshallJD.Altitudetrendsinconiferleafmorphology
andstablecarbonisotopecomposition.Oecologia, 2000, 123:32 ~ 40
71 ZhangJ, MarshalJD, JaquishBC.Geneticdiferentiationincarboni-
sotopediscriminationandgasexchangeinPseudotsugamenziesi.Oeco-
logia, 1993, 93:80 ~ 87
72 Olivas-GarciaMJ, CreggBM, HennesseyTC.Genotypicvariationin
carbonisotopediscriminationandgasexchangeofponderosapineseed-
lingsundertwolevelsofwaterstress.CanJForRes, 2000, 30:1581
~ 1590
73 FlanaganLB, JohnsenKH.Geneticvariationsincarbonisotopedis-
criminationanditsrelationshiptogrowthunderfieldconditionsinful
-sibfamiliesofPiceamariana.CanJForRes, 1995, 25:39~ 47
74 SunZJ, LivingstonNJ, EthierGJ.Stableisotopesasindicatorsofin-
creasedwateruseeficiencyandproductivityinwhitespruce(Picea
glauca(Moench)Voss)seedlings.PlantCelEnviron, 1996, 19:
887 ~ 894
75 FanS, GrossnickleSC, SutonBC.Relationshipbetweengasexchange
andcarbonisotopediscriminationofSitkainteriorspruceintrogressive
genotypesandribosomalDNAmarkers.TreePhysiol, 1999, 19:689
~ 694
76 ZhangJW, CreggBM.Variationinstablecarbonisotopediscrimination
amongandwithinexoticconiferspeciesgrownineasternNebraska.
USAForEcolManage, 1996, 83:181 ~ 187
77 SivamaniE, BahieldinA, WraithJM, Al-NiemiTS, DyerWE, Ho
THD, QuR.Improvedbiomassproductivityandwateruseeficiency
underwaterdeficitconditionsintransgenicwheatconstitutivelyex-
pressingthebarleyHVA1gene.PlantSci, 2000, 155:1 ~ 9
78 GowingDJG, DaviesWJ, JonesHG.Apositiveroot-sourcedsignal
asanindicatorofsoildryinginappleMalusxdomesticaBorkh.JExp
Bot, 1990, 41:1535~ 1540
79 SetterTL.RoleofthephytohormoneABAindroughttolerance:Poten-
tialutilityasaselectiontool.In:EdmeadesGO, BnzigerM, Mickel-
sonHR, Pea-ValdiviaCBeds.DevelopingDroughtandLow-N
TolerantMaize.MexicoDistritoFederal:CimmytPress, 1997.143~
150
80 MarshalJG, ScarrattJB, DumbrofEB.Inductionofdroughtresist-
ancebyabscisicacidandpaclobutrazolinjackpine.TreePhysiol,
1991, 8:415~ 422
81 RobertsDR, DumbroffEB.Relationshipsamongdroughtresistance,
transpirationratesandabscisicacidlevelsinthreenorthernconifers.
TreePhysiol, 1986, 1:161~ 168
82 JacksonGE, IrvineJ, GraceJ, KhalilAAM.Abscisicacidconcentra-
tionsandfluxesindroughtedconifersaplings.PlantCelEnviron,
1995, 18:13~ 22
83 DaviesWJ.Planthormonesandecophysiologyofconifers.In:Smith
EWK, HinckleyTMeds.PhysiologicalEcology:EcophysiologyofCo-
niferousForests.London:AcademicPress, 1995.63 ~ 78
84 PerksMP, IrvineJ, GraceJ.Canopystomatalconductanceandxylem
sapabscisicacid(ABA)inmatureScotspineduringagradualyim-
poseddrought.TreePhysiol, 2002, 22:877 ~ 883
85 NewtonRJ, YibrahHS, DongN.Expresionofanabscicidacidre-
sponsivepromoterinPiceaabiesL.folowingbombardmentfromane-
lectricdischargeparticleaccelerator.PlantCelRep, 1992, 11:188
~ 189
86 StompAM, WeissingerA, SederofRR.Transientexpressionfrommi-
croprojectile-mediatedtransferinPinustaeda.PlantCelRep, 1991,
10:187~ 190
87 IngramJ, BartelsD.Themolecularbasisofdehydrationtolerancein
plants.PlantMolBiol, 1996, 47:377 ~ 403
88 CloseTJ.Dehydrins:acommonaltyintheresponseofplantstodehy-
drationandlowtemperature.PhysiolPlant, 1997, 100(2):291 ~
296
89 RichardS, MorencyM, DrevetC, JouaninL, SguinA.Isolationand
characterizationofadehydringenefromwhitespruceinducedupon
wounding, droughtandcoldstresses.PlantMolBiol, 2000, 43:1~
10
90 RinnePLH, KaikurantaPLM, VanLHW, SchootC.Dehydrinsin
cold-acclimatedapicesofbirch(BetulapubescensEhrh.):produc-
tion, localizationandpotentialroleinrescuingenzymefunctionduring
dehydration.Planta, 1999, 209(4):377 ~ 388
91 NylanderM, SvenssonJ, PalvaET, WelinB.Stress-inducedaccu-
mulationandtissuespecificlocalizationofdehydrinsinArabidopsis
thaliana.PlantMolBiol, 2001, 45(3):263 ~ 279
92 CloseTJ.Dehydrins:Emergenceofabiochemicalroleofafamilyof
plantdehydrationproteins.PhysiolPlant, 1996, 97:795~ 803
93 CloseTJ, FentonRD, MoonanFA.Viewofplantdehydrinsusinganti-
bodiesspecifictothecarboxyterminalpeptide.PlantMolBiol, 1993,
23:279~ 286
94 JarvisSB, TaylorMA, MacLeodMR, DaviesHV.Cloningandcharac-
terisationofthecDNAclonesofthreegenesthataredifferentialyex-
pressedduringdormancy-breakageintheseedsofDouglasfir(Pseud-
otsugamenziesi).JPlantPhysiol, 1996, 147:559 ~ 566
95 DubosC, ProvostGL, PotD, SalinF, LalaneC.Identificationand
characterizationofwater-stress-responsivegenesinhydroponically
grownmaritimepine(Pinuspinaster)seedlings.TreePhysiol, 2003,
23:169~ 179
96 OliverMJ, FergusonDL, BurkeJJ.Interspecificgenetransfer:impli-
cationsforbroadeningtemperaturecharacteristicsofplantmetabolic
processes.PlantPhysiol, 1995, 107:429~ 434
97 FanS, GrossnickleSC, SuttonBCS.Relationshipsbetweengasex-
changeadaptationofSitkainteriorsprucegenotypesandribosomalDNA
markers.TreePhysiol, 1997, 17:115 ~ 123
98 CheverudJM.Acomparisonofgeneticandphenotypiccorelations.E-
volution, 1988, 42:958~ 968
99 WilisJH, CoyneJA, KirkpatrickM.Canonepredicttheevolutionof
quantitativecharacterswithoutgenetics? Evolution, 1991, 45:441 ~
444
122 应 用与 环 境生 物学 报 ChinJApplEnvironBiol 11卷