免费文献传递   相关文献

Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China

松嫩草地80种草本植物叶片氮磷化学计量特征


以松嫩草地常见草本植物为研究对象, 分析了各生活型和功能群叶片氮磷化学计量特征。结果显示: 松嫩草地80种草本植物的叶片氮、磷质量浓度分别为(24.2 ± 0.96) mg·g-1和(2.0 ± 0.10) mg·g-1, 面积浓度分别为(13.0 ± 0.54) mg·cm-2和(1.0 ± 0.05) mg·cm-2, 氮磷比为13.0 ± 0.39, 氮磷比与叶片磷质量浓度、叶片氮、磷面积浓度有显著相关关系; 松嫩草地植物生长受到氮限制。一年生植物叶片氮、磷质量浓度和变异系数高于其他生活型, 各生活型之间氮面积浓度和氮磷比差异不显著。豆科植物叶片氮的质量浓度、面积浓度和氮磷比高于其他功能群。在不同生活型或功能群之间, 植物叶片磷的面积浓度差异不显著, 都在1.0 mg·cm-2左右; 适当地增加群落中豆科植物的比例, 可能有助于提高松嫩草地产量和质量。

Aims Leaf nitrogen (N) and phosphorus (P) and N : P stoichiometry have been studied intensively in different regions in China. Songnen grassland is a natural region. Its dominant vegetation is meadow, which is determined by soil properties, and its flora is complex. Our objective was to find the stoichiometric patterns for this region.
Methods Leaf samples of 80 herbaceous species were collected in Songnen grassland in August 2008. We determined leaf N, P, and N : P on both a mass and an area basis and tested the differences according to plant life forms and functional groups.
Important findings Leaf N and P concentrations were (24.2 ± 0.96) and (2.0 ± 0.10) mg·g-1 on a mass basis and (13.0 ± 0.54) and (1.0 ± 0.05) mg·cm-2 on an area basis, respectively. N : P was (13.0 ± 0.39). Plant growth was limited by N in Songnen grassland. The concentration of leaf N and P and coefficient of variation were higher in annual plants than in other life forms on a mass basis, and there were no significant differences of leaf N concentration on an area basis and N : P between different life forms. Leaf N concentrations both on mass and area bases and N : P of legumes were higher than in other functional groups. There was no significant difference in the leaf P concentrations on an area basis among different life forms or functional groups. Our findings indicate that appropriately increasing the proportion of legume plants would improve both the yield and quality of primary productivity in Songnen grassland.


全 文 :植物生态学报 2012, 36 (3): 222–230 doi: 10.3724/SP.J.1258.2012.00222
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2011-07-11 接受日期Accepted: 2011-12-16
* 通讯作者Author for correspondence (E-mail: zhoudaowei@neigae.ac.cn)
松嫩草地80种草本植物叶片氮磷化学计量特征
宋彦涛1 周道玮2* 李 强2 王 平3 黄迎新2
1东北师范大学草地科学研究所, 植被生态科学教育部重点实验室, 长春 130024; 2中国科学院东北地理与农业生态研究所, 长春 130012; 3东北师范
大学城市与环境科学学院; 国家环境保护湿地生态与植被恢复重点实验室, 长春 130024
摘 要 以松嫩草地常见草本植物为研究对象, 分析了各生活型和功能群叶片氮磷化学计量特征。结果显示: 松嫩草地80种
草本植物的叶片氮、磷质量浓度分别为(24.2 ± 0.96) mg·g–1和(2.0 ± 0.10) mg·g–1, 面积浓度分别为(13.0 ± 0.54) mg·cm–2和(1.0 ±
0.05) mg·cm–2, 氮磷比为13.0 ± 0.39, 氮磷比与叶片磷质量浓度、叶片氮、磷面积浓度有显著相关关系; 松嫩草地植物生长受
到氮限制。一年生植物叶片氮、磷质量浓度和变异系数高于其他生活型, 各生活型之间氮面积浓度和氮磷比差异不显著。豆
科植物叶片氮的质量浓度、面积浓度和氮磷比高于其他功能群。在不同生活型或功能群之间, 植物叶片磷的面积浓度差异不
显著, 都在1.0 mg·cm–2左右; 适当地增加群落中豆科植物的比例, 可能有助于提高松嫩草地产量和质量。
关键词 生态化学计量学, 叶片氮磷含量, 氮磷比, 植物功能群, 松嫩草地
Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen
grassland in Northeast China
SONG Yan-Tao1, ZHOU Dao-Wei2*, LI Qiang2, WANG Ping3, and HUANG Ying-Xin2
1Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China;
2Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China; and 3School of Urban and Environmental Sci-
ences, Northeast Normal University; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun 130024,
China
Abstract
Aims Leaf nitrogen (N) and phosphorus (P) and N : P stoichiometry have been studied intensively in different
regions in China. Songnen grassland is a natural region. Its dominant vegetation is meadow, which is determined
by soil properties, and its flora is complex. Our objective was to find the stoichiometric patterns for this region.
Methods Leaf samples of 80 herbaceous species were collected in Songnen grassland in August 2008. We de-
termined leaf N, P, and N : P on both a mass and an area basis and tested the differences according to plant life
forms and functional groups.
Important findings Leaf N and P concentrations were (24.2 ± 0.96) and (2.0 ± 0.10) mg·g–1 on a mass basis and
(13.0 ± 0.54) and (1.0 ± 0.05) mg·cm–2 on an area basis, respectively. N : P was (13.0 ± 0.39). Plant growth was
limited by N in Songnen grassland. The concentration of leaf N and P and coefficient of variation were higher in
annual plants than in other life forms on a mass basis, and there were no significant differences of leaf N concen-
tration on an area basis and N : P between different life forms. Leaf N concentrations both on mass and area bases
and N : P of legumes were higher than in other functional groups. There was no significant difference in the leaf P
concentrations on an area basis among different life forms or functional groups. Our findings indicate that appro-
priately increasing the proportion of legume plants would improve both the yield and quality of primary produc-
tivity in Songnen grassland.
Key words ecological stoichiometry, leaf nitrogen (N) and phosphorus (P) concentration, N : P, plant functional
group, Songnen grassland

氮、磷元素对植物的生长发育起着很重要的作
用, 在植物体内存在功能上的联系, 并且二者之间
存在着重要的相互作用(Koerselman & Meuleman,
1996; Güsewell, 2004; Wright et al., 2004; Ågren,
2008; Ordonez et al., 2009)。在全球范围内, 叶片氮、
磷含量随纬度的增加而增加(即随着温度降低而增
宋彦涛等: 松嫩草地 80 种草本植物叶片氮磷化学计量特征 223

doi: 10.3724/SP.J.1258.2012.00222
加), 氮磷比表现出相反的变化趋势(Reich & Olek-
syn, 2004; Ordonez et al., 2009); 我国陆生植物氮、
磷含量随纬度的变化与全球尺度有相同的趋势
(Han et al., 2005)。同时, 植物叶片的氮磷比临界值
被认为可以作为土壤对植物生长的养分供应状况
的指标(Güsewell et al., 2003; Han et al., 2005), 并且
氮磷比被广泛地用来诊断植物个体、群落和生态系
统的氮、磷养分限制格局(Güsewell, 2004; Zhang et
al., 2004)。
国外对氮磷化学计量学的研究及应用较多, 国
内则起步相对较晚 , 但发展较为迅速。Zhang等
(2003)、曾德慧和陈广生(2005)、王绍强和于贵瑞
(2008)、程滨等(2010)、贺金声和韩兴国(2010)从不
同角度分别介绍了生态化学计量学的研究进展。
《植物生态学报》2010年34卷第1期出版了生态化
学计量学专题, 积极推动了我国生态化学计量学的
发展。我国学者先后报道了不同空间尺度(张丽霞,
2003; Han et al., 2005; He et al., 2006b; 郑淑霞和上
官周平, 2006; 韩文轩等, 2009; 徐冰等, 2010; 耿燕
等, 2011)、不同植被类型(He et al., 2006a, 2008; 吴
统贵等, 2010; 王晶苑等, 2011)及不同演替阶段(高
三平等, 2007; 阎恩荣等, 2008; 刘兴诏等, 2010; 银
晓瑞等, 2010)植物叶片的化学计量学特征。
松嫩草地东北西三面环山, 南面为松辽分水
岭, 是一个独立的自然区(郑彗莹和李建东, 1993)。
松嫩草地为土壤决定的草甸植被类型(周道玮等,
2010), 有独特的群落构成和复杂的植物区系, 物种
丰富, 产草量较高, 是优良的放牧场和割草场(郑彗
莹和李建东, 1993; 周道玮等, 2010), 对该地区植物
叶片化学元素计量学的研究, 有助于合理利用和有
效管理松嫩草地, 同时为我国植物生态化学计量学
区域尺度的研究提供基础数据。
1 研究区概况和研究方法
1.1 研究区域自然概况
研究区位于松嫩平原南部, 中国科学院长岭草
地农牧生态研究站(44°33′ N, 123°31′ E, 海拔145
m)。该区属于温带大陆性季风气候: 春季干旱多风
且降水稀少, 地表蒸发剧烈; 夏季降水集中, 冬季
降雪较少。年平均气温4.9 ℃, ≥10 ℃积温2 920 ℃,
无霜期140–160天, 年日照时数2 800 h。年降水量
300–500 mm, 70%集中在6–9月。年蒸发量1 600.2
mm, 约是降水量的3.5倍。该地区地势平坦, 海拔
140–160 m, 以低地平原为主, 有带状固定沙丘分
布。地带性土壤为黑钙土, pH为7.5–9.0。
1.2 取样和测定方法
2008年8月, 在中国科学院长岭草地农牧生态
研究站附近的草甸共采集25科67属80种草本植物。
每种植物采集新长出完全展开的且没有被啃食的
成熟叶片(除去叶柄)约30 g带回实验室105 ℃恒温
杀青18 min, 完毕后在75 ℃恒温下烘干至恒重, 粉
碎, 保存待测。同时按照相同的标准采集10片植物
叶片, 带回实验室, 顺序照相, 用SigmaScan Pro 4
(Systat Eoftware Inc., California, USA)测量每个叶片
的叶面积, 75 ℃恒温下烘干至恒重, 对应叶面积顺
序逐个叶片称重。
叶片全氮用凯式定氮仪(Kjeltec 2003 Analyzer
Unit, FOSS TECATOR, Höganäs, Sweden)测定, 叶
片全磷用钼锑抗比色法测定(鲍士旦, 2005)。
1.3 数据处理
参照李建东和杨允菲(2005)的生活型划分标准
把采集的物种划分为5组: 即地面芽植物(H), 具有
营养繁殖(根茎、根蘖)的地面芽植物(HG), 隐芽植
物(地下芽植物) (G), 一年生植物(Th), 一年生或二
年生植物(ThH)。由于所采集物种中地上芽植物和
一年生或二年生植物的生活型分别仅包含2物种,
统计时作了删除处理。把采集到的物种分为C3禾草
(C3 grass)、C4禾草(C4 grass)、豆科植物(Legume)、
菊科植物(Compositae)和杂草(Forbs) 5种功能群。
氮、磷面积浓度(Narea, Parea) =氮、磷质量浓度
(Nmass, Pmass) ×单位面积的干物质含量, 变异系数
(CV) =标准误差/平均值×100。氮磷比的质量浓度和
面积浓度值相同, 因此用一组值表示。数据统计用
Pearson相关分析(双尾检验, a = 0.05)、单因素方差
分析(方差不齐时进行数据转换, a = 0.05)和多重比
较 (Scheffe法 , a = 0.05), 统计分析用SPSS 13.0
(SPSS Inc., USA)完成。
2 结果
2.1 叶片氮、磷含量和氮磷比
松嫩草地草本常见植物叶片氮磷质量浓度分
别为(24.2 ± 0.96)和(2.0 ± 0.10) mg·g–1, 变化幅度分
别为12.0–60.1和0.7–5.0 mg·g–1; 叶片氮、磷面积浓
度分别为(13.0 ± 0.54)和(1.0 ± 0.05) mg·cm–2, 变化
224 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (3): 222–230

www.plant-ecology.com
幅度分别为3.8–27.0和0.4–2.6 mg·cm–2。N : P为13.0 ±
0.39, 变化幅度为5.8–22.3。叶片磷含量的变异系数
(CV质量= 43.25%, CV面积= 40.82%)高于叶片氮(CV质量=
35.54%, CV面积= 37.30%)和氮磷比(CV = 26.96%)。
质量浓度和面积浓度的叶片氮、磷都有显著的
正相关关系; 叶片氮质量浓度与氮磷比不相关, 叶
片磷质量浓度和面积浓度与氮磷比呈显著负相关,
叶片氮面积浓度与氮磷比呈显著正相关(表1)。
2.2 不同生活型植物叶片氮、磷化学计量学特征
单因素方差分析表明, 不同生活型植物叶片
氮、磷质量浓度差异显著(p < 0.05), 面积浓度差异
不显著(p > 0.05), 氮磷比差异显著(p = 0.011)。其中
一年生植物的叶片氮质量浓度最高, 变异系数大,
营养繁殖(根茎、根蘖)的地面芽植物最低, 且两者差
异显著; 一年生植物的叶片磷质量浓度显著高于地
面芽植物和隐芽植物, 与具有营养繁殖的地面芽植
物差异不显著(表2)。叶片氮、磷的面积浓度差异不


表1 叶片氮、磷浓度和氮磷比的相关性(n = 80)
Table 1 Correlations between leaf nitrogen (N), phosphorus
(P) concentration and N : P (n = 80)
Nmass
(mg·g–1)
Pmass
(mg·g–1)
Narea
(mg·g–1)
Parea
(mg·g–1)
Pmass (mg·g–1) 0.702*** – – –
Parea (mg·g–1) – – 0.698*** –
N : P 0.207ns –0.488*** 0.365*** –0.363***
Narea, 氮面积浓度; Nmass, 氮质量浓度; Pmass, 磷质量浓度; Parea, 磷面
积浓度。***, p < 0.001; ns, p > 0.05。
Narea, N concentration on a area basis; Nmass, N concentration on a mass
basis; Pmass, P concentration on a mass basis; Parea, P concentration on a
area basis. ***, p < 0.001; ns, p > 0.05.


显著(表2)。地面芽植物的叶片氮磷比最高, 一年生
植物最低, 但各生活型之间差异不显著(表2)。
2.3 不同功能群植物叶片氮、磷化学计量学特征
单因素方差分析显示, 不同功能群植物叶片氮
质量浓度和面积浓度差异显著(p < 0.01), 叶片磷质
量浓度和面积浓度差异不显著(p > 0.05), 氮磷比差
异显著(p < 0.001)。豆科植物的叶片氮质量浓度最
高, 显著高于C4禾草和杂草; 叶片磷质量浓度差异
不显著; C4禾草叶片氮、磷质量浓度变异系数最大
(表3)。豆科植物叶片氮面积浓度显著高于除C3禾草
外的其他3个功能群; 而叶片磷面积浓度在不同功
能群之间差异不显著(表3)。豆科植物叶片氮磷比最
高, 显著高于其他功能群; 除豆科植物之外的功能
群之间氮磷比差异不显著(表3)。
3 讨论
3.1 松嫩草地草本植物的氮、磷化学计量学特征
松嫩草地80种草本植物叶片氮、磷质量浓度分
别为24.2和2.0 mg·g–1, 高于我国陆地植物叶片氮磷
的平均值; 对于我国草原区, 松嫩草地草本植物叶
片氮质量浓度含量低于内蒙古、新疆和西藏, 叶片
磷质量浓度高于内蒙古和西藏, 与新疆相当; 松嫩
草地草本植物氮磷比为13.0, 低于我国陆生植物和
草原区植物叶片氮磷比(表4)。我国陆生植物和草原
区植物的研究结果表明, 相对低的土壤磷含量导致
叶片磷含量低和氮磷比高(Han et al., 2005; He et
al., 2008)。He等(2008)研究表明, 在区域尺度上叶
片磷浓度与气候因子相关性很小, 土壤资源和植物

表2 不同生活型植物叶片氮、磷含量和氮磷比(平均值±标准误差)
Table 2 Concentrations of leaf nitrogen (N), phosphorus (P) and N : P of different life forms (mean ± SE)
生活型
Life form
n Nmass
(mg·g–1)
CV Pmass
(mg·g–1)
CV Narea
(mg·cm–2)
CV Parea
(mg·cm–2)
CV N : P CV
H 16 23.5 ± 1.90ab 32.41 1.7 ± 0.16b 37.04 13.8 ± 1.33a 38.68 1.0 ± 0.12a 45.98 14.5 ± 1.05a 29.04
HG 20 19.0 ± 1.08b 25.38 1.6 ± 0.11b 28.98 11.5 ± 0.73a 28.39 1.0 ± 0.09a 41.55 12.0 ± 0.59a 22.01
G 19 24.8 ± 1.41ab 24.82 1.8 ± 0.09ab 22.18 14.4 ± 1.24a 37.72 1.0 ± 0.09a 36.20 14.0 ± 0.56a 17.48
Th 21 27.3 ± 2.51a 42.11 2.5 ± 0.26a 46.83 11.9 ± 1.07a 41.27 1.1 ± 0.11a 46.04 11.5 ± 0.74a 29.43
总 Total 76 23.7 ± 0.97 35.70 1.9 ± 0.10 43.68 12.8 ± 0.55 37.73 1.0 ± 0.05 43.37 12.9 ± 0.39 26.20
H, 地面芽植物; HG, 具有营养繁殖(根茎、根蘖)的地面芽植物; G, 隐芽植物(地下芽植物); Narea, 氮面积浓度; Nmass, 氮质量浓度; Pmass, 磷质
量浓度; Parea, 磷面积浓度; Th, 一年生植物。不同字母表示平均值间差异显著。
H, hemicryptophyte; HG, hemicryptophyte with vegetative reproduction (rhizome, rootsucker); G, cryptophyte (geophyte); Narea, N concentration on a
area basis; Nmass, N concentration on a mass basis; Pmass, P concentration on a mass basis; Parea, P concentration on a area basis; Th, therophyte. Means
with different letters are significantly different.



宋彦涛等: 松嫩草地 80 种草本植物叶片氮磷化学计量特征 225

doi: 10.3724/SP.J.1258.2012.00222
表3 不同功能群植物叶片氮、磷含量和氮磷比(平均值±标准误差)
Table 3 Concentrations of leaf nitrogen (N), phosphorus (P) and N : P of different plant functional groups (PFGs) (mean ± SE)
功能群 PFGs 数量
n
Nmass
(mg·g–1)
CV Pmass
(mg·g–1)
CV Narea
(mg·cm–2)
CV Parea
(mg·cm–2)
CV N:P CV
C3禾草 C3 grass 6 22.7 ± 2.24ab 24.16 1.8 ± 0.21a 28.78 14.3 ± 2.31abc 39.53 1.1 ± 0.19a 41.98 13.2 ± 0.76b 14.09
C4禾草 C4 grass 15 20.3 ± 2.23b 42.56 1.9 ± 0.29a 59.17 9.1 ± 0.85c 35.90 0.8 ± 0.08a 36.80 12.0 ± 1.07b 34.49
豆科植物 Legume 8 33.9 ± 1.80a 14.97 1.8 ± 0.17a 25.69 20.4 ± 1.33a 18.49 1.1 ± 0.09a 22.22 19.0 ± 0.95a 14.15
菊科植物 Compositae 12 23.8 ± 1.44ab 21.03 2.0 ± 0.20a 35.43 11.5 ± 0.76bc 22.87 0.9 ± 0.07a 27.51 12.7 ± 0.67b 18.19
杂草 Forbs 39 24.0 ± 1.46b 38.07 2.1 ± 0.14a 43.54 13.2 ± 0.67b 31.76 1.2 ± 0.08a 43.26 12.2 ± 0.43b 21.83
总 Total 80 24.2 ± 0.96 35.54 2.0 ± 0.10 43.25 13.0 ± 0.54 37.30 1.0 ± 0.05 40.82 13.0 ± 0.39 26.96
Narea, 氮面积浓度; Nmass, 氮质量浓度; Pmass, 磷质量浓度; Parea, 磷面积浓度。不同字母表示平均值间差异显著。
Narea, N concentration on a area basis; Nmass, N concentration on a mass basis; Pmass, P concentration on a mass basis; Parea, P concentration on a area
basis. Means with different letters are significantly different.



表4 松嫩草地草本植物叶片氮、磷质量浓度和氮磷比与其他研究结果比较
Table 4 Comparisons between the concentrations of leaf nitrogen (N), phosphorus (P) on a mass basis and N : P of Songnen grass-
land and other studies
研究区域 Study area N (mg·g–1) P (mg·g–1) N:P 文文来源 Reference
松嫩草地 Songnen grassland 24.2 2.0 13.0 This study
内蒙古草地 Inner Mongolia grassland 26.8 1.8 16.4 He et al., 2006a, 2008
新疆草地 Xinjiang grassland 25.9 2.0 13.4 He et al., 2006a, 2008
西藏草地 Xizang grassland 28.6 1.9 15.7 He et al., 2006a, 2008
我国陆生植物 Chinese terrestrial plants 20.2 1.5 16.3 Han et al., 2005


系统发育的变化更能解释区域植物叶片磷的变化。
土壤磷主要源于岩石的风化和淋洗, 其含量与母质
的理化性质相关(Vitousek, 1982; He et al., 2008; 阎
恩荣等, 2008)。松嫩草地地貌类型为平原, 由松花
江和嫩江冲积作用形成, 四周环绕着大兴安岭、小
兴安岭、张广才岭和松辽分水岭, 周围的岩石风化
物随雨水大量汇集本区, 土壤磷含量较高(熊毅和
李庆奎, 1987; 郑彗莹和李建东, 1993)。这可能是松
嫩草地植物叶片磷高和氮磷比低的原因。
根据植物叶片氮磷比判断土壤营养状况是生
态化学计量学应用的一个重要方面(曾德慧和陈广
生, 2005)。然而, 研究区域、生长阶段及植物种类
的差异都会影响氮磷比临界值的变化(Güsewell,
2004; 曾德慧和陈广生 , 2005)。Koerselman 和
Meuleman (1996)对40个地点湿地生态系统的施肥
实验表明, 氮磷比大于16表示受磷限制, 氮磷比小
于14表示受氮限制, 氮磷比在14–16时, 受氮、磷的
共同限制。Güsewell (2004)认为氮磷比>20和<10可
作为植被水平氮、磷限制的评价指标。我国753种
高等陆生植物的研究结果表明, 我国陆地植物生长
普遍受到磷的限制(Han et al., 2005), 而松嫩草地植
物的叶片氮含量低于我国其他草原区, 叶片磷含量
高于或等于其他草原区(表4), 综合判断松嫩草地相
对于我国其他草原区来说更受氮元素限制。
从植物个体到生态系统的各个层次上, 碳、氮、
磷都是相互作用的(贺金生和韩兴国, 2010), 因而植
物叶片氮、磷含量有很好的相关性。与其他研究结
果一致, 松嫩草地草本植物叶片氮、磷的质量浓度
和面积浓度都是显著的正相关(表1)。氮磷比的变异
系数小于氮、磷的变异系数, 也说明了氮磷比在植
物体内存在联系。叶片氮磷比与叶片磷的质量浓度
呈显著负相关, 而与叶片氮的质量浓度无显著的相
关性(表1), 从这个意义上说, 氮磷比的变化可能主
要取决于叶片磷的变化(Güsewell, 2004; He et al.,
2008)。然而, 单位面积的叶片氮、磷含量和氮磷比
都有显著的相关性, 且氮磷比与比叶面积相关分析
显示两者有显著的相关关系(r = –0.272, p = 0.015),
说明氮磷比还依赖于植物比叶面积的变化。
3.2 不同生活型植物叶片氮、磷含量及氮磷比
生活型是适应不同环境条件的结果, 松嫩草地
以地面芽和地下芽生活型的植物占优势, 然而由于
过度放牧等人类干扰使一年生植物增多(韩大勇等,
226 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (3): 222–230

www.plant-ecology.com
2011)。本研究显示不同生活型植物叶片氮、磷质量
浓度和氮磷比都差异显著, 表明即使在同一气候
区, 不同生活型植物养分适应策略也有差异(郑淑
霞和上官周平, 2006)。一年生植物叶片的氮、磷质
量浓度高于其他生活型, 且变异系数大(表2), 这是
因为短寿命、快生长的杂草策略的植物需要更多的
氮用于快速生长所需和更多的磷用于高比例的繁
殖分配, 这就导致叶片氮、磷含量比长寿命、慢生
长的植物高, 氮磷比低(Güsewell, 2004; Han et al.,
2005; 曾德慧和陈广生, 2005)。一年生植物分布生
境广, 适应能力强, 变异系数大。由于地面芽和地
下芽植物生活型里面包含豆科植物, 而豆科植物叶
片氮含量高, 因而叶片氮质量浓度较高。具有营养
繁殖(根茎、根蘖)的地面芽植物是松嫩草地的优势
植被, 如羊草(Leymus chinensis)根茎密织、耐践踏、
竞争能力强, 常形成大面积的纯群落(郑彗莹和李
建东, 1993)。然而这个生活型的植物叶片的氮、磷
质量浓度和面积浓度都不高(表2), 这就进一步说明
了松嫩草地土壤缺氮的状况。
不同生活型植物叶片氮、磷的面积浓度差异不
显著, 尤其是叶片磷含量, 都在1.0 mg·cm–2左右,
意味着如果以面积浓度计算, 植物叶片氮磷比主要
依赖于叶片氮的面积浓度。不同生活型植物叶片氮
磷面积浓度变异大于质量浓度, 可能因为同一生活
型叶片的干物质含量变异较大(氮、磷面积浓度=氮、
磷质量浓度×单位面积的干物质含量) (Wright et al.,
2004)。
3.3 不同功能群植物叶片氮、磷含量及氮磷比
松嫩草地草本植物不同功能群的植物叶片氮、
磷的质量浓度和面积浓度变化趋势一致, 即豆科植
物叶片氮含量显著高于其他功能群, 这主要因为豆
科植物可以通过与其共生的根瘤菌固定大气中的
氮。由于豆科植物叶片磷含量与其他功能群相仿,
因此豆科植物叶片有高的氮磷比。C3和C4禾草叶片
氮、磷质量浓度差异不显著, 这与Han等(2005)的研
究结果一致。这表明虽然C4光合途径植物比C3在低
氮甚至磷受限条件下长得更好, 但是光合途径可能
和植物生长的氮、磷限制没有具体的关系(Güsewell,
2004; Han et al., 2005)。松嫩草地位于我国东北区的
中心, 地处蒙古植物区系、长白植物区系、华北植
物区系和兴安植物区系的交界处, C3、C4植物都较
多, C3禾草多属兴安-蒙古区系成分, C4禾草多属华
北区系成分(郑彗莹和李建东, 1993), 而松嫩草地属
于中温带(郑景云等, 2010), 其气候条件仅在7–8月
份能满足C4植物高温和强光的生理需求, 而这个时
候雨热同季, 也是植物生长最有利的季节, C4植物
表现不出明显优势(郑彗莹和李建东, 1993), 这可能
是造成C4禾草与C3禾草叶片氮、磷含量差异不显著
的原因。
豆科植物具有粗蛋白含量高、粗纤维含量低、
适口性好的特点。我们的结果显示了豆科植物叶片
有高的氮含量(表3), 意味着豆科植物蛋白质含量
高。松嫩草地含有豆科植物的群落地上生物量高于
非豆科群落, 且含有豆科植物的群落的土壤全氮含
量高(宋彦涛, 2008; 丁凡等, 2011)。因而, 对于松嫩
草地来说, 适当地增加豆科牧草的比例不仅能够提
高植物的营养价值, 改善草群结构, 而且可利用豆
科植物的固氮能力增加土壤肥力, 提高草地产量和
质量。
致谢 国家重点基础研究发展计划项目(2011CB-
403203)资助。感谢田昆同学在野外取样工作中的帮
助。
参考文献
Ågren GI (2008). Stoichiometry and nutrition of plant growth
in natural communities. Annual Review of Ecology Evolu-
tion and Systematics, 39, 153–170.
Bao SD (鲍士旦) (2005). Soil and Agricultural Chemistry
Analysis (土壤农化分析) 3rd edn. China Agricultural
Press, Beijing. (in Chinese)
Cheng B (程滨), Zhao YJ (赵永军), Zhang WG (张文广), An
SQ (安树青) (2010). The research advances and prospect
of ecological stoichiometry. Acta Ecologica Sinica (生态
学报), 30, 1628–1637. (in Chinese with English abstract)
Ding F (丁凡), Lian PY (廉培勇), Zeng DH (曾德慧) (2011).
Characteristics of plant leaf nitrogen and phosphorus
stoichiometry in relation to soil nitrogen and phosphorus
concentrations in Songnen Plain meadow. Chinese Jour-
nal of Ecology (生态学杂志), 30, 77–81. (in Chinese with
English abstract)
Gao SP (高三平), Li JX (李俊祥), Xu MC (徐明策), Chen X
(陈熙), Dai J (戴洁) (2007). Leaf N and P stoichiometry
of common species in successional stages of the evergreen
broad-leaved forest in Tiantong National Forest Park,
Zhejiang Province, China. Acta Ecologica Sinica (生态学
报), 27, 947–952. (in Chinese with English abstract)
Geng Y (耿燕), Wu Y (吴漪), He JS (贺金生) (2011). Rela-
tionship between leaf phosphorus concentration and soil
宋彦涛等: 松嫩草地 80 种草本植物叶片氮磷化学计量特征 227

doi: 10.3724/SP.J.1258.2012.00222
phosphorus availability across Inner Mongolia grassland.
Chinese Journal of Plant Ecology (植物生态学报), 35,
1–8. (in Chinese with English abstract)
Han DY (韩大勇), Li JD (李建东), Yang YF (杨允菲) (2011).
The study on plant life form diversity of north-east steppe.
In: Yang YF (杨允菲), Yang LM (杨利民) eds. Research
on Vegetation Ecology of Northeast Grassland in China-
Selected Works of Li Jiandong (东北草原植被生态学研
究—李建东论文选集). Jilin Science and Technology
Publishing House, Changchun. 460–465. (in Chinese)
Han WX (韩文轩), Wu Y (吴漪), Tang LY (汤璐瑛), Chen
YH (陈雅涵), Li LP (李利平), He JS (贺金生), Fang JY
(方精云) (2009). Leaf carbon, nitrogen and phosphorus
stoichiometry across plant species in Beijing and its pe-
riphery. Acta Scientiarum Naturalium Universitatis Pe-
kinensis (北京大学学报 (自然科学版)), 45, 855–860. (in
Chinese with English abstract)
Güsewell S (2004). N : P ratios in terrestrial plants: variation
and functional significance. New Phytologist, 164,
243–266.
Güsewell S, Koerselman W, Verhoeven JTA (2003). Biomass
N : P ratios as indicators of nutrient limitation for plant
populations in wetlands. Ecological Applications, 13,
372–384.
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen
and phosphorus stoichiometry across 753 terrestrial plant
species in China. New Phytologist, 168, 377–385.
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z
(2006a). Stoichiometry and large-scale patterns of leaf
carbon and nitrogen in the grassland biomes of China.
Oecologia, 149, 115–122.
He JS (贺金生 ), Han XG (韩兴国 ) (2010). Ecological
stoichiometry: searching for unifying principles from indi-
viduals to ecosystems. Chinese Journal of Plant Ecology (植
物生态学报), 34, 2–6. (in Chinese with English abstract)
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY
(2008). Leaf nitrogen: phosphorus stoichiometry across
Chinese grassland biomes. Oecologia, 155, 301–310.
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M,
Zheng CY, Wang MF, Fang JY (2006b). A test of the
generality of leaf trait relationships on the Tibetan Plateau.
New Phytologist, 170, 835–848.
Koerselman W, Meuleman AFM (1996). The vegetation N : P
ratio: a new tool to detect the nature of nutrient limitation.
Journal of Applied Ecology, 33, 1441–1450.
Li JD (李建东), Yang XF (杨允菲) (2005). Wild Plant Re-
sources of Northeast Grassland (东北草原野生植物资
源 ). Jilin Science and Technology Publishing House,
Changchun. (in Chinese)
Liu XZ (刘兴诏), Zhou GY (周国逸), Zhang DQ (张德强),
Liu SZ (刘世忠), Chu GW (褚国伟), Yan JH (闫俊华)
(2010). N and P stoichiometry of plant and soil in lower
subtropical forest successional series in southern China.
Chinese Journal of Plant Ecology (植物生态学报), 34,
64–71. (in Chinese with English abstract)
Ordonez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich
PB, Aerts R (2009). A global study of relationships be-
tween leaf traits, climate and soil measures of nutrient fer-
tility. Global Ecology and Biogeography, 18, 137–149.
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and
P in relation to temperature and latitude. Proceedings of
the National Academy of Sciences of the United States of
America, 101, 11001–11006.
Song YT (宋彦涛) (2008). Comparative Study of Characteris-
tics Between Legume Community and Aneurolepidium
Chinense Community on Songnen Grassland (松嫩草地豆
科植物群落与羊草群落特征比较研究). Master disserta-
tion, Institute of Grassland Science, Northeast Normal
University, Changchun. (in Chinese)
Vitousek P (1982). Nutrient cycling and nutrient use efficiency.
The American Naturalist, 119, 552–572.
Wang JY (王晶苑), Wang SQ (王绍强), Li RL (李纫兰), Yan
JH (闫俊华), Sha LQ (沙丽清), Han SJ (韩士杰) (2011).
C : N : P stoichiometric characteristics of four forest
types’ dominant tree species in China. Chinese Journal of
Plant Ecology (植物生态学报), 35, 587–595. (in Chinese
with English abstract)
Wang SQ (王绍强) Yu GR (于贵瑞) (2008). Ecological
stoichiometry characteristics of ecosystem carbon, nitro-
gen and phosphorus elements. Acta Ecologica Sinica (生
态学报), 28, 3937–3947. (in Chinese with English ab-
stract)
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z,
Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC,
Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hi-
kosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ,
Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H,
Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC,
Tjoelker MG, Veneklaas EJ, Villar R (2004). The world-
wide leaf economics spectrum. Nature, 428, 821–827.
Wu TG (吴统贵), Wu M (吴明), Liu L (刘丽), Xiao JH (萧江
华) (2010). Seasonal variations of leaf nitrogen and phos-
phorus stoichiometry of three herbaceous species in
Hangzhou Bay coastal wetlands, China. Chinese Journal
of Plant Ecology (植物生态学报), 34, 23–28. (in Chinese
with English abstract)
Xiong Y (熊毅), Li QK (李庆奎) (1987). China Soils (中国土
壤) 2nd edn. Science Press, Beijing. (in Chinese)
Xu B (徐冰), Cheng YX (程雨曦), Gan HJ (甘慧洁), Zhou WJ
(周文嘉), He JS (贺金生) (2010). Correlations between
leaf and fine root traits among and within species of typi-
cal temperate grassland in Xilin River Basin, Inner
228 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (3): 222–230

www.plant-ecology.com
Mongolia, China. Chinese Journal of Plant Ecology (植物
生态学报), 34, 29–38. (in Chinese with English abstract)
Yan ER (阎恩荣), Wang XH (王希华), Zhou W (周武) (2008).
N:P stoichiometry in secondary succession in evergreen
broad-leaved forest, Tiantong, East China. Journal of
Plant Ecology (Chinese Version) (植物生态学报), 32,
13–22. (in Chinese with English abstract)
Yin XR (银晓瑞), Liang CZ (梁存柱), Wang LX (王立新),
Wang W (王炜), Liu ZL (刘钟龄), Liu XP (刘小平)
(2010). Ecological stoichiometry of plant nutrients at dif-
ferent restoration succession stages in typical steppe of
Inner Mongolia, China. Chinese Journal of Plant Ecology
(植物生态学报), 34, 39–47. (in Chinese with English ab-
stract)
Zeng DH (曾德慧), Chen GS (陈广生) (2005). Ecological
stoichiometry: a science to explore the complexity of liv-
ing systems. Acta Phytoecologica Sinica (植物生态学报),
29, 1007–1019. (in Chinese with English abstract)
Zhang LX (张丽霞) (2003). Plant N : P Stoichiometry: Varia-
tions of Chinese Higher Plants and a Preliminary Test by
Field Experimentation (植物N : P计量化学: 中国高等植
物的分异规律与野外实验初步验证). PhD dissertation,
Institute of Botany, Chinese Academy of Sciences, Bei-
jing. (in Chinese with English abstract)
Zhang LX, Bai YF, Han XG (2003). Application of N : P
stoichiometry to ecology studies. Acta Botanica Sinica,
45, 1009–1018.
Zhang LX, Bai YF, Han XG (2004). Differential responses of
N : P stoichiometry of Leymus chinensis and Carex kor-
shinskyi to N additions in a steppe ecosystem in Nei
Mongol. Acta Botanica Sinica, 46, 259–270.
Zheng HY (郑慧莹), Li JD (李建东) (1993). The Grassland
Vegetation and Its Utilization and Conservation on the
Songnen Plain (松嫩平原的草地植被及其利用保护).
Science Press, Beijing. (in Chinese)
Zheng JY (郑景云), Yin YH (尹云鹤), Li BY (李炳元) (2010).
New scheme for climate regionalization in China. Acta
Geographica Sinica (地理学报), 65, 3–12. (in Chinese
with English abstract)
Zheng SX (郑淑霞), Shangguan ZP (上官周平) (2006). Spatial
patterns of leaf nutrition compositions of plants in the
Loess Plateau of China. Progress in Natural Science (自
然科学进展), 16, 965–973. (in Chinese)
Zhou DW (周道玮), Zhang ZX (张正祥), Jin YH (靳英华),
Wang P (王平), Wang XZ (王学志) (2010). Regionaliza-
tion and distribution pattern of vegetation of Northeast
China. Chinese Journal of Plant Ecology (植物生态学
报), 34, 1359–1368. (in Chinese with English abstract)

附表1 松嫩草地80种草本植物叶片氮磷含量
Appendix table 1 Leaf nitrogen and phosphorus concentration of 80 herbage plant species of Songnen grassland, China
物种
Species
生活型1)
Life form1)
植物功能型
PFGs
Nmass
(mg·g–1)
Pmass
(mg·g–1)
Narea
(mg·cm–2)
Parea
(mg·cm–2)
N : P
兴安兴兴子 Lespedeza davurica Ch Legume 32.4 1.5 21.9 1.0 21.6
尖叶兴兴子Lespedeza hedysaroides Ch Legume 29.7 1.7 16.9 1.0 17.4
马马 Iris lactea var. chinensis H Forb 15.5 1.5 21.1 2.0 10.6
紫花地丁 Viola philippica H Forb 23.4 1.6 8.8 0.6 15.0
二色二二草 Limonium bicolor H Forb 25.2 2.1 15.0 1.2 12.2
鹅绒委陵菜 Potentilla anserina H Forb 26.0 3.5 11.1 1.5 7.5
蔓委陵菜 Potentilla flagellaris H Forb 18.8 1.4 9.0 0.7 13.0
地地 Sanguisorba officinalis H Forb 15.8 1.2 8.3 0.6 12.7
大花大里光 Senecio megalanthus H Compositae 26.4 1.8 13.1 0.9 14.4
草草草 Melilotus suaveolens H Legume 42.7 2.4 17.3 1.0 17.7
花花花 Medicago ruthenica H Legume 33.5 1.6 21.0 1.0 21.5
斜茎斜斜 Astragalus adsurgens H Legume 28.5 1.3 16.6 0.7 22.3
糙隐子草 Cleistogenes squarrosa H C4 grass 15.0 1.3 6.6 0.6 11.8
獐毛 Aeluropus sinensis H C4 grass 14.8 0.7 10.1 0.5 20.7
冰草 Agropyron cristatum H C3 grass 22.0 1.7 17.6 1.3 13.2
狼针草 Stipa baicalensis H C3 grass 20.2 1.3 12.0 0.8 16.0
星星草 Puccinellia tenuiflora H C3 grass 19.0 1.8 8.9 0.9 10.4
朝鲜碱茅 Puccinellia chinampoensis H C3 grass 29.1 2.3 24.2 1.9 12.5
野大麦 Hordeum bervisubulatum HG C3 grass 29.8 2.3 10.7 0.8 12.8

宋彦涛等: 松嫩草地 80 种草本植物叶片氮磷化学计量特征 229

doi: 10.3724/SP.J.1258.2012.00222
附表1 (续) Appendix table 1 (continued)
物种
Species
生活型1)
Life form1)
植物功能型
PFGs
Nmass
(mg·g–1)
Pmass
(mg·g–1)
Narea
(mg·cm–2)
Parea
(mg·cm–2)
N : P
羊草 Leymus chinensis HG C3 grass 16.4 1.1 12.3 0.9 14.4
牛鞭草 Hemathria sibirica HG C4 grass 14.5 1.3 7.7 0.7 11.3
野古草 Arundinella hirta HG C4 grass 12.6 1.0 8.8 0.7 12.8
拂子茅 Calamagrostis epigeios HG C4 grass 16.0 2.3 10.4 1.5 6.9
苣荬菜 Sonchus arvensis HG Compositae 24.8 2.0 15.7 1.3 12.5
山苦菜 Ixeris chinensis HG Compositae 19.7 1.4 9.8 0.7 13.9
蒙古蒿 Artemisia mongolica HG Compositae 16.8 1.5 11.3 1.0 11.3
全叶马兰 Kalimeris integrifolia HG Compositae 24.6 2.2 13.5 1.2 11.3
阿尔泰狗娃花 Heteropappus altaicus HG Compositae 24.9 1.6 13.5 0.9 15.8
旋覆花 Inula japonica HG Compositae 20.7 2.0 7.2 0.7 10.6
蓟 Cirsium japonicum HG Compositae 17.9 1.3 11.9 0.9 13.6
水苏 Stachys japonica HG Forb 22.2 2.5 13.5 1.5 9.0
射干 Belamcanda chinensis HG Forb 16.0 1.2 9.4 0.7 13.2
寸草 Carex duriuscula HG Forb 15.7 1.5 12.4 1.2 10.2
光稃香草 Hierochloe glahra HG C4 grass 12.0 0.7 6.9 0.4 16.6
大油芒 Spodiopogon sibiricus HG C4 grass 14.5 1.6 7.0 0.8 9.0
芦苇 Phragmites australis HG C4 grass 23.6 1.5 17.8 1.2 15.3
藨草 Scirprs triqueter HG Forb 21.3 1.8 13.3 1.1 11.7
针马 Heleocharis intersita HG Forb 15.5 2.0 17.6 2.3 7.6
山黧豆 Lathyrus quinquenervius G Legume 30.5 1.5 27.0 1.3 20.3
野豌豆 Vicia cracca G Legume 33.8 2.2 18.5 1.2 15.5
甘草 Glycyrrhiza uralensis G Legume 40.4 2.5 24.1 1.5 16.0
鹅绒藤 Cynanchum chinense G Forb 29.3 2.4 10.5 0.9 12.4
报茎白前 Cynanchum amplexicaule G Forb 25.4 2.4 20.8 2.0 10.5
地梢瓜 Cynanchum thesioides G Forb 25.7 2.2 10.0 0.8 11.8
箭头唐松草 Thalictrum simplex G Forb 21.0 1.5 13.0 1.0 13.6
展兴唐松草 Thalictrum squarrosum G Forb 19.5 1.4 10.3 0.8 13.7
麻花头 Serratula centauroides G Compositae 23.0 1.4 11.6 0.7 16.4
草地风毛菊 Saussurea amara G Compositae 21.7 2.0 6.4 0.6 10.8
并头斜芩 Scutellaria scordifolia G Forb 20.3 1.5 8.4 0.6 13.2
野韭 Allium ramosum G Forb 26.9 2.0 17.1 1.3 13.3
蒙古韭 Allium mongolicum G Forb 15.2 1.3 10.9 0.9 12.0
乳浆大戟 Euphorbia esula G Forb 16.3 1.4 17.8 1.5 11.5
西伯利亚蓼 Polygonum sibiricum G Forb 22.1 1.6 15.1 1.1 13.9
细叶沙参 Adenophora paniculata G Forb 19.0 1.5 16.2 1.2 13.0
茜草 Rubia cordifolia G Forb 25.7 1.5 12.7 0.8 16.7
藤长苗 Calystegia pellita G Forb 27.9 1.8 11.7 0.7 15.6
砂引草 Messerschmidia sibirica G Forb 26.6 1.7 10.8 0.7 15.9
虎尾草 Chloris virgata Th C4 grass 30.6 2.2 11.6 0.9 13.7
狗尾草 Setaria viridis Th C4 grass 22.4 1.6 10.4 0.8 13.7
金色狗尾草 Setaria glauca Th C4 grass 13.8 2.0 3.8 0.6 6.8
稗 Echinochloa crusgali Th C4 grass 16.2 1.6 7.1 0.7 10.2
画眉草 Eragrostis pilosa Th C4 grass 41.7 4.4 10.5 1.1 9.5
稷 Panicum miliaceum Th C4 grass 30.2 1.9 11.6 0.7 16.0
马唐 Digitaria sanguinalis Th C4 grass 26.2 4.5 6.7 1.1 5.9

230 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (3): 222–230

www.plant-ecology.com
附表1 (续) Appendix table 1 (continued)
物种
Species
生活型1)
Life form1)
植物功能型
PFGs
Nmass
(mg·g–1)
Pmass
(mg·g–1)
Narea
(mg·cm–2)
Parea
(mg·cm–2)
N : P
苍耳 Xanthium sibiricum Th Compositae 32.0 2.5 11.9 0.9 13.0
灰绿藜 Chenopodium glaucum Th Forb 27.3 1.5 15.4 0.9 18.0
尖头叶藜 Chenopodium acuminatum Th Forb 17.2 1.0 15.7 0.9 16.8
碱蓬 Suaeda glauca Th Forb 15.5 1.1 8.6 0.6 14.6
碱地肤 Kochia scoparia var. sieversiana Th Forb 19.8 2.1 11.5 1.2 9.4
香青兰 Dracocephalum moldavica Th Forb 15.2 1.2 7.1 0.6 12.5
地锦草 Euphorbia humifusa Th Forb 17.3 2.3 6.3 0.9 7.4
春蓼 Polygonum persicaria Th Forb 21.9 2.7 11.3 1.4 8.2
反兴苋 Amaranthus retroflexus Th Forb 41.0 3.5 25.1 2.2 11.6
马齿苋 Portulaca oleracea Th Forb 38.2 5.0 19.7 2.6 7.7
蒺藜 Tribulus terrester Th Forb 36.2 2.8 15.4 1.2 12.9
曼陀罗 Datura stramonium Th Forb 60.1 4.6 16.3 1.2 13.2
苘麻 Abutilon theophrasti Th Forb 27.5 2.6 11.4 1.1 10.7
大麻 Cannabis sativa Th Forb 22.8 2.3 11.7 1.2 9.8
大籽蒿 Artemisia sieversiana ThH Compositae 33.0 3.9 12.2 1.4 8.6
益母草 Leonurus artemisia ThH Forb 40.7 3.1 16.3 1.2 13.1
Ch, 地上芽植物; H, 地面芽植物; HG, 具有营养繁殖(根茎、根蘖)的地面芽植物; G, 隐芽植物(地下芽植物); Narea, 氮面积浓度; Nmass, 氮质量
浓度; Pmass, 磷质量浓度; Parea, 磷面积浓度; Th, 一年生植物; ThH, 一年生或二年生植物。
Ch, chamaeophytes; H, hemicryptophyte; HG, hemicryptophyte with vegetative reproduction (rhizome, rootsucker); G, cryptophyte (geophyte); Narea,
N concentrations on a area basis; Nmass, N concentrations on a mass basis; PFGs, plant functional groups; Pmass, P concentrations on a mass basis; Parea,
P concentrations on a area basis; Th, therophyte; ThH, therophyte or biennial plant.
1) Li JD (李建东), Yang XF (杨允菲) (2005). Wild Plant Resources of Northeast Grassland (东北草原野生植物资源). Jilin Science and Technol-
ogy Publishing House, Changchun. (in Chinese)



责任编委: 斜建辉 责任编辑: 李 敏