免费文献传递   相关文献

棉属野生种克劳茨基棉(Gossypium klotzschianum)基因组向陆地棉的渐渗(英文)



全 文 :收稿日期:2007-11-30  作者简介:沈新莲(1968-), 女 , 副研 , shenxinlian@yahoo.com.cn
基金项目:江苏省自然科学基金(BK2005433)
棉属野生种克劳茨基棉(Gossy p ium klotzschianum)
基因组向陆地棉的渐渗
沈新莲 , 朱 静 , 张香桂 , 张保龙 , 曹志斌 , 杨郁文 , 徐 鹏 , 徐英俊 , 倪万潮
(江苏省农业科学院农业生物技术研究所 ,南京 210014)
摘要:棉花远缘种质是改良栽培种的丰富资源 ,野生种遗传变异的有效利用依赖于鉴定并渐渗
理想的野生种 DNA 进入栽培种的能力 。为了检测二倍体野生种克劳茨基棉染色质在陆地棉
中的渐渗情况 ,构建了一个来自于(陆地棉×克劳茨基棉)×陆地棉的 BC1 F2 群体 ,并用 320
个覆盖棉花基因组的 SSR标记来监测外源种质的转入;只有 38个标记在 BC1 F2 群体中显示
了分离 ,这些标记分布于 14条染色体 ,组成了 18个渐渗片段;通过比较发表的棉花遗传图谱 ,
这 18条渐渗片段的总长为 595 cM ;同时两个形态性状(黄色花瓣和开放花蕾)被定位于 13号
染色体。通过分子和形态鉴定 ,结果证实克劳茨基棉染色质已被渐渗进陆地棉遗传背景中 。
利用这种特异的标记将会促进理想的外源基因转入栽培棉 。
关键词:克劳茨基棉;SSR;渐渗;分子标记
中图分类号:S562.035   文章标识码:A
文章编号:1002-7807(2008)04-0256-08
Introgression of Gossypium klotzschianum Genome into Cultivated Cotton ,
G.hirsutum
SHEN Xin-lian , ZHU Jing , ZHANG Xiang-gui , ZHANG Bao-long , CAO Zhi-bin , YANG Yu-wen ,
XU Peng , XU Ying-jun , NI Wan-chao
(Inst itute o f Agricultural B iotechnolog y , J iangsu Academy o f Agricultural Sciences , Nanj ing
210014 , China)
Abstract:Exo tic Gossyp ium germplasms are rich source s of useful ag ronomic t rai ts for improvement
pro grams o f cultiv ated co tton.Efficient use of gene tic variation available in the w ild relatives depends
on the ability to identify and int rog ress desirable DNA segments f rom w ild species into cultivated cot-
to n.To int rog ress genes f rom G.klotzschianum into G.hirsutum , a BC1 F2 population f rom (G.hir-
sutum×G.klotzschianum)×G.hirsutum was constructed.A total o f 320 SSR primers covering the
co tton genome we re selected to monitor alien germplasm transmission.Only 38 ma rkers show ed seg-
reg ation in the BC1 F2 population , and they w ere dist ributed in 14 dif ferent chromosomes and consti tu-
ted 18 intro gressed segments.The to tal length o f the 18 intro gressed segments w as 595 cM based on a
co tton consensus map.Two mo rphological t rai ts(yellow petal and open bud)were mapped on chromo-
some 13.Our mo lecular and mo rphological identification confi rmed the presence of G.k lotzschianum
chromatin in the BC1 F2 interspecific progenies.The use of species-specific molecular markers wi ll
great ly facilitate int rog re ssion o f desirable alien genes into cultiv ated co t ton.
Key words:G.k lotzschianum;SSR;int rog ressed segment;species-specific molecular markers
CLC number:S562.035   Document code:A
Article ID:1002-7807(2008)04-0256-08
 棉 花 学 报 Co tton Science  2008 , 20(4):256 ~ 263
  The genus Gossy pium (Malvaceae)compri-
ses 51 species , including 46 diploids and 5 tet ra-
ploids , dist ributed throughout the arid and semi-
arid regions of Africa , Australia , Central and
S outh America , the Indian subcontinent , A rabi-
a , the Galapagos , and Haw aii[ 1-2] .S tew art as-
signed the Gossypium genome g roups to prima-
ry , secondary , and tertiary g ermplasm pools
based on their crossability w ith cul tivated spe-
cie s.Tw o cul tivated tet raploid and three w ild
tet raploid constitute the primary gene pool;The
extant relativ es of the A and D progenitor s of
the allo tet raploid subgenomes and the B and F
genomes comprise the secondary gene pool;The
African-Arabian E genome and the Aust ralian
C , G , and K genomes encompass the tertiary
gene poo l[ 3] .
The secondary and tertiary gene poo ls(dip-
loid specie s)are considered as po tential reser-
voirs o f genes useful fo r cot ton improvement.
However , int rog ressing genes f rom diploid spe-
cie s into tet raploid cultiv ated cot ton are diff icult
due to ploidy level dif ferences and genomic in-
compatibilities.These bar riers can be overcome
by ploidy manipulat ions such as t ri-species
bridging crosses and hexaploid bridging via chro-
mosome doubling of F1 hybrid.Desirable charac-
ters f rom w ild diploid species have been success-
fully introduced into tet raploid cot ton cultivars
using the above mentioned st rategies[ 4-6] .
G.k lotzschianum i s a D genome diploid
species of the Galapago s A rchipelago.A mem-
ber o f subsection integ rifolia grow s in arid habi-
tats , frequent ly along seasonally dry st ream
beds.Seed covering is nearly glabrous w i th
sparse inconspicuous fibers[ 1] .Li tt le research
has involved this w ild species because i t carrie s a
lethal gene.Hybrids involving G.k lotzschianum
are embryo-lethal at 17-19 days po st-syngamy.
Philips found that lethality w as reduced when
culture temperature increases , and at tempera-
tures above 39℃ hybrid ontog eny is essentially
no rmal
[ 7] .In a previous study , we cro ssed G.
klotzschianum as male to several upland co tton
cultiv ars.By adjusting g reenhouse temperature ,
one F1 hybrid f rom Simian 2 and G.klotzschia-
num developed into a normal F 1 plant.A prelim-
inary study indicated that G.klotzschianum may
contain the potential gene fo r high fiber quality
although i t i s nearly glabrous[ 8] .
The objectives of the investigat ion presen-
ted here we re to t race the transfer of G.
klotzschianum chroma tin to upland co tton using
molecular marke rs and to conf irm the int rog res-
sion level o f alien germplasm.
1 Materials and Methods
1.1 Plant materials and mapping population
Simian 2 , a upland cultivar , and a D ge-
nome w ild species accession G.k lotz schianum ,
we re used as recurrent parent and dono r parent ,
respectively .F 1 hybrid and BC1 were made by
Qian et al
[ 8] .In 2003 , tw enty tw o BC1 F 1 seeds
we re taken out f rom a -20℃ ref rigerato r and
sow ed in the greenhouse , but only four seeds
germinated.Seed cot ton f rom each BC1 F 1 plant
w as checked fo r fiber leng th.One BC1 F1 plant
expressing significant deviation fo r fibe r leng th
and tw o G.k lotzschianum morpholo gical t rai t s
(f low er co lor and pe tal spo t)was graf ted to pro-
duce anothe r 6 plants wi th the same geno type.
All seeds f rom these seven plants fo rmed a BC1
F2 population.In 2005 , 423 BC1 F2 seeds w ere
sow ed in Xuyu experiment stat ion , Jiang su A-
cademy of A gricul tural Sciences , China.Only 87
germinated and 83 g rew into fer tile plants.
Seeds f rom every individual w ere harvested.A ll
plants w ere t ransferred into g reen house to
maintain before w inter.
1.2 SSR analysis
DNA from BC1 F 2 individuals w as ex t racted
as described by Paterson et al[ 9] .A total o f 320
SSR markers w ere selected at appro ximately 20
centiM organ (cM) intervals for all 13 linkage
groups based on a co tton consensus map[ 10] .
SSR primer sequences info rmation w as taken
from the fo llow ing published sources:BNL
prime rs from Research Genetics Co.(Hunts-
vi lle , AL , USA , ht tp://www .resgen.com);
JESPR from Reddy et al[ 11] ;TM from Dr.John
2574 期      沈新莲等:棉属野生种克劳茨基棉(Gossy pium k lotzschianum)基因组向陆地棉的渐渗
Yu , USDA-ARS , Crops Germplasm Research
Uni t , Texas , USA , and EST from Dr.S.Sa-
ha , USDA-ARS , Crop Science Research Labora-
to ry , Mississippi , USA , CIR from Nguyen et
al
[ 12] , NAU SSR primers we re ES T-SSR derived
f rom the gene bank ES T and cDNA se-
quences[ 13] .The procedure for SSR analy sis w as
that reported by Zhang et al[ 14] .
1.3 linkage mapping
Linkage analy sis fo r the flow er t rait s w as
carried out using MAPMAKER/Exp Version
3.0b[ 15] .Fo r the calculat ion of segment leng ths ,
int rog ressed segments w ere assumed to ex tend
halfw ay betw een the oute rmost markers based
on the co tton consensus map
[ 10] .
2 Results
2.1 Polymorphism of markers
Of the 320 SSR prime rs selected to geno-
ty pe BC1 F2 population , 273 SSR marke rs ampli-
f ied stable products and 253 detected po lymo r-
phism between parents. To investig ate the
dif ference in microsatelli te allele between tw o
parents , 114 SSR primers wi th clear banding
pat tern w ere selected to sco re alleles.There is a
significant dif ference in the number of SSR al-
leles betw een tw o parents.G.hirsutum had
mo re microsatellite alleles than G.klotzschia-
num (514 and 343 , respectively).G.hirsutum
generated an ave rage o f 4.5 al leles per primer
pair , while G.k lotz schianum yielded an average
of 3.0 alleles per primer pair.Genome size of G.
hirsutum i s nearly three times as large as the D
genome diploid (5.7 pg per cell and 2.0 pg per
cell , respectively)[ 16] , but overall G.hirsutum
only had 33.27% more SSR allele s than G.
klotzschianum.This resul t indicated that SSR
allele number s are correlated to genome size , but
no t consistent w ith the ratio of genome sizes.
2.2 Levels and patterns of introgression
A total of 38 markers show ed seg regation in
the BC1 F2 population , and they we re dist ributed
in 14 dif ferent chromosomes.There w as discern-
ible bias in geno typic f requency .All of the seg-
reg ated SSR markers , except tw o markers in
chromosome 1 (BNL3888 and BN L2921)devia-
ted significant ly f rom Mendelian expectat ion (P
<0.05).All disto rted markers had an excess of
G.hirsutum genotypes.Markers NAU1119 and
NAU1063 show ed ex t reme segregat ion disto r-
tion lacking G.klotzschianum homozygo tes.
The size of each of the int rog ressed seg-
ments was estimated based on the cot ton consen-
sus map[ 10] (Table 1 , Fig.1).Thirty eight G.
klotzschianum specif ic markers consti tuted 18
int rog ressed segments on 14 chromosomes.The
int rog ressed segment size ranged from 11 to 101
cM with an averaged size of 41 cM .The total
leng th of the int rogressed G.k lotz schianum ge-
nome w as 595 cM .
Table 1 Number , size and position of introgressed segments
Chromosome Polymo rphic markers No.of intr og ressed segment Leng th of int rog ressed segment
1 8 1 32
3 9 2 101
7 8 1 17
9 10 1 13
10 8 1 25
11 16 2 85
12 9 2 69
13 9 2 78
15 8 1 12
16 6 1 11
18 7 1 74
20 10 1 15
25 12 1 41
26 10 1 18
258                    棉 花 学 报                  20 卷
2594 期      沈新莲等:棉属野生种克劳茨基棉(Gossy pium k lotzschianum)基因组向陆地棉的渐渗
260                    棉 花 学 报                  20 卷
2.3 Mapping for morphological traits
The BC1 plant used in this study exhibited
flower t rai ts(yellow f low er and red pe tal spo t)
of G.k lotzschianum.In BC1 F2 , anothe r f low er
t rai t(open bud)was expressed.O ther morpho-
logical variation such as leaf shape , boll size and
shape also w as pronounced among BC1 F2 .The
mo rphological t rai t s , f low er co lor , petal spot ,
and open bud , were scored in the BC1 F2 popula-
tion.Yellow petal in the tet raploid species of
Gossypium is cont rolled by duplicated genes as-
signed the symbols Y 1 and Y2 .The Y1 and Y2
loci are located in linkage g roup ≫ of the A ge-
nome and chromosome 18 in the D genome , re-
spectively [ 17] .Open bud is contro lled by reces-
sive gene assigned the symbols ob1 and ob2 .The
ob1 is associated w ith Y 2 in chromosome 18[ 18] ,
and ob2 is associated w ith Y1 in linkage group
≫[ 19] .In this study , yellow petal t rait w as
mapped in the ch romosome 13 , which is 6.9 cM
aw ay from marker BN L2652 by linkage analy sis
using MAPMAKER/Exp Version 3.0b;Open
bud trait w as also mapped in the chromosome
13 , which is 8.0 cM aw ay from marker CIR054.
The trait s deriv ed f rom a D genome species w as
integrated into the A subgenome of G.hirsu-
tum , most likely throughout homologous chro-
mosome recombination.
3 Dissusion
T ri-species and hexaploid bridging cro sses
were proposed to o vercome ferti li ty of F 1 trip-
loid , but all involve chromosome doubling.
From our experience and that of othe rs[ 4] , inter-
specif ic progenies may have tended to increase fi-
ber micronaire value via doubling chromosome.
Direct backcro ssing to G.hirsutum (t riploid as
female)is another st rateg y to restore F1 fert ili-
ty .Although the success of backcross depends
on the phylog enetic relationship betw een spe-
cie s , the oppo rtuni ties to obtain BC1 F 1 can be
accelerated by adjusting envi ronment tempera-
ture and daubing 35 % sugar so lution on st igmas
and 50 mg ·kg-1 ABA on bracts[ 8] .Using the a-
bove mentioned approach , we transferred the
fine fiber quali ty genes f rom G.anomalum and
G.armourianum into cult ivated cot ton[ 20-21] .
Other investig ato rs also repo rted the successful
backcrossing of desirable alien genes f rom the
diploid species G.aridum , G.armourianum , G.
longicaly x , G.trilobum , G.costulatum , G.nob-
i le , and G.popul i f olium[ 3 , 22-25] .Obviously ,
many triploid hybrids in Gossypium have exhibi-
ted some levels o f female fert ility .This makes it
po ssible to di rect backcro ss to G.hirsutum and
provides the oppor tunity to obviate the need fo r
co lchicine doubling that is time-consuming and
has a low eff iciency.
However , in early inte rspecif ic g enerations ,
low level fer tility is sti ll a problem when a large
number o f progeny is required.The combination
of tw o genetical ly diverg ent genomes in hybrids
f requently results in aberrant meiotic division ,
which , in turn , can result in abortions and ste-
ri li ty of the progenies.In this study , of the 423
BC1 F2 seeds that were sowed , only 87 plants
survived.Among these BC1 F 2 individuals , we
observed a low level of int rog ression from G.
klotzschianum.The inco rpo ration of chromo-
some segments f rom G.klotzschianum into cul-
tivated co tton po ssibly caused some embryo a-
bo rtion w hich resulted in the low rate of seed
germination.Four of 87 surviving plants had
po llen sterili ty.This populat ion needs to be in-
creased fo r addi tional g enerations to ensure the
stability of the int rog ressions.
O ne w ould expect that genes f rom G.
klotzschianum are mo re likely t ransfe rred by re-
combination w ith the shared D subgenome than
the unshared A subgenome of G.hirsutum.But
in this repor t , int rog ression occurred in both A
and D subgenome.It w as also w ell reported in
other crops that int rog ressions w ere not limited
to the shared genome[ 26-27] .According ly , in cot-
to n , restorer gene s(Rf1)t ransferred f rom the D
genome species , G.harknessi i , was identif ied
on the chromosome 4(A genome)by mono somic
test
[ 28] .Homologous chromosome recombination
is the most likely cause fo r this phenomenon.In
addit ion , it w as noted in this study that A sub-
2614 期      沈新莲等:棉属野生种克劳茨基棉(Gossy pium k lotzschianum)基因组向陆地棉的渐渗
genome even contained more int rog ression seg-
ments than D subgenome.The po ssible reason is
that the polymo rphism betw een G.klotzschia-
num genome and the D subgenome of G.hirsu-
tum is lowe r than that betw een G.klotzschia-
num genome and the A subgenome of G.hirsu-
tum , which is suppo rted by the fact that 14 out
of 20 non-polymorphic markers are assigned to
the D subgenome.Some recombinat ions on D
subgenome could fail to be detected.However ,
only 273 SSR markers w ere used to moni to r the
int rog ression segments in this study.It i s not
suff icient to assume the extent of int rog ression
dif ference betw een A and D subgenome.More
molecular markers need to be used to explore de-
tailed int rog ression informat ion.
We did not find the transmission of intact
G.klotzschianum chromosomes.Most of intro-
g ressed segments are small in size suggest ing
that introg ression occurred as a result o f chro-
mosome breakage during homoelogous inte rac-
tion that are repai red , and no t because of a few
chiasmata per chromosome during meiosis ,
which w ill produce larg e int rogressed segment.
This is consistent w ith prio r predictions that BC1
progeny is pentaploid
[ 3] , which contain tw o full
sets o f the A and D subgenomes and auto syndet-
ic pai ring is prefe rred in Gossypium , the only
oppo rtuni ty fo r homoeo logous chromosome re-
combination a rises from multiv alents invo lving
the w ild diploid chromosomes
[ 25] .
Our molecular and mo rpholo gical identifica-
tion confi rmed the presence of G.k lotzschianum
chromatin in G.hirsutum×G.k lotz schianum in-
terspecific progenies.Use of mo lecular marker s
should enhance the ability to fo llow specific
chromosome segments across generat ions and to
identify progenies w ith stable incorporation of
the desired chromosome regions.When species-
specific ma rkers are linked to desired trait s to be
int rog ressed , the overall ef ficiency of gene tic ad-
vancement w ill be increased by allow ing selec-
tion o f progenies exhibit ing the linked markers.
Fig 2 SSR analysis with primer TMK19:segregation of G.klotzschianum specif ic SSR on BC1F2 individuals
Reference:
[ 1] FRYXELL P A.A revised taxonomic interpreta tion
o f Gossyp ium L.(M alvacea)[ J] .Rheedea , 1992 , 2:
108-165.
[ 2] 王坤波.野生棉的收集与保存[ J] .棉花学报 , 2007 ,
19(5):354-361.
WANG Kun-bo.Intr oduction and conserv ation o f
wild co tton in China[ J] .Cotton Science , 2007 , 19
(5):354-361.
[ 3] ST EWART J M.Potential for crop improvement
w ith exotic g ermplasm and genetic enginee ring[ C] //
GA Constable & NW Forrester (Eds), Challenging
the Future:Proceeding s of the World Cotton Re-
search Confe rence-1.Brisbane , Australia:CSIRO ,
1995:313-327.
[ 4] BEASELEY J O.The production of polyploids in
Gossy pium[ J] .J He red , 1940 , 31:39-48.
[ 5] MEYER V G.Fer tility-restore r g enes for cytoplasmic
male sterility from Gossyp ium harknessii[ C] // Proc
Beltwide Cotton P rod Res Conf.London:J Brow n
(ed), 1973:65.
[ 6] VROH B I , Baudoin J P , Mergeai G.Cy to genetics o f
theg landless-seed and g landed-planttr ait from Gos-
262                    棉 花 学 报                  20 卷
sypium sturtianum Willies introg ressed into upland
co tton (Gossypium hirsutum L.)[ J] .Plant Breed-
ing , 1998 , 117:235-241.
[ 7] PHILLIPS L L.Inte rspecific incompatibility in Gos-
sypium Ⅳ.Tempe rature-conditional le thality in hy-
brids of G.k lotzschianum[ J] .Amer J Bo t , 1977 , 64
(7):914-915.
[ 8] QIAN Si-ying , H uang Jun-qi , Zhou Bao-liang , et al.
Studie s on hybridiza tion of Gossypium hirsutum L.×
G.klotzschianum Ander ss and its use[ J] .Jiangsu
Journal o f Agricultural Science , 1996 , 12(4):18-22.
[ 9] PATE RSON A H , Brubaker C L , Wendel J F.A
rapid method fo r ex traction of co tton (Gossypi um
spp .)genomic DNA suitable for RFLP o r PCR anal-
y sis[ J] .Plant Mo l Biol Rep , 1993 , 11(2):122-127.
[ 10] HAN Zhi-guo , Wang Chang-biao , Song Xian-liang ,
e t al.Cha racteristics deve lopment and mapping o f
Gossypi um hirsutum derived EST-SSRs in allo tetra-
plo id co tton[ J] .Theor Appl Gene t , 2006 , 112:430-
439.
[ 11] REDDY O U K , Pepper A E , Ibrokhi A , e t al.
New dinucleo tide and trinucleotide micro sa tellite
marker re sour ce s for co tton genome resear ch [ J] .
Co tton Science , 2001(5):103-113.
[ 12] NGUYEN , T B , Giband M , Bro ttier P , et al.Wide
coverage of the tetraplo id co tton genome using new ly
developed micro sa tellite markers [ J] .Theo r Appl
Gene t , 2004 , 109:167-175.
[ 13] GUO Wang-zhen , Cai Cai-ping , Wang Chang-biao ,
et al.A micro sa te llite-ba sed , gene-rich linkage map
revea ls genome structure , function and evolution in
Gossypium[ J] .Genetics , 2007 , 176:527-541.
[ 14] ZHANG Jun , Guo Wang-zhen , Zhang T ian-zhen.
M olecula r linkage map of allo tet raploid cotton(Gos-
sypium hirsutum L.× Gossy pium barbadense L.)
w ith a haploid popula tion[ J] .Theor Appl Genet ,
2002 , 105:1166-1174.
[ 15] LANDER E S , Green P , Abrahamson J , et al.
M APMAKER:An interactiv e computer package for
constr ucting primary gene tic linkage maps o f expe ri-
mental and natural populations [ J] .Genomics ,
1987 , 1:174-181.
[ 16] ENDRIZZI J E , Turco tte E L , Kohel R J.Genetics ,
cy to lo gy , and evolution o f Gossy pium [ J] .Adv
Ag ron , 1985 , 23:271-375.
[ 17] HUTCH INSON J B , Silow R A.Gene symbols for
use in co tton genetics[ J] .J He red , 1939 , 30:461-
464.
[ 18] ENDRIZZ I J E , Nelson R.L inkage analysis and a rm
location of the open bud (ob1) and yellow petal
(Y2)loci in chromosome 18 of co tton[ J] .Genome ,
1989 , 32:1041-1043.
[ 19] ENDRIZZ I J E , Ray D T.Linkage ana ly sis of open
bud(ob2)and yellow petal(Y1)in co tton[ J] .Ge-
nome , 1991 , 34:461-463.
[ 20] QIAN Si-ying , Huang Jun-qi , Peng Yao-jin , et al.
Studies on the hybrid of G.hirsutum L.and G.
anomalum Waw r.&Pey r.and application in breed-
ing[ J] .Sci Ag ric Sinica , 1992 , 25:44-51.
[ 21] QIAN Si-ying , Zhou Bao-liang , Huang Jun-qi , et
al.Studies on the inter specific hybrid o f Gossypi um
hirsutum cultiva r 86-1 × G.armourianum and its
use in breeding[ J] .Acta Ag ronomica Sinica , 1995 ,
21(5):592-597.
[ 22] 沈新莲 , 张香桂 ,张保龙 ,等.辣根棉渐渗到陆地棉的
黄花瓣性状的遗传及对它性状的影响[ J] .棉花学
报 , 2007 , 19(1):78-80.
S HEN Xin-lian , Zhang Xiang-gui , Zhang Bao-long ,
e t a l.Genetic analy sis fo r intro g ression gene o f
y ellow petal f rom G.armourianum to G.hirsutum
and its effect on o ther tr aits[ J] .Co tton Science ,
2007 , 19(1):78-80.
[ 23] BROWN M S , Menzel M Y.Polygenomic hybrids in
Gossypium.Ⅰ .Cy tolog y o f hexaplo ids , pentaploids
and hexaploid combinations [ J] .Genetics , 1952 ,
37:242-263.
[ 24] MEYER V G.Inte rspecific co tton breeding [ J] .
Econ Bot , 1974 , 28:56-60.
[ 25] BRUBAKER C L , Brow n A H D , S tew ar t J M , et
a l.Production o f fertile hybrid germplasm with dip-
loid Austr alian Gossypi um specie s for cot ton im-
provement[ J] .Euphy tica , 1999 , 108:199-213.
[ 26] S TEWARD C N , H alfhill M D , Warwick S I.
T ransgene intr og ression from genetically modified
cr ops to their wild re lativ es[ J] .Nat Rev Genet ,
2003 , 4:806-817.
[ 27] SCH OENENBERGER N , Felber F , Savova D , et
a l.I nt rog ression of w hea t DNA marker s f rom A , B
and D genomes in early g ener ation pro geny of Ae-
g ilops cy lindrical Host ×Triticum aestivum L.hy-
brids[ J] .Theo r Appl Genet , 2005 , 111:1338-1346.
[ 28] LIU L , Guo W , Zhu X , e t al.Inheritance and fine
mapping of fer tility restor ation fo r cy toplasmic male
ste rility in Gossypium hirsutum L[ J] .Theo r Appl
Gene t , 2003 , 106:461-469.  ○
2634 期      沈新莲等:棉属野生种克劳茨基棉(Gossy pium k lotzschianum)基因组向陆地棉的渐渗