免费文献传递   相关文献

Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut

弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响


间作套种是我国主要的花生(Arachis hypogaea)种植方式之一。然而, 与单作相比, 在间作套种体系中, 花生截获的光能较少, 生长发育差, 产量低, 研究不同品种耐阴机理对选择适宜间作套种的花生品种具有重要意义。该研究用耐阴性不同的两个花生品种‘花育22号’ (强耐阴性)和‘白沙1016’ (弱耐阴性)为材料, 在大田条件下采用不同透光率遮阴网设置50%自然光强(中度弱光胁迫)和15%自然光强(严重弱光胁迫) 2个弱光处理, 从出苗期开始遮阴40天, 以自然光强为对照, 研究了弱光胁迫对花生功能叶片RuBP羧化酶活性和叶绿体超微结构的影响。结果表明: 光强为自然光照50%和15%的处理, ‘花育22号’RuBP羧化酶活性与对照相比虽有降低, 但差异不显著, 而‘白沙1016’分别比对照低40.1%和59.4%, 显著低于对照。与对照相比, 50%自然光强下‘花育22号’叶绿体数不变, 叶绿体基粒数和基粒片层数显著增多, 叶绿体变长且发育完好, 15%自然光强下, 叶绿体数、基粒数和淀粉粒数显著减少, 叶绿体膜和基粒片层出现破损, 但叶绿体变长, 基粒片层数增加; ‘白沙1016’在50%自然光强下, 叶绿体数目和超微结构变化同‘花育22号’相似, 在15%自然光强下叶绿体变圆, 基粒数的降幅和基粒片层破损程度大于‘花育22号’且基粒片层数减少, 淀粉粒数增多。因此, 弱光胁迫特别是严重弱光胁迫条件下, 功能叶RuBP羧化酶活性降低幅度小、叶绿体超微结构受损程度低是‘花育22号’耐阴的光合生理基础。

Aims In recent years, intercropping system has become one of the major practice of peanut (Arachis hypogaea) cultivation in northern China because of the high land and energy utilization efficiency, to some extent compensating for the production loss caused by decreasing area of cultivation land. Intercropped peanut plants often have a lower pod yield compared with monoculture due to constraint on light availability. This study was conducted to explore the shade-tolerance mechanism in two peanut cultivars, ‘Huayu 22’ and ‘Baisha 1016’, that grew in an intercropping system, by studying chloroplast ultrastructure and rubisco activity under different levels of shading.
Methods A field experiment was conducted with three levels of light treatments, including full natural light (CK), 50% natural light indensity (NLI), and 15% NLI. The ‘Huayu 22’ was used as a shade-tolerant cultivar and the ‘Baisha 1016’ as a shade-susceptible cultivar based on previous studies. Experimental plants of both cultivars were shaded for 40 days from emergency in 2006. Rubisco activity, the number and shapes of chloroplasts and starch grains, and number of grana and granum lamella were investigated in functional leaves of plants in all treatments.
Important findings The functional leaves of peanut plants in the 50% and 15% NLI treatments had a lower rubisco activity than those in the CK treatment. In the ‘Baisha 1016’, the reduction in rubisco activity was 40.1% in the 50% NLI treatment and 59.4% in the 15% NLI treatment, respectively, compared to the CK treatment; whereas no significant differences were found among treatments in the ‘Huayu 22’ in the rubisco activity. Compared with the CK, the number of chloroplasts remained unchanged, the number of grana and lamella in grana increased, and the individual chloroplast was longer and in perfect development in the functional leaves of plants of the ‘Huayu 22’ grown in the 50% NLI treatment. In contrast, the number of chloroplasts, grana and starch grains of the ‘Huayu 22’ plants decreased significantly, the chloroplast membrane and grana lamella were damaged, the number of granum lamella increased, and the individual chloroplast became longer in the 15% NLI treatment. The number and ultrastructure of chloroplasts in the ‘Baisha 1016’ plants followed similar patterns of changes as those of the ‘Huayu 22’ in the 50% NLI treatment. For plants of the ‘Baisha 1016’ in the 15% NLI treatment, their chloroplasts became more roundly shaped, with decreasing number of grana lamella and increasing number of starch grains, compared with the CK. There were a greater decrease in the grana number and more damage in the grana lamella in plants of the ‘Baisha 1016’ than those of the ‘Huayu 22’. In conclusion, the shade tolerance of the ‘Huayu 22’ resulted from lack of changes in rubisco activity and less damage in the ultrastructure of chloroplasts when under low light stress compared with the ‘Baisha 1016’.


全 文 :植物生态学报 2014, 38 (7): 740–748 doi: 10.3724/SP.J.1258.2014.00069
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期: 2014-02-26 接受日期: 2014-04-01
* 共同第一作者 Co-first author
** 共同通讯作者 Co-author for correspondence (E-mail: caibinw@126.com; ypzheng62@126.com)
弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿
体超微结构的影响
吴正锋1* 孙学武1* 王才斌1** 郑亚萍1** 万书波2 刘俊华3 郑永美1
吴菊香1 冯 昊1 于天一1
1山东省花生研究所, 山东青岛 266100; 2山东省农业科学院, 济南 250100; 3滨州学院生命科学系, 山东滨州 256600
摘 要 间作套种是我国主要的花生(Arachis hypogaea)种植方式之一。然而, 与单作相比, 在间作套种体系中, 花生截获的
光能较少, 生长发育差, 产量低, 研究不同品种耐阴机理对选择适宜间作套种的花生品种具有重要意义。该研究用耐阴性不
同的两个花生品种‘花育22号’ (强耐阴性)和‘白沙1016’ (弱耐阴性)为材料, 在大田条件下采用不同透光率遮阴网设置50%自
然光强(中度弱光胁迫)和15%自然光强(严重弱光胁迫) 2个弱光处理, 从出苗期开始遮阴40天, 以自然光强为对照, 研究了弱
光胁迫对花生功能叶片RuBP羧化酶活性和叶绿体超微结构的影响。结果表明: 光强为自然光照50%和15%的处理, ‘花育22号’
RuBP羧化酶活性与对照相比虽有降低, 但差异不显著, 而‘白沙1016’分别比对照低40.1%和59.4%, 显著低于对照。与对照相
比, 50%自然光强下‘花育22号’叶绿体数不变, 叶绿体基粒数和基粒片层数显著增多, 叶绿体变长且发育完好, 15%自然光强
下, 叶绿体数、基粒数和淀粉粒数显著减少, 叶绿体膜和基粒片层出现破损, 但叶绿体变长, 基粒片层数增加; ‘白沙1016’在
50%自然光强下, 叶绿体数目和超微结构变化同‘花育22号’相似, 在15%自然光强下叶绿体变圆, 基粒数的降幅和基粒片层
破损程度大于‘花育22号’且基粒片层数减少, 淀粉粒数增多。因此, 弱光胁迫特别是严重弱光胁迫条件下, 功能叶RuBP羧化
酶活性降低幅度小、叶绿体超微结构受损程度低是‘花育22号’耐阴的光合生理基础。
关键词 叶绿体超微结构, ‘花育22号’, 弱光胁迫, 花生, RuBP羧化酶
Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in func-
tional leaves of peanut
WU Zheng-Feng1*, SUN Xue-Wu1*, WANG Cai-Bin1**, ZHENG Ya-Ping1**, WAN Shu-Bo2, LIU Jun-Hua3, ZHENG
Yong-Mei1, WU Ju-Xiang, FENG Hao1, and YU Tian-Yi1
1Shandong Peanut Research Institute, Qingdao, Shandong 266100, China; 2Shandong Academy of Agricultural Sciences, Ji’nan 250100, China; and
3Department of Life Sciences, Binzhou University, Binzhou, Shandong 256600, China
Abstract
Aims In recent years, intercropping system has become one of the major practice of peanut (Arachis hypogaea)
cultivation in northern China because of the high land and energy utilization efficiency, to some extent compen-
sating for the production loss caused by decreasing area of cultivation land. Intercropped peanut plants often have
a lower pod yield compared with monoculture due to constraint on light availability. This study was conducted to
explore the shade-tolerance mechanism in two peanut cultivars, ‘Huayu 22’ and ‘Baisha 1016’, that grew in an
intercropping system, by studying chloroplast ultrastructure and rubisco activity under different levels of shading.
Methods A field experiment was conducted with three levels of light treatments, including full natural light
(CK), 50% natural light indensity (NLI), and 15% NLI. The ‘Huayu 22’ was used as a shade-tolerant cultivar and
the ‘Baisha 1016’ as a shade-susceptible cultivar based on previous studies. Experimental plants of both cultivars
were shaded for 40 days from emergency in 2006. Rubisco activity, the number and shapes of chloroplasts and
starch grains, and number of grana and granum lamella were investigated in functional leaves of plants in all
treatments.
Important findings The functional leaves of peanut plants in the 50% and 15% NLI treatments had a lower
rubisco activity than those in the CK treatment. In the ‘Baisha 1016’, the reduction in rubisco activity was 40.1%
in the 50% NLI treatment and 59.4% in the 15% NLI treatment, respectively, compared to the CK treatment;
吴正锋等: 弱光胁迫对花生功能叶片 RuBP羧化酶活性及叶绿体超微结构的影响 741

doi: 10.3724/SP.J.1258.2014.00069
whereas no significant differences were found among treatments in the ‘Huayu 22’ in the rubisco activity. Com-
pared with the CK, the number of chloroplasts remained unchanged, the number of grana and lamella in grana
increased, and the individual chloroplast was longer and in perfect development in the functional leaves of plants
of the ‘Huayu 22’ grown in the 50% NLI treatment. In contrast, the number of chloroplasts, grana and starch
grains of the ‘Huayu 22’ plants decreased significantly, the chloroplast membrane and grana lamella were dam-
aged, the number of granum lamella increased, and the individual chloroplast became longer in the 15% NLI
treatment. The number and ultrastructure of chloroplasts in the ‘Baisha 1016’ plants followed similar patterns of
changes as those of the ‘Huayu 22’ in the 50% NLI treatment. For plants of the ‘Baisha 1016’ in the 15% NLI
treatment, their chloroplasts became more roundly shaped, with decreasing number of grana lamella and increas-
ing number of starch grains, compared with the CK. There were a greater decrease in the grana number and more
damage in the grana lamella in plants of the ‘Baisha 1016’ than those of the ‘Huayu 22’. In conclusion, the shade
tolerance of the ‘Huayu 22’ resulted from lack of changes in rubisco activity and less damage in the ultrastructure
of chloroplasts when under low light stress compared with the ‘Baisha 1016’.
Key words chloroplast ultrastructure, ‘Huayu 22’, low light stress, peanut, Rubisco

花生(Arachis hypogaea)是我国重要的油料作物
和经济作物, 近年来随着我国人口不断增长和耕地
的不断减少, 粮油争地矛盾日益突出。由于间作套
种体系具有土地和光热资源利用率高的特点(李增
嘉等, 1998; Awal et al., 2006; Tanwar et al., 2014),
花生与小麦(Triticum aestivum)、玉米(Zea mays)等其
他作物的间作套种的面积越来越大, 逐渐成为我国
北方地区重要的花生种植方式(王才斌和万书波,
2009)。间作套种体系中花生冠层的光照强度平均只
有自然光照下的60%, 最低仅为单作的21% (周苏玫
等, 1998; 郭峰等, 2008)。弱光下花生植株瘦弱, 侧
枝发育不良, 开花延迟, 荚果产量受到不同程度的
影响(Ketring, 1979; Rao & Mittra, 1988; 吴正锋等,
2008, 2011)。农作物的产量主要来源于光合作用,
光照强度对植物的光合特性有显著的影响, 过高
过低均会导致光合能力降低(张吉旺等, 2007; Af-
sharnia, et al., 2013; Murakami et al., 2014)。弱光下
花生光合速率和叶绿素含量降低, 当花生长期生
活在低光照的环境下时会对弱光产生适应性, 表
现为光补偿点降低, 光化学效率增加, 叶绿素a/b
比值减小 , 叶片对弱光的捕获和利用能力增强
(George & Nair, 1990; 吴正锋等, 2009; 张昆等,
2010)。因此花生是一种较适合间作套种的矮秆
作物。
‘花育22号’是山东省花生研究所选育的普通型
大花生, 具有产量潜力大、综合抗性好、适应性广
等特点, “十一五”以来连续被山东省确定为主推品
种, 是促成山东花生高产的一个主要品种。前期的
研究表明, 弱光对‘花育22号’植株性状和荚果产量
的影响小于对‘白沙1016’的影响, 其耐阴性好于‘白
沙1016’ (吴正锋等, 2008), 弱光胁迫下‘花育22号’
的光补偿点降低、光系统II的最大光化学效率升高,
对弱光的捕获能力增强(吴正锋等, 2009)。RuBP羧
化酶是决定C3植物光合碳代谢方向和效率的关键
酶, 叶绿体是作物进行光合作用的重要场所(Taiz &
Zeiger, 2009), RuBP羧化酶活性及叶绿体结构与作
物光合速率密切相关(Wareing et al., 1968; Lilley &
Walker, 1974), 但目前弱光胁迫对花生RuBP羧化酶
活性和叶绿体结构的影响鲜有报道。本文在弱光胁
迫下比较了强耐阴性花生品种‘花育22号’和弱耐阴
性品种‘白沙1016’功能叶RuBP羧化酶活性和叶绿
体结构的变化特点, 以期为明确不同基因型花生的
耐阴机制提供依据。
1 材料和方法
1.1 试验设计
试验于2006年在山东农业大学南校区教学基地
进行, 试验地地理坐标117.13° E, 36.18° N, 属于温
带半湿润大陆性气候, 年日照时间2 611 h, 年平均
气温12.8 ℃, 无霜期约200天, 年降水量701.6 mm,
7–8月阴雨天多, 光照不足。试验地土质类型为棕壤
土 , 水解氮含量 46.3 mg·kg–1, 有效磷含量 9.38
mg·kg–1, 速效钾含量47.2 mg·kg–1。大田条件下以自
然光为对照, 采用两种不同透光率的遮阴网设置
50%自然光强(NLI)和15% NLI两个遮光处理, 从花
生出苗开始遮阴40天。处理分别用CK、50% NLI、
742 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (7): 740–748

www.plant-ecology.com
15% NLI表示, 小区长5.0 m, 宽2.4 m, 面积12 m2,
重复3次, 共9个小区。遮阴棚高1.5 m, 东、南、西
三面遮阴网距地面30 cm, 北面完全敞开, 以利通风
透气。光照强度用Lx-101照度仪(北京师范大学, 北
京)于晴天11:00–13:00间测定, 测定位置距遮阴网
顶棚1 m处, CO2浓度采用CIRAS-2型便携式光合测
定系统(PP-system, Amesbury, USA)测定, 遮光对花
生群体小气候的影响见表1。
供试花生品种为强耐阴性花生品种‘花育22号’
和弱耐阴性花生品种‘白沙1016’。5月11号起垄覆膜
足墒播种, 垄距80 cm, 垄面宽50 cm, 每垄2行, 垄
上行距30 cm, 穴距16 cm, 每穴3粒, 花生出苗后
3–4叶期间苗, 每穴留健苗2株。播种前试验地每hm2
均匀撒施氮(N)、磷(P2O5)、钾(K2O)含量各15%的三
元复合肥750 kg, 混入0–30 cm土层中, 花生发育期
间不再追肥浇水。
1.2 测定内容与方法
1.2.1 RuBP羧化酶活性测定
解除遮阴前一天各小区选取8–10株典型植株主
茎顶部第3片完全展开叶, 液氮速冻处理, 带回实验
室–40 ℃冰箱低温冷冻保存, 以备酶活性的测定。酶
液制备: 取叶片2 g (洗净, 去中脉, 吸去水分), 提
取液为Tris-HCl缓冲液(pH 7.8), 冰浴研磨, 8层纱布
过滤后, 将滤液在HITACHI (20PR-52D)型离心机上
于4 ℃下10 000 × g离心20 min, 弃沉淀, 上清液为
酶液。
RuBP羧化酶活性的测定参照Lilley和Walker
(1974)的方法。反应液总体积为3 mL, 反应液中含
有 90 µmol·L–1的 Tris-HCl缓冲液 (pH 7.8)、 10
µmol·L–1 MgCl2、0.36 µmol·L–1 EDTA、0.3 µmol·L–1
NADH、5 µmol·L–1 ATP、7.5 µmol·L–1 Cr-P、20
µmol·L–1 NaHCO3、过量的磷酸肌酸激酶、磷酸甘
油酸激酶和磷酸甘油醛脱氢酶, 以及适量稀释的
RuBP酶液。在25 ℃下预温10 min, 以加入3.75
µmol·L–1 RuBP为反应开始, 立即计时, 每30 s测定
一次340 nm下的吸光度, 以1 min内的吸光度变化
计算酶活力。
1.2.2 叶绿体超微结构的测定
遮光解除当天, 各小区选取3–4株典型植株, 切
取主茎顶部第3片功能叶片中部主脉两侧1–2 mm见
方小块, 用4%戊二醛前固定, pH 7.2磷酸缓冲液冲
洗, 1%锇酸后固定, 梯度乙醇-丙醇脱水, Epon-812
环氧树脂包埋, LKB-5型超薄切片机切片, 醋酸铀-
柠檬酸铅双重染色, JEM-1200EX型透射电镜(JEOL,
Tokyo, Japan)观察。选取典型视野拍照, 并统计栅栏
组织单位细胞内叶绿体数、基粒数、基粒片层数、
淀粉粒数, 并测量叶绿体长度、宽度, 淀粉粒体积,
观测20个视野, 取平均值。
1.3 数据分析与处理
应用Microsoft Excel 2010数据处理, DPS 7.05
统计软件进行单因素方差分析, 运用LSD检验多重
比较, SigmaPlot 10.0作图。
2 结果和分析
2.1 弱光对花生RuBP羧化酶活性的影响
RuBP羧化酶是光合作用的关键酶, 其活性的
高低对光合碳同化能力具有重要的影响, 进而影响
光合速率。由图1可看出弱光下生长的‘花育22号’功
能叶片的RuBP羧化酶活性比自然光强下低, 但差
异不显著; 弱光下‘白沙1016’的RuBP羧化酶活性显
著低于对照, 50% NLI和15% NLI处理分别比对照低
40.1%和59.4%, 远大于‘花育22号’弱光下的降幅。
2.2 弱光胁迫对叶绿体数目和形态的影响
弱光胁迫对花生叶绿体数具有显著影响。随着
光照强度的降低, 花生叶肉细胞内的叶绿体数呈减
少的趋势 , 50% NLI下生长的两个花生品种的


表1 遮光处理对花生群体小气候的影响(平均值±标准偏差)
Table 1 Effects of shading treatment on microclimate of peanut population (mean ± SD)
处理 Treatment CO2浓度
CO2 concentration (µmol·mol–1)
光照强度
Light intensity (µmol·m–2·s–1)
冠层温度
Canopy temperature (℃)
对照 CK 361.3 ± 2.3a 1 596.4 ± 4.9a 31.9 ± 0.5a
50% NLI 363.0 ± 0.9a 793.6 ± 3.6b 29.3 ± 0.3b
15% NLI 361.6 ± 2.6a 234.4 ± 4.3c 30.0 ± 0.6b
NLI, 自然光强。同列不同小写字母表示处理间差异显著(p < 0.05)。
NLI, natural light intensity. Different lowercase letters within the same column indicate significant differences between treatments (p < 0.05).

吴正锋等: 弱光胁迫对花生功能叶片 RuBP羧化酶活性及叶绿体超微结构的影响 743

doi: 10.3724/SP.J.1258.2014.00069


图1 弱光对花生功能叶片RuBP羧化酶活性的影响(平均值
±标准偏差)。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Effects of weak light on rubisco activity in functional
leaves of peanut (mean ± SD). NLI, natural light intensity. Different
lowercase letters indicate significant differences (p < 0.05).


叶绿体数和对照差异不大, 当光照只有自然光强的
15%时叶绿体数比对照显著降低, ‘白沙1016’和‘花
育22号’每个叶细胞的叶绿体个数平均分别减少2.7
个和3.7个, 降幅分别为18.6%和23.3%。弱光对叶绿
体形态的影响因光照强度和花生品种不同而有所不
同, 50% NLI下两个花生品种的叶绿体变长, 但在
15% NLI下‘白沙1016’的叶绿体变圆, 而‘花育22号’
的变长(表2; 图2)。
2.3 弱光胁迫对叶绿体超微结构的影响
随着光照强度的降低, 叶绿体内的基粒数呈现
先增加后减少的趋势, 50% NLI下‘花育22号’的基粒
数有增多的趋势但未达显著水平, ‘白沙1016’每个
叶绿体内的基粒数比对照多10个, 增加了27.2%,
达到显著水平, 说明适度遮光有利于花生叶绿体基
粒的形成; 当光强降低到15% NLI时, 两个花生品
种的叶绿体基粒数与对照相比显著减少, ‘花育22
号’和‘白沙1016’每个叶绿体分别减少5.9个和10.2
个, 降幅分别为15.7%和27.8%。
与对照相比, ‘花育22号’叶绿体基粒片层数随
光强的减弱显著增加, 50% NLI和15% NLI处理分别
增加47.8%和121.7%; ‘白沙1016’叶绿体基粒片层数
在50% NLI时增加16.7%, 但15% NLI下减少38.9%,
说明严重弱光胁迫时‘花育22号’的基粒片层发育仍
然良好, 而‘白沙1016’的基粒片层发育不完善(表3;
图3)。
花生功能叶片细胞超微结构(2.5万倍)图片显
示, 与正常光照相比, 50% NLI下两花生品种栅栏组
织细胞的叶绿体发育好, 基粒片层多; 当光强降低
到15% NLI下时, 叶绿体膜和基粒发育不完全, 基
粒片层断裂破损模糊不清, 两花生品种相比, 严重
弱光胁迫对‘花育22号’叶绿体超微结构的影响程度
小于‘白沙1016’ (图3)。
弱光下‘花育22号’叶绿体内淀粉粒数显著减少,
50%和15% NLI分别比对照减少19.4%和31.5%; 而
弱耐阴性花生品种‘白沙1016’叶绿体内淀粉粒呈增
加的趋势, 50% NLI处理和对照相差不大, 而15%
NLI处理增加55.7%, 达到显著水平。淀粉粒的大小
也随着光照强度的降低发生变化, ‘花育22号’在50%
NLI下淀粉粒宽度与对照相近, 但长度显著增加,
体积变大, 在15% NLI下淀粉粒的长度和宽度均显
著减少, 体积减小; 而‘白沙1016’在50% NLI下淀粉
粒长度和对照相近, 但宽度显著降低, 体积减小,
在15% NLI下淀粉粒的长度和宽度均显著增加, 体
积增大(表4)。


表2 遮光对花生叶片(倒3叶)叶绿体数目和形状的影响(平均值±标准偏差)
Table 2 Effects of shading on the number and shape of chloroplasts in peanut leaves (mean ± SD)
品种 Cultivar 处理
Treatment
每个细胞的叶绿体数
Number of chloroplasts per cell
叶绿体长度
Chloroplast length (μm)
叶绿体宽度
Chloroplast width (μm)
对照 CK 14.5 ± 2.6a 5.6 ± 1.4b 2.4 ± 0.4b
50% NLI 14.3 ± 2.1a 6.7 ± 1.3a 2.7 ± 0.4b
‘白沙1016’ ‘Baisha 1016’
15% NLI 11.8 ± 2.1b 5.6 ± 1.0b 3.3 ± 0.8a
对照 CK 15.9 ± 2.5a 5.1 ± 1.6b 2.8 ± 0.6a
50% NLI 14.6 ± 2.4a 6.1 ± 1.1a 2.6 ± 0.5ab
‘花育22号’ ‘Huayu 22’
15% NLI 12.2 ± 3.4b 6.3 ± 1.0a 2.4 ± 0.7b
NLI, 自然光强。同列不同字母表示差异显著(p < 0.05)。
NLI, natural light intensity. Different lowercase letters within the same column indicate significant differences (p < 0.05).
744 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (7): 740–748

www.plant-ecology.com


图2 不同光照强度对花生叶绿体超微结构的影响。A, ‘白沙1016’, 对照。B, ‘白沙1016’, 50%自然光强。C, ‘白沙1016’, 15%
自然光强。D, ‘花育22号’, 对照。E, ‘花育22号’, 50%自然光强。F, ‘花育22号’, 15%自然光强。Chl, 叶绿体; GL, 基粒片层; O,
嗜锇颗粒; S, 淀粉粒。
Fig. 2 Effects of light level on the ultrastructure of chloroplasts in leaves of peanut. A, ‘Baisha 1016’, CK. B, ‘Baisha 1016’, 50%
nature light intensity. C, ‘Baisha 1016’, 15% nature light intensity. D, ‘Huayu 22’, CK. E, ‘Huayu 22’, 50% nature light intensity. F,
‘Huayu 22’, 15% nature light intensity. Chl, chloroplast; GL, grana lamellae; O, osmiophilic granule; S, starch grain.



表3 遮光对花生叶片(倒3叶)基粒和基粒片层数的影响(平均值±标准偏差)
Table 3 Effects of shading on the number of grana and granum lamella in peanut leaves (mean ± SD)
品种
Cultivar
处理 Treatment 每个叶绿体的基粒数
Number of grana per chloroplast
基粒片层数
Number of granum lamellae
对照 CK 36.6 ± 8.2b 3.6 ± 1.1b
50% NLI 46.6 ± 5.2a 4.2 ± 1.4a
‘白沙1016’ ‘Baisha 1016’
15% NLI 26.4 ± 6.9c 2.2 ± 0.8c
对照 CK 37.6 ± 9.0a 2.3 ± 0.7c
50% NLI 40.9 ± 9.1a 3.4 ± 0.8b
‘花育22号’ ‘Huayu 22’
15% NLI 31.7 ± 4.9b 5.1 ± 2.1a
NLI, 自然光强。同列不同字母表示差异显著(p < 0.05)。
NLI, natural light intensity. Different lowercase letters within the same column indicate significant differences (p < 0.05).


3 讨论
3.1 弱光对花生RuBP羧化酶活性的影响
作物RuBP羧化酶受土壤、光照、水分等环境因
子影响(Evans & Poorter, 2001; Kumar & Singh,
2009; Omoto et al., 2012)。弱光对作物RuBP羧化酶
的影响前人的研究结论不一致。大多数学者研究表
明: 遮阴条件下大豆(Glycine max)、番薯(Ipomoea
batatas)等作物RuBP羧化酶活性下降(Ladlow, 1976;
Wang et al, 2014) , 而Bohning和Burnside (1956)研
究发现玉米C3循环中的RuBP羧化酶活性不受光强
的影响。Evans和Seemann (1984)指出不同作物品种
吴正锋等: 弱光胁迫对花生功能叶片 RuBP羧化酶活性及叶绿体超微结构的影响 745

doi: 10.3724/SP.J.1258.2014.00069

图3 不同光照强度对花生叶绿体超微结构的影响。A, ‘白沙1016’, 对照。B, ‘白沙1016’, 50%自然光强。C, ‘白沙1016’, 15%
自然光强。D, ‘花育22号’, 对照。E, ‘花育22号’, 50%自然光强。F, ‘花育22号’, 15%自然光强。Chl, 叶绿体; GL, 基粒片层; O,
嗜锇颗粒; S, 淀粉粒。
Fig. 3 Effects of light level on the ultrastructure of chloroplasts in leaves of peanut. A, ‘Baisha 1016’, CK. B, ‘Baisha 1016’, 50%
nature light intensity. C, ‘Baisha 1016’, 15% nature light intensity. D, ‘Huayu 22’, CK. E, ‘Huayu 22’, 50% nature light intensity. F,
‘Huayu 22’, 15% nature light intensity. Chl, chloroplast; GL, grana lamellae; O, osmiophilic granule; S, starch grain.



表4 遮光对花生叶片(倒3叶)淀粉粒数目和形状的影响(平均值±标准偏差)
Table 4 Effects of shading on the number and shape of starch grain in peanut leaves (mean ± SD)
品种
Cultivar
处理
Treatment
每个叶绿体的淀粉粒数
Number of starch grains per chloroplast
淀粉粒长度
Starch grain length (μm)
淀粉粒宽度
Starch grain width (μm)
对照 CK 19.2 ± 5.2b 2.1 ± 0.9b 0.9 ± 0.4b
50% NLI 19.7 ± 5.9b 1.7 ± 0.9b 0.4 ± 0.2c
‘白沙1016’
‘Baisha 1016’
15% NLI 29.9 ± 6.6a 2.8 ± 0.9a 1.3 ± 0.6a
对照 CK 22.2 ± 5.3a 1.3 ± 0.5b 0.6 ± 0.2a
50% NLI 17.9 ± 5.9b 2.0 ± 1.1a 0.5 ± 0.2ab
‘花育22号’
‘Huayu 22’
15% NLI 15.2 ± 5.5b 1.0 ± 0.3b 0.5 ± 0.1b
NLI, 自然光强。同列不同字母表示差异显著(p < 0.05)。
NLI, natural light intensity. Different lowercase letters within the same column indicate significant differences (p < 0.05).



或基因型RuBP羧化酶活性不同, 但弱光胁迫下花
生RuBP羧化酶活性的基因型差异鲜有报道。本研究
结果表明: 花生RuBP羧化酶活性受光照强度的影
响在品种间存在差异, 随着光照强度的降低, 两花
生品种的RuBP羧化酶活性均呈降低的趋势, ‘花育
22号’的RuBP羧化酶活性在50%和15% NLI下和对
照下的相差不大, 而‘白沙1016’在50%和15% NLI下
的RuBP羧化酶活性显著低于对照, 结果表明弱光
对‘白沙1016’功能叶片RuBP羧化酶活性的影响大
于‘花育22号’。
3.2 弱光对花生叶绿体超微结构的影响
大量研究表明, 遮光不仅会造成作物光合生产
能力的降低, 而且会对光合器官的结构产生影响
(Skene, 1974; Ivanova et al., 2008; Huang et al., 2011;
746 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (7): 740–748

www.plant-ecology.com
Yamazaki & Shinomiya, 2013)。长期生活在弱光条件
下的植物具有阴生叶的特点, 叶绿体根据光线的强
弱做出形态的调整, 甚至发生结构的变化, 以增强
对弱光的吸收利用能力(Lichtenthaler et al., 1981;
Wada et al., 2003; 姚允聪等 , 2007; Niinemets,
2010)。弱光对作物叶绿体结构的影响存在品种和基
因型差异(艾希珍等 , 2004; Königer & Bollinger,
2012)。本研究结果表明: 50% NLI两花生品种栅栏
组织细胞的细胞膜和叶绿体膜完好, 叶绿体变长,
基粒数和基粒片层数显著增多, 这可能是由于在中
度弱光胁迫下光能不足, 叶片为了获得足够的光能
满足生长的需要, 叶绿体体积增大, 叶绿体内形成
更多的基粒和基粒片层数, 加快光能在类囊体上的
转移, 提高花生捕获光能的能力。但当光强降低到
15%自然光强时, ‘白沙1016’由于光照严重不足, 叶
绿体变圆, 叶绿体膜发育不完全, 叶绿体数、基粒数
和基粒片层数显著降低, 基粒片层破损; 而‘花育22
号’在15% NLI下尽管与对照相比叶绿体数和基粒
数降低, 但叶绿体变长, 基粒片层数增加, 对弱光
的利用能力增强, 这说明‘花育22号’对弱光的适应
性强于‘白沙1016’。
叶绿体通过光合作用制造的葡萄糖大部分运出
叶绿体, 在细胞质基质中合成蔗糖等二糖为植物的
其他器官提供能源和原料, 一小部分可以在叶绿体
中合成淀粉, 暂时贮存起来。弱光下叶绿体内的淀
粉粒数是增多还是减少, 前人因试验材料、遮光程
度不同而认识不同, 甄伟和张福墁(2000)和张振贤
等 (1999)研究认为黄瓜 (Cucumis sativus)、姜
(Zingiber officinale)在播种后遮阴, 叶绿体内的淀粉
粒大幅增加, 而王学文等(2009)研究了弱光对番茄
(Lycopersicon esculentum)叶绿体超微结构后指出:
弱光下叶绿体内的淀粉粒数减少。本研究结果表明:
与自然光强相比, ‘花育22号’在50% NLI下细胞内淀
粉粒数减少, 但淀粉粒长度增加、体积增大, 在15%
自然光强下淀粉粒数和淀粉粒体积均减小; 而‘白
沙1016’在50% NLI下淀粉粒数增多但淀粉粒体积
减小, 在15% NLI下淀粉粒数和淀粉粒体积均显著
增大。这可能是由于‘花育22号’在弱光下同化产物
的输出没有受到影响, 光合同化产物能较快地输出
为其他组织所用, 因此淀粉粒在叶肉细胞内积累较
少; 而‘白沙1016’在弱光下光合产物运出受到影响,
同化产物的输出速度和输出量降低, 光合产物输送
不出去, 便以淀粉粒的形式在叶绿体中积累。
综上所述, 弱光胁迫对花生RuBP羧化酶活性
和叶绿体超微结构具有一定的影响, 中度弱光胁迫
时花生可通过增大叶绿体的受光面积、增加基粒数
和基粒片层数提高对光能的捕获和利用能力, 但重
度的弱光胁迫时叶绿体基粒发育不完全, 基粒片层
破损, 捕获光能的能力降低, 弱光对‘花育22号’的
RuBP羧化酶活性和叶绿体超微结构的影响小于‘白
沙1016’, 这也是‘花育22号’耐阴的重要光合生理
基础。
基金项目 青岛市公共领域科技支撑计划项目(12-
1-3-28-nsh)、山东省自然科学基金(Q2006D07)和现
代农业产业技术体系建设专项资金(CARS-14)。
参考文献
Afsharnia M, Aliasgharzad N, Hajiboland R, Oustan S (2013).
The effect of light intensity and zinc deficiency on anti-
oxidant enzyme activity, photosynthesis of corn. Interna-
tional Journal of Agronomy and Plant Production, 4,
425–428.
Ai XZ, Guo YK, Ma XZ, Xing YX (2004). Photosynthetic
characteristics and ultrastructure of chloroplast of cucum-
ber under low light intensity in solar greenhouse. Scientia
Agricultura Sinica, 37, 268–273. (in Chinese with English
abstract) [艾希珍, 郭延奎, 马兴庄, 邢禹贤 (2004). 弱
光条件下日光温室黄瓜需光特性及叶绿体超微结构.
中国农业科学, 37, 268–273.]
Awal MA, Koshi H, Ikeda T (2006). Radiation interception and
use by maize/peanut intercrop canopy. Agricultural and
Forest Meteorology, 139, 74–83.
Bohning RH, Burnside CA (1956). The effect of light intensity
on rate of apparent photosynthesis in leaves of sun and
shade plants. American Journal of Botany, 43, 557–561.
Evans JR, Poorter H (2001). Photosynthetic acclimation of
plants to growth irradiance: the relative importance of spe-
cific leaf area and nitrogen partitioning in maximizing
carbon gain. Plant, Cell & Environment, 24, 755–767.
Evans JR, Seemann JR (1984). Differences between wheat
genotypes in specific activity of ribulose-1,5-bisphosphate
carboxylase and the relationship to photosynthesis. Plant
Physiology, 74, 759–765.
George S, Nair RV (1990). Effect of shading on leaf develop-
ment and chlorophyll content in groundnut (Arachis hy-
pogaea L.). Legume Research, 13, 130–132.
Guo F, Wan SB, Wang CB, Li XG, Meng JJ, Cheng B (2008).
Micro-climatic effects of intercropped peanut with wheat
and its influence on peanut growth and development. Chi-
nese Journal of Agrometeorology, 29, 285–289. (in Chi-
nese with English abstract) [郭峰, 万书波, 王才斌, 李新
吴正锋等: 弱光胁迫对花生功能叶片 RuBP羧化酶活性及叶绿体超微结构的影响 747

doi: 10.3724/SP.J.1258.2014.00069
国, 孟静静, 成波 (2008). 宽幅麦田套种田间小气候效
应及对花生生长发育的影响 . 中国农业气象 , 29,
285–289.]
Huang D, Wu L, Chen JR, Dong L (2011). Morphological plas-
ticity, photosynthesis and chlorophyll fluorescence of
Athyrium pachyphlebium at different shade levels. Photo-
synthetica, 49, 611–618.
Ivanova LA, Ivanov LA, Ronzhina DA, Pyankov VI (2008).
Shading-induced changes in the leaf mesophyll of plants
of different functional types. Russian Journal of Plant
Physiology, 55, 211–219.
Ketring DL (1979). Light effects on development of an inde-
terminate plant. Plant Physiology, 64, 665–667.
Königer M, Bollinger N (2012). Chloroplast movement behav-
ior varies widely among species and does not correlate
with high light stress tolerance. Planta, 236, 411–426.
Kumar S, Singh B (2009). Effect of water stress on carbon iso-
tope discrimination and Rubisco activity in bread and du-
rum wheat genotypes. Physiology and Molecular Biology
of Plants, 15, 281–286.
Ladlow MM (1976). Physiology of growth and chemical com-
position. In Shaw Australian Journal of Biological Sci-
ences, 24, 1065–1075.
Li ZJ, Li FC, Zhao BQ (1998). Studies on light and heat re-
source use efficiency and yield effect of wheat/corn/corn
intercropping system. Journal of Shandong Agricultural
University, 29, 419–426. (in Chinese with English ab-
stract) [李增嘉, 李凤超, 赵秉强 (1998). 小麦玉米玉米
间作套种的产量效应与光热资源利用率的研究. 山东
农业大学学报, 29, 419–426.]
Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T,
Kozel U, Meier D, Rahmsdorf U (1981). Photosynthetic
activity, chloroplast ultrastructure, and leaf characteristics
of high-light and low-light plants and of sun and shade
leaves. Photosynthesis Research, 2, 115–141.
Lilley RM, Walker DA (1974). An improved spectrophoto-
metric assay for ribulosebisphosphate carboxylase. Bio-
chimica et Biophysica Acta (BBA)—Enzymology, 358,
226–229.
Murakami K, Matsuda R, Fujiwara K (2014). Light-induced
systemic regulation of photosynthesis in primary and trifo-
liate leaves of Phaseolus vulgaris: effects of photosyn-
thetic photon flux density (PPFD) versus spectrum. Plant
Biology, 16, 16–21.
Niinemets Ü (2010). A review of light interception in plant
stands from leaf to canopy in different plant functional
types and in species with varying shade tolerance. Eco-
logical Research, 25, 693–714.
Omoto E, Taniguchi M, Miyake H (2012). Adaptation re-
sponses in C4 photosynthesis of maize under salinity.
Journal of Plant Physiology, 169, 469–477.
Rao LJ, Mittra BN (1988). Growth and yield of peanut as in-
fluenced by degree and duration of shading. Journal of
Agronomy and Crop Science, 160, 260–265.
Skene DS (1974). Chloroplast structure in mature apple leaves
grown under different levels of illumination and their re-
sponse to changed illumination. Proceedings of the Royal
Society B: Biological Sciences, 186, 75–78.
Taiz L, Zeiger E (Translated by Song CP, Wang XL et al.)
(2009). Plant Physiology. 4th edn. Science Press, Beijing.
106–135. (in Chinese) [宋纯鹏, 王学路等 (译) (2009).
植物生理学. 第四版. 科学出版社, 北京. 106–135.]
Tanwar SPS, Rao SS, Regar PL, Datt S, Kumar P, Jodha BS,
Santra P, Kumar R, Ram R (2014). Improving water and
land use efficiency of fallow-wheat system in shallow
lithic calciorthid soils of arid region: introduction of bed
planting and rainy season sorghum-legume intercropping.
Soil and Tillage Research, 138, 44–55.
Wada M, Kagawa T, Sato Y (2003). Chloroplast movement.
Annual Review of Plant Biology, 54, 455–468.
Wang CB, Wan SB (2009). The Cultural Theory and Technol-
ogy for High-yielding Peanut Under Wheat-Peanut Crop-
ping System. Science Press, Beijing. (in Chinese) [王才斌,
万书波 (2009). 麦油两熟制花生高产栽培理论与技术.
科学出版社, 北京.]
Wang QM, Hou FY, Dong SX, Xie BT, Li AX, Zhang HY,
Zhang LM (2014). Effects of shading on the photosyn-
thetic capacity, endogenous hormones and root yield in
purple-fleshed sweetpotato (Ipomoea batatas (L.) Lam).
Plant Growth Regulation, 72, 113–122.
Wang XW, Wang YJ, Fu QS, Zhao B, Guo YD (2009). Effects
of low light stress on morphological trait, physiological
characters and leaf ultrastructure of tomato (Lycopersicon
esculentum L.) seedlings. Acta Agriculturae Boreali-
Sinica, 24(5), 144–149. (in Chinese with English abstract)
[王学文, 王玉珏, 付秋实, 赵冰, 郭仰东 (2009). 弱光
逆境对番茄幼苗形态、生理特征及叶片超微结构的影
响. 华北农学报, 24(5), 144–149.]
Wareing PF, Khalifa MM, Treharneet KJ (1968). Rate-limiting
processes in photosynthesis at saturating light intensities.
Nature, 220, 453–457.
Wu ZF, Liu JH, Wan SB, Sun KX, Sun XW, Feng H, Wang CB
(2011). Effect of shading duration on pod yield and quality
of peanut. Shandong Agricultural Sciences, (2), 30–33. (in
Chinese with English abstract) [吴正锋, 刘俊华, 万书波,
孙奎香, 孙学武, 冯昊, 王才斌 (2011). 遮光持续时间
对花生荚果产量和品质的影响 . 山东农业科学 , (2),
30–33.]
Wu ZF, Wang CB, Li X G, Wang FH, Wan SB, Liu JH, Zheng
YP, Sun KX (2009). Effects of shading at seedling stage
on photosynthetic characteristics of Arachis hypogaea L.
leaves. Acta Ecologica Sinica, 29, 1366–1373. (in Chinese
with English abstract) [吴正锋, 王才斌, 李新国, 王法
748 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (7): 740–748

www.plant-ecology.com
宏, 万书波, 刘俊华, 郑亚萍, 孙奎香 (2009). 苗期遮
阴对花生(Arachis hypogaea L.)光合生理特性的影响.
生态学报, 29, 1366–1373.]
Wu ZF, Wang CB, Wan GB, Yang NH, Wan SB, Sun KX, Sun
XW, Feng H (2008). Effects of weak light stress on de-
velopment and pod yield of peanut (Arachis hypogaea L.)
during seedling stage. Journal of Peanut Science, 37(4),
27–31. (in Chinese with English abstract) [吴正锋, 王才
斌, 万更波, 杨年华, 万书波, 孙奎香, 孙学武, 冯昊
(2008). 弱光胁迫对两个不同类型花生生长发育及产量
的影响. 花生学报, 37(4), 27–31.]
Yamazaki J, Shinomiya Y (2013). Effect of partial shading on
the photosynthetic apparatus and photosystem stoichiome-
try in sunflower leaves. Photosynthetica, 51, 3–12.
Yao YC, Wang SH, Kong Y (2007). Characteristics of photo-
synthesis mechanism in different peach species under low
light intensity. Scientia Agricultura Sinica, 40, 855–863.
(in Chinese with English abstract) [姚允聪, 王绍辉, 孔云
(2007). 弱光条件下桃叶片结构及光合特性与叶绿体超
微结构变化. 中国农业科学, 40, 855–863.]
Zhang JW, Dong ST, Wang KJ, Hu CH, Liu P (2007). Effects
of shading in field on photosynthetic characteristics in
summer corn. Acta Agronomica Sinica, 33, 216–222. (in
Chinese with English abstract) [张吉旺, 董树亭, 王空军,
胡昌浩, 刘鹏 (2007). 大田遮阴对夏玉米光合特性的影
响. 作物学报, 33, 216–222.]
Zhang K, Wan YS, Liu FZ (2010). Effects of weak light on
photosynthetic characteristics of peanut seedlings. Scientia
Agricultura Sinica, 43, 65–71. (in Chinese with English
abstract) [张昆, 万勇善, 刘风珍 (2010). 苗期弱光对花
生光合特性的影响. 中国农业科学, 43, 65–71.]
Zhang ZX, Guo YK, Zou Q (1999). Effects of shading on ultra-
structure of chloroplast and microstructure of ginger
leaves. Acta Horticulturae Sinica, 26, 96–100. (in Chinese
with English abstract) [张振贤, 郭延奎, 邹琦 (1999).
遮阴对生姜叶片显微结构及叶绿体超微结构的影响.
园艺学报, 26, 96–100.]
Zhen W, Zhang FM (2000). The effects of low light intensity
on photosynthetic characteristics and ultrastructure of cu-
cumber functional leaves. Acta Horticulturae Sinica, 27,
290–292. (in Chinese with English abstract) [甄伟, 张福
墁 (2000). 弱光对黄瓜功能叶片光合特性及超微结构
的影响. 园艺学报, 27, 290–292.]
Zhou SM, Ma SQ, Li W, Zhang ST (1998). Analysis of superi-
ority of maize and peanut row intercropping. Acta Agri-
culturae Universitatis Henanensis, 32, 17–22. (in Chinese
with English abstract) [周苏玫, 马淑琴, 李文, 张石头
(1998). 玉米花生间作系统优势分析. 河南农业大学学
报, 32, 17–22.]


责任编委: 彭长连 责任编辑: 李 敏