免费文献传递   相关文献

Branching and metabolic exponents in seven woody plants

7种木本植物的分支指数与代谢指数


West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。

Aims The fractal-like network model of plants (the WBE model) considers that the branching exponents 1/a and 1/b determine the metabolic exponent θ in plants. However, the constant 3/4 metabolic exponent does not completely reflect the plant metabolic scaling. Price, Enquist and Savage extended the WBE model by assuming that branching exponents are not constant but covary with each other, and developed the branching traits covariation model of plants (the PES model). In this paper, we study and compare branching exponents and metabolic exponents in seven woody plants based on leaf area and leaf biomass by using the PES model.
Methods To test the PES model, data on leaf area and leaf biomass of seven woody species were used to determine the values of branching and metabolic exponents. Standardized major axis (SMA) regression protocols were used to determine the numerical values of scaling exponents and normalization constants for each species and across the seven species using the software SMATR. Furthermore, test of a common slope across all species and comparisons between the estimated values and theoretical values proposed by the WBE model were also performed by using the SMATR. Specifically, if the value of p exceeds a critical level, then it is considered that there would be no significant differences among the groups compared and that a common slope can be determined; if the value of p is below the critical level, then it would indicate that the estimated value would be significantly different from the theoretical value.
Important findings Significant allometric relationships between leaf area and leaf biomass were verified within and across species. Specifically, leaf area scaled as 0.86-power of leaf biomass across the entire data sets. Therefore, values of branching and metabolic exponents were determined by using leaf biomass and leaf area separately. Values of the branching exponent 1/a and the metabolic exponent θ based on leaf area were statistically indistinguishable among the seven woody species. On the contrary, values of the branching exponents 1/a and 1/b and the metabolic exponent θ based on leaf biomass differed significantly among the seven woody species. Values of the branching exponents and the metabolic exponent estimated from both leaf area and leaf biomass across the entire data set were all statistically indistinguishable from the theoretical values. Furthermore, compared with the value of metabolic exponent based on leaf biomass, the value of metabolic exponent based on leaf area was statistically more comparable to the theoretical value. The effect of allometric relationship between leaf area and leaf biomass on metabolic rate and relative functional traits of plants should be paid more attention in future research.


全 文 :植物生态学报 2014, 38 (6): 599–607 doi: 10.3724/SP.J.1258.2014.00055
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-11-19 接受日期Accepted: 2014-05-15
* 通讯作者Author for correspondence (E-mail: chengdl02@aliyun.com)
7种木本植物的分支指数与代谢指数
马玉珠 程栋梁* 钟全林 靳冰洁 林江铭 卢宏典 郭炳桥
福建师范大学地理科学学院, 湿润亚热带山地生态国家重点实验室培育基地, 福州 350007
摘 要 West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指
数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全
面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同
变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生
物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、
1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论
值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关
注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。
关键词 异速生长, 分支指数, 叶面积, PES模型, WBE模型
Branching and metabolic exponents in seven woody plants
MA Yu-Zhu, CHENG Dong-Liang*, ZHONG Quan-Lin, JIN Bing-Jie, LIN Jiang-Ming, LU Hong-Dian, and GUO
Bing-Qiao
State Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007,
China
Abstract
Aims The fractal-like network model of plants (the WBE model) considers that the branching exponents 1/a and
1/b determine the metabolic exponent θ in plants. However, the constant 3/4 metabolic exponent does not com-
pletely reflect the plant metabolic scaling. Price, Enquist and Savage extended the WBE model by assuming that
branching exponents are not constant but covary with each other, and developed the branching traits covariation
model of plants (the PES model). In this paper, we study and compare branching exponents and metabolic expo-
nents in seven woody plants based on leaf area and leaf biomass by using the PES model.
Methods To test the PES model, data on leaf area and leaf biomass of seven woody species were used to deter-
mine the values of branching and metabolic exponents. Standardized major axis (SMA) regression protocols were
used to determine the numerical values of scaling exponents and normalization constants for each species and
across the seven species using the software SMATR. Furthermore, test of a common slope across all species and
comparisons between the estimated values and theoretical values proposed by the WBE model were also per-
formed by using the SMATR. Specifically, if the value of p exceeds a critical level, then it is considered that there
would be no significant differences among the groups compared and that a common slope can be determined; if
the value of p is below the critical level, then it would indicate that the estimated value would be significantly dif-
ferent from the theoretical value.
Important findings Significant allometric relationships between leaf area and leaf biomass were verified within
and across species. Specifically, leaf area scaled as 0.86-power of leaf biomass across the entire data sets. There-
fore, values of branching and metabolic exponents were determined by using leaf biomass and leaf area separate-
ly. Values of the branching exponent 1/a and the metabolic exponent θ based on leaf area were statistically indis-
tinguishable among the seven woody species. On the contrary, values of the branching exponents 1/a and 1/b and
the metabolic exponent θ based on leaf biomass differed significantly among the seven woody species. Values of
the branching exponents and the metabolic exponent estimated from both leaf area and leaf biomass across the
entire data set were all statistically indistinguishable from the theoretical values. Furthermore, compared with the
600 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 599–607

www.plant-ecology.com
value of metabolic exponent based on leaf biomass, the value of metabolic exponent based on leaf area was statis-
tically more comparable to the theoretical value. The effect of allometric relationship between leaf area and leaf
biomass on metabolic rate and relative functional traits of plants should be paid more attention in future research.
Key words allometry, branching exponent, leaf area, PES model, WBE model

生物体通过新陈代谢摄取、转换、消耗能量和
物质, 其代谢速率是一个基本的生物学速率, 可以
把个体生物学、种群、群落和生态系统联系起来
(Brown et al., 2004)。植物代谢速率与地表植被的水
碳代谢规律密切相关, 在生态学界引发了热烈的讨
论(邓建明等, 2006; Glazier, 2010)。
对于植物而言, 代谢速率(B)和叶生物量(ML)之
间呈等速生长关系, 并且与总生物量(M)呈θ次幂关
系: 即B ∝ ML ∝ Mθ, 代谢指数θ = 1/(2a + b), a、b分
别为分支半径指数和分支长度指数(West et al.,
1997, 1999a; Savage et al., 2008)。最初的代谢生态学
模型植物分形网络模型(简称WBE模型)认为植物中
存在理想的分支指数, 即当a = 1/2, b = 1/3时, θ =
3/4 (West et al., 1997; Niklas & Enquist, 2001)。然而,
随着研究的深入, 发现植物的代谢指数并不是恒定
不变的(Li et al., 2005; Glazier, 2005, 2006; Reich et
al., 2006)。很多研究表明: 植物的实际分支状况不
符合空间充满和运输能量消耗最小的假设, 导致小
个体植物的代谢指数接近1.0, 而大个体植物的代谢
指数小于1.0 (Cheng et al., 2010; Mori et al., 2010;
Peng et al., 2010)。因此, Price等(2007)对WBE模型
进行扩展, 提出植物分支参数协同变化模型(简称
PES模型) (Price et al., 2009)。他们假设植物体异速
关系的变化源于其网络几何形态的变化, 根据AS
(叶面积)、r (半径)、l (树高)、M (总生物量) 4个变
量推导出关系式描绘植物表型各属性间连续的异速
变化:
AS ∝ r1/a, AS ∝ l1/b, AS ∝ Mθ (1)
在PES模型的证明过程中, Price等(2007)假设叶
生物量正比于叶面积, 茎生物量(MS)正比于总生物
量(AS ∝ ML1.0, MS ∝ M1.0), 因此上述公式可转变为:
ML ∝ r1/a, ML ∝ l1/b, ML ∝ MSθ (2)
然而 “收益递减 (diminishing returns)”假说
(Niklas et al., 2007; Niklas & Cobb, 2008; Koontz et
al., 2009)认为叶生物量和叶面积呈不等速生长关系
(AS ∝ ML<1.0), 因此, 用叶生物量作为叶面积的替代
指标有待于进一步研究。本文选取7个乔木树种, 利
用PES模型估测分支指数和代谢指数, 并根据估测
的分支指数计算更加符合物种特异的代谢指数, 比
较基于叶面积和叶生物量计算的分支指数和代谢指
数的异同, 补充完善PES模型。
1 材料和方法
1.1 材料来源
本研究数据来源于Martin等(1998)对科威达水
文实验室(Coweeta Hydrologic Laboratory) (35° N,
83° W)及附近10种落叶乔木地上生物量和氮分配的
研究一文, 文中测定的数据有胸径(DBH, cm)、树高
(m)、茎生物量(kg)、叶生物量(kg)、总生物量(kg)、
比叶面积(SLA, 叶面积/叶干质量, cm2·g–1)、叶面积
(AS, m2)等40多项。标准木确定后, 测量胸径, 树木
伐倒后, 测量树高。树冠被分成3级, 从每个冠层子
样本挑选10枚有代表性的叶片, 把叶片和叶柄分
开。用叶面积仪(LI-COR 3100, LI-COR, Lincoln,
USA)测量叶面积, 叶片和叶柄在65 ℃烘干, 然后
称重来决定比叶面积。详细的测定方法参见文献
(Martin et al., 1998)。
本文仅引用其中7种乔木的胸径、树高、叶生
物量、叶面积、茎生物量和整个地上生物量等数据
(表1)。考虑到Cornus florida和Quercus coccinea的样
本量偏小(n < 6), 以及山核桃(Carya spp.)是多种树
木的混合, 不是单一树种等原因, 对此3个树种不予
引用。
1.2 数据处理
将胸径、树高、叶生物量、叶面积、比叶面积、
茎生物量和地上生物量进行以10为底的对数转换,
分支指数、代谢指数用标准主轴回归方法
(standardized major axis, SMA)计算, SMA回归采用
软 件 Standard Major Axis Tests and Routines
(SMATR) (Falster et al., 2003)分析, SMATR软件还
被用来检测物种间是否存在共有斜率 (common
slope)及进行估测值与理论值的差异性比较研究
(Warton et al., 2006)。
马玉珠等: 7种木本植物的分支指数与代谢指数 601

doi: 10.3724/SP.J.1258.2014.00055
表1 研究树木信息
Table 1 Information of the trees studied
数据来源:https://coweeta.uga.edu/dbpublic/dataset_details.asp?accession=4004。
DBH, diameter at breast height. Data source: https://coweeta.uga.edu/dbpublic/dataset_details.asp?accession=4004.


2 结果
2.1 叶面积与叶生物量
叶面积随着叶生物量的增加而增加(图1)。其中,
4种木本植物(Acer rubrum、北美鹅掌楸、Oxydend-
rum arboreum和Quercus prinus)的叶面积与叶生物
量的异速生长指数与理论值1.0无显著差异; Betula
lenta、Quercus alba和Quercus rubra的异速指数显著
小于1.0 (分别是p = 0.002、p = 0.004、p = 0.030); 对
于所有物种, 整体异速指数为0.86, 显著小于1.0 (p
< 0.001) (表2)。



图1 不同物种叶面积和叶生物量的异速关系。
Fig. 1 The allometric relationships between leaf area and leaf
biomass for different species.


2.2 地上生物量与茎生物量
地上生物量随着茎生物量的增加而增加。7种
植物的异速生长指数在物种间没有显著差异, 具有
共有斜率1.00 (95% CI = 0.99–1.01), 与理论值1.0无
显著差异(p = 0.921); 除物种Betula lenta外(p =
0.011), 其余物种地上生物量和茎生物量的异速指
数均与1.0无显著差异; 对于所有物种, 整体异速指
数为1.00, 与理论值1.0无显著差异 (p = 0.786)
(表2)。
2.3 分支指数
2.3.1 分支半径指数1/a
分别对7种植物的叶面积和胸径作回归分析,
发现其斜率在物种间无显著差异, 具有共有斜率
1.95 (95% CI = 1.76–2.15), 且与理论值2.0无显著差
异 (p = 0.622)。除Oxydendrum arboreum外 (p =
0.003), 其余6个物种的分支指数1/a与理论值2.0均
无显著差异。其中Quercus rubra有最大的分支指数
2.27 (R2 = 0.889), Oxydendrum arboreum有最小的分
支指数1.32 (R2 = 0.955)。整体分析得到1/a值为1.87
(R2 = 0.823), 与理论值2.0无显著差异(p = 0.19) (表
3; 图2)。
对叶生物量和胸径作回归分析, 结果表明: 除
Betula lenta (p = 0.008)和Oxydendrum arboreum (p =
0.018)外, 其余5个物种的1/a值与理论值2.0均无显
著差异。Betula lenta有最大的1/a值2.65 (R2 = 0.946),
Oxydendrum arboreum有最小的1/a值 1.51 (R2 =
0.954)。整体分析得到1/a值为2.13 (R2 = 0.805), 与
理论值2.0无显著差异(p = 0.26) (图2; 表4)。
2.3.2 分支长度指数1/b
基于叶面积和树高作回归分析得知: 7个物种
除Betula lenta (p = 0.007)、Oxydendrum arboreum (p
= 0.036)外, 其余5个物种的1/b值与理论值3.0均无
显著差异。Betula lenta有最大的1/b值4.75 (R2 =
物种
Species
数量
n
胸径范围
DBH range
(cm)
树高范围
Tree height
range (m)
地上生物量范围
Aboveground
biomass range (kg)
茎生物量范围
Stem biomass
range (kg)
叶生物量范围
Leaf biomass
range (kg)
叶面积范围
Leaf area
range (m2)
Acer rubrum 11 6–52 10–34 11–2 387 9–1 801 0.4–22.4 6–311
Betula lenta 10 8–40 13–28 15–1 520 14–979 0.2–18.6 10–309
北美鹅掌楸 Liriodendron tulipifera 10 10–56 14–40 27–2 256 24–1 982 0.8–16.7 16–266
Oxydendrum arboreum 8 4–35 5–21 2–416 2–329 0.2–4.4 5–71
Quercus alba 10 7–63 8–32 10–2 740 6–2 343 0.7–43.8 16–443
Quercus prinus 10 11–58 12–30 27–2 990 22–2 614 1.1–28.2 15–289
Quercus rubra 9 20–52 12–29 24–1 750 22–1 340 0.8–40.7 11–444
602 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 599–607

www.plant-ecology.com
表2 不同物种叶面积与叶生物量、地上生物量与茎生物量的异速关系比较
Table 2 Comparison of the scaling relationships of leaf area versus leaf biomass and aboveground biomass versus stem biomass in
different species
物种
Species
n 叶面积∝叶生物量
Leaf area ∝ leaf biomass
地上生物量∝茎生物量
Aboveground biomass ∝ stem biomass
斜率(95%置信区间)
Slope (95% CI )
R2 p_1.0 斜率(95%置信区间)
Slope (95% CI )
R2 p_1.0
Acer rubrum 11 0.99a (0.92, 1.07) 0.989** 0.756 1.01 (0.98, 1.03) 0.999** 0.637
Betula lenta 10 0.76c (0.66, 0.88) 0.968** 0.002 1.06 (1.02, 1.10) 0.998** 0.011
北美鹅掌楸 Liriodendron tulipifera 10 0.96a (0.87, 1.06) 0.986** 0.365 0.99 (0.96, 1.02) 0.999** 0.416
Oxydendrum arboreum 8 0.84ab (0.65, 1.07) 0.937** 0.129 0.98 (0.94, 1.02) 0.998** 0.216
Quercus alba 10 0.83bc (0.75, 0.93) 0.983** 0.004 0.97 (0.92, 1.01) 0.997** 0.134
Quercus prinus 10 0.92ab (0.79, 1.08) 0.962** 0.274 1.02 (0.95, 1.10) 0.992** 0.580
Quercus rubra 9 0.93ab (0.87, 0.99) 0.995** 0.030 1.01 (0.96, 1.07) 0.996** 0.637
全部 All 68 0.86 (0.80, 0.92) 0.916** <0.001 1.00 (0.98, 1.01) 0.996** 0.786
**表示回归方程的显著性p < 0.01; p_1.0表示斜率与理论值1.0的差异显著性; 上标字母a、b、c代表斜率在物种间的差异。
CI, confidence interval. ** indicates significant relationship at p < 0.01; p_1.0 indicates significance level of difference of the slope from a theoretical
value of 1.0; superscript letters of a, b, and c indicate significant differences in slopes among species.



表3 基于叶面积得到的7个物种分支指数估测值、代谢指数估测值及计算值
Table 3 Estimated values of branching exponents, and estimated and calculated values of metabolic exponent based on leaf area for
seven species
物种
Species
估测值
Estimated values
计算值
Calculated values
叶面积∝胸径
Leaf area ∝ DBH
叶面积∝树高
Leaf area ∝ height
叶面积∝地上生物量
Leaf area ∝ aboveground biomass
1/(2a+b)
分支半径指数1/a
(95%置信区间)
Branching radius
exponent 1/a
(95% CI)
p_2.0 分支长度指数1/b
(95%置信区间)
Branching length
exponent 1/b
(95% CI)
p_3.0 代谢指数θ
(95%置信区间)
Metabolic exponent θ
(95% CI)
p_0.75 代谢指数θ
(95%置信区间)
Metabolic exponent
θ (95% CI)
Acer rubrum 1.82 (1.52, 2.17) 0.257 3.31ab (2.51, 4.38) 0.446 0.70 (0.58, 0.86) 0.500 0.71 (0.58, 0.87)
Betula lenta 2.04 (1.76, 2.37) 0.753 4.75a (3.53, 6.39) 0.007 0.74 (0.66, 0.84) 0.888 0.84 (0.70, 1.00)
北美鹅掌楸
Liriodendron tulipifera
2.03 (1.50, 2.75) 0.919 3.24ab (2.21, 4.74) 0.664 0.77 (0.55, 1.06) 0.880 0.77 (0.56, 1.07)
Oxydendrum arboreum 1.32 (1.07, 1.64) 0.003 1.86c (1.21, 2.88) 0.036 0.51 (0.40, 0.64) 0.006 0.49 (0.37, 0.64)
Quercus alba 1.65 (1.01, 2.70) 0.412 2.57bc (1.62, 4.07) 0.470 0.63 (0.41, 0.97) 0.381 0.62 (0.38, 1.01)
Quercus prinus 2.23 (1.62, 3.08) 0.467 3.95ab (2.39, 6.54) 0.257 0.76 (0.57, 1.02) 0.906 0.87 (0.60, 1.25)
Quercus rubra 2.27 (1.69, 3.04) 0.346 3.85ab (2.17, 6.84) 0.357 0.86 (0.61, 1.19) 0.390 0.88 (0.61, 1.24)
全部 All 1.87 (1.69, 2.07) 0.190 2.98 (2.57, 3.45) 0.916 0.70 (0.64, 0.77) 0.188 0.71 (0.63, 0.80)
所有回归方程显著性p < 0.05。p_2.0表示斜率与理论值2.0的差异显著性; p_3.0表示斜率与理论值3.0的差异显著性; p_0.75表示斜率与理论值0.75
的差异显著性。上标字母a、b、c代表斜率在物种间的差异。
CI, confidence interval. All regression equations are significant at p < 0.05. p_2.0 indicates significance level of difference of the slope from a theoreti-
cal value of 2.0; p_3.0 indicates significance level of difference of the slope from a theoretical value of 3.0; p_0.75 indicates significance level of differ-
ence of the slope from a theoretical value of 0.75. Superscript letters of a, b, and c indicate significant differences in slopes among species.


0.863), Oxydendrum arboreum有最小的1/b值1.86 (R2
= 0.799)。整体分析得到1/b值为2.98 (R2 = 0.635), 与
理论值3.0无显著差异(p = 0.916) (表3; 图2)。
对7个物种的叶生物量和树高作回归分析得出:
除Betula lenta (p < 0.001)外, 其余6个物种的1/b值
与理论值3.0均没有显著差异。Betula lenta有最大的
1/b值6.18 (R2 = 0.881), Oxydendrum arboreum有最
小的1/b值2.25 (R2 = 0.788)。整体分析表明1/b值为
3.48 (R2 = 0.555), 与理论值3.0无显著差异(p =
0.077) (图2; 表4)。
2.4 代谢指数θ
基于叶面积和地上生物量的回归分析, 得知7
马玉珠等: 7种木本植物的分支指数与代谢指数 603

doi: 10.3724/SP.J.1258.2014.00055


图2 基于叶面积和叶生物量获得的分支指数。A, 叶面积∝胸径。B, 叶生物量∝胸径。C, 叶面积∝树高。D, 叶生物量∝树高。
Fig. 2 Branching exponents based on leaf area and leaf biomass. A, leaf area ∝ diameter at breast height (DBH). B, leaf biomass ∝
DBH. C, leaf area ∝ tree height. D, leaf biomass ∝ tree height.


个物种的斜率在种间无显著差异, 具有共有斜率
0.73 (95% CI = 0.66–0.79), 且与理论值0.75无显著
差异 (p = 0.466)。除Oxydendrum arboreum (p =
0.006)外, 其余6个物种的代谢指数θ与理论值0.75
均无显著差异。Quercus rubra有最大的θ值为0.86
(R2 = 0.856), Oxydendrum arboreum有最小的θ值为
0.51 (R2 = 0.944)。整体分析结果表明代谢指数θ为
0.70 (R2 = 0.855), 与理论值0.75无显著差异(p =
0.188) (表3; 图3)。
从叶生物量和地上生物量的关系得知 , 除
Betula lenta (p = 0.001)、Oxydendrum arboreum (p =
0.03)外, 其余物种的代谢指数θ与理论值0.75均没
有显著差异。Betula lenta有最大的θ值0.98 (R2 =
0.976), Oxydendrum arboreum有最小的θ值0.61 (R2
= 0.967)。整体分析结果表明代谢指数θ为0.82 (R2 =
0.838), 与理论值0.75无显著差异(p = 0.061) (表4;
图3)。
3 讨论
3.1 植物叶面积和叶生物量的异速生长关系
WBE模型(West et al., 1999b)认为: 在自然选择
作用下, 生物体趋向于最大限度地从自然界摄取有
限的资源, 并且最高效地利用这些资源, 即网络分
支体系的总表面积(例如植物的叶面积)趋于最大
化。由于植物体叶生物量的测定比叶面积测定更容
易, 在实际研究中通常利用叶生物量替代叶面积
(Enquist & Niklas, 2002; Niklas & Enquist, 2001)进
行分析。WBE模型和PES模型均假设叶面积近似于
叶生物量(AS ∝ ML1.0 ) (West et al., 1997, 1999b; Price
et al., 2007)。本研究表明: Betula lenta、Quercus alba

604 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 599–607

www.plant-ecology.com
表4 基于叶生物量得到的7个物种分支指数估测值、代谢指数估测值及其计算值
Table 4 Estimated values of branching exponent, and estimated and calculated values of metabolic exponent based on leaf biomass
for different species
物种
Species
估测值
Estimated values
计算值
Calculated values
叶生物量∝胸径
Leaf biomass ∝ DBH
叶生物量∝树高
Leaf biomass ∝ tree height
叶生物量∝地上生物量
Leaf biomass ∝ aboveground
biomass
1/(2a+b)
分支半径指数1/a
(95%置信区间)
Branching radius
exponent 1/a
(95% CI)
p_2.0 分支长度指数1/b
(95%置信区间)
Branching length
exponent 1/b
(95% CI)
p_3.0 代谢指数θ
(95%置信区间)
Metabolic exponent
θ (95% CI)
p_0.75 代谢指数θ
(95%置信区间)
Metabolic exponent
θ (95% CI)
Acer rubrum 1.79bc (1.45, 2.20) 0.257 3.32bc (2.54, 4.36) 0.419 0.71bc (0.58, 0.88) 0.591 0.70 (0.56, 0.88)
Betula lenta 2.65a (2.20, 3.20) 0.008 6.18a (4.68, 8.15) < 0.001 0.98a (0.86, 1.11) 0.001 1.09 (0.89, 1.34)
北美鹅掌楸
Liriodendron tulipifera
2.10abc (1.53, 2.89) 0.737 3.35bc (2.34, 4.80) 0.505 0.80abc (0.59, 1.08) 0.651 0.80 (0.58, 1.11)
Oxydendrum arboreum 1.51c (1.22, 1.88) 0.018 2.25c (1.44, 3.51) 0.170 0.61c (0.51, 0.73) 0.030 0.57 (0.43, 0.74)
Quercus alba 1.87abc (1.20, 2.92) 0.753 3.07bc (2.07, 4.55) 0.902 0.75abc (0.53, 1.08) 0.984 0.72 (0.47, 1.11)
Quercus prinus 2.28ab (1.72, 3.02) 0.324 4.31ab (2.63, 7.07) 0.135 0.83abc (0.62, 1.11) 0.477 0.90 (0.65, 1.24)
Quercus rubra 2.42ab (1.76, 3.33) 0.204 4.13abc (2.37, 7.21) 0.232 0.92ab (0.68, 1.26) 0.162 0.94 (0.64, 1.35)
全部 All 2.13 (1.91, 2.37) 0.260 3.48 (2.95, 4.09) 0.077 0.82 (0.75, 0.91) 0.061 0.81 (0.72, 0.92)
所有回归方程显著性p < 0.05。p_2.0表示斜率与理论值2.0的差异显著性; p_3.0表示斜率与理论值3.0的差异显著性; p_0.75表示斜率与理论值0.75
的差异显著性。上标字母a、b、c代表斜率在物种间的差异。
CI, confidence interval. All regression equations are significant at p < 0.05. p_2.0 indicates significance level of difference of the slope from a theoreti-
cal value of 2.0; p_3.0 indicates significance level of difference of the slope from a theoretical value of 3.0; p_0.75 indicates significance level of differ-
ence of the slope difference from a theoretical value of 0.75. Superscript letters of a, b, and c indicate significant differences in slopes among species.


和Quercus rubra 3个物种的叶面积和叶生物量的异
速指数显著小于1.0, 而且7个物种间叶面积和叶生
物量的异速指数为0.86 (图1; 表2), 与理论值1.0有
显著差异(p < 0.001)。因此, 本研究结果不支持WBE
模型和PES模型有关植物种间叶面积与叶生物量为
等速生长关系的假设, 但与“收益递减”假说一致
(Niklas et al., 2007; Niklas & Cobb, 2008)。
Niklas等(2007)基于1 943个物种5 000多个成熟
叶片的研究发现, 平均叶面积是平均叶生物量的
0.979次幂(95%置信区间为0.968–0.990), 显著小于
1.0, 随着叶片质量的增加, 叶面积的增加量小于叶
生物量的增加量 , 这在生物学上被称为“收益递
减”。 Niklas等(2007)认为这可能是因为: 随着光合
作用的进行, 植物投入到支撑组织的生物量更多,
导致比叶面积随着叶生物量的增加而减小。同时,
Niklas和Cobb (2008)通过对25种木本双子叶植物的
研究发现: 叶面积和叶生物量的异速指数小于1.0,
比叶面积和基径的异速指数为负数, 在个体发育过
程中, 比叶面积呈现出由高到低的转变, 支持“收益
递减”假说。
另一方面, 叶面积和叶生物量的异速生长关系
也证明了比叶面积在物种内或物种间是变化的。例
如, Ackerly等(2002)发现比叶面积在群落水平随着
太阳辐射量的增加而降低。而且, 叶面积与叶生物
量的异速指数对环境变化非常敏感。例如, Pan等
(2013)对浙江天童山不同海拔的121种维管束植物
叶面积和叶生物量间的异速关系进行研究, 发现异
速指数随着海拔升高而增加, 呈现出从低海拔处小
于1.0到高海拔处大于1.0的变化。
PES模型还认为茎生物量与总生物量成正比
(Price et al., 2007)。本研究结果表明茎生物量和地上
生物量的种间回归斜率为1.00 (表2), 且7个物种具
有种间共有斜率1.00 (95% CI = 0.985–1.014 ), 与理
论值1.0无显著差异(p = 0.921), 支持茎生物量与地
上生物量呈等速生长关系的假设。
3.2 分支指数1/a、1/b和代谢指数θ
WBE模型假设内部资源传输网使流动阻力最
小化, 植物具有理想而恒定的分支指数(West et al.,
1997, 1999a); 而PES模型认为植物体为了适应环
境, 不同物种的分支指数是可变的, 且指数之间存
在协同变化规律。因此, 许多个体解剖和生理性状
间更为精确的异速关系需要借助其特定的分支指数
马玉珠等: 7种木本植物的分支指数与代谢指数 605

doi: 10.3724/SP.J.1258.2014.00055


图3 基于叶面积和叶生物量获得的代谢指数。A, 叶面积∝地上生物量。B, 叶生物量∝地上生物量。
Fig. 3 Metabolic exponents based on leaf area and leaf biomass. A, leaf area ∝ aboveground biomass. B, leaf biomass ∝ above-
ground biomass.


来估算(Price et al., 2009), 例如植物代谢指数的测
定等(Bentley et al., 2013)。
在大个体(木本植物)中植物代谢速率(例如呼吸
速率)的测定存在一定的难度。West等在WBE模型
研究中未直接测定呼吸速率, 而是使用其替代指标,
如叶生物量(Enquist et al., 2007)、植物径流(Enquist
et al., 1998)、胸径生长速率(Enquist et al., 1999)、整
株生长速率(Niklas & Enquist, 2001)等。本研究用叶
面积和叶生物量作为替代指标, 基于叶面积估测的
代谢指数的变动范围为0.51–0.86, 基本符合直接测
定呼吸速率得到的代谢指数。譬如, Cheng等(2010)
通过直接测定呼吸速率得到的代谢指数为0.81–0.82
(95% CI = 0.79–0.84); Mori等(2010)得到的代谢指
数为0.838–0.844 (95% CI = 0.82–0.86); Reich等
(2006)得到的整体代谢指数为0.81–0.84 (95% CI =
0.79–0.86)。本研究基于叶生物量得到的代谢指数估
测值为0.61–0.98, 与Mäkelä和Valentine (2006)对3种
树木研究得到的结论基本一致, 即: 乔木叶生物量
同个体大小之间的指数在0.75–1.00之间变动。
本研究中, 基于叶面积估测的分支指数1/a、代
谢指数θ在物种间均无显著差异, 具有共有斜率(表
3); 反之, 基于叶生物量估测的分支指数1/a、1/b和
代谢指数θ在7种植物间均无共有斜率, 物种间存在
显著差异(表4)。然而, 基于叶面积和叶生物量分别
回归得到的整体分支半径指数1/a、分支长度指数
1/b及代谢指数θ均与理论值无显著差异, 并且基于
叶面积分析得出的分支参数1/b和代谢指数θ值更接
近于理论值3.0和0.75 (p值: 0.916 > 0.077, 0.188 >
0.061) (表3, 表4)。此外, 根据分支指数计算的代谢
指数也与理论值无显著差异, 且基于叶面积计算得
到的代谢指数更接近于理论值0.75 (p值: 0.868 >
0.351)。无论是代谢指数估测值还是计算值, 基于叶
面积得出的代谢指数均比基于叶生物量得出的代谢
指数更接近理论值; 无论是分支指数还是代谢指
数, 基于叶生物量得出的指数在物种间均无共有斜
率。本研究认为, 上述两方面的差异是叶面积和叶
生物量的非等速生长关系所致(图1; 表2)。代谢生态
学模型的前提假设是资源有效交换面积最大化, 选
606 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 599–607

www.plant-ecology.com
择植物叶面积的替代指标应当慎重。此外, 比叶面
积与植物的其他功能性状密切相关(Wright et al.,
2004; 王俊峰和冯玉龙, 2004), 在未来的异速生长
研究中, 需要重视植物物种间比叶面积的差异及其
对环境变化的响应, 进而深入了解比叶面积对植物
代谢速率的影响。
7种木本植物的分支指数1/a、1/b和代谢指数θ
与各自的理论值分别比较时 , 除Betula lenta和
Oxydendrum arboreum外, 其余5种木本植物的分支
指数、代谢指数与各自的理论值均无显著差异(表3,
表4)。我们认为可能是这2种植物的样本在胸径、树
高、生物量等方面跨越的数量级较小(表1), 导致其
估测值与理论值的显著差异。
总之, 鉴于物种间叶面积和叶生物量的非等速
生长关系, 我们对基于叶面积和叶生物量估测出的
分支指数和代谢指数分别进行了研究比较。结果发
现: 基于叶面积获得的分支指数1/a和代谢指数θ不
存在物种间差异, 而基于叶生物量得到的分支指数
1/a、1/b和代谢指数θ在物种间均存在显著差异, 但
基于叶面积和叶生物量分别拟合出的整体分支指数
1/a、1/b和代谢指数θ与理论值均无显著差异, 且用
叶面积作为代谢速率的替代指标比用叶生物量得出
的代谢指数更接近于理论值。因此, 在今后的研究
中应当关注植物叶面积与叶生物量的异速生长关系
对植物代谢速率及相关功能特性的影响。
基金项目 国家自然科学基金(31170374、31170596
和31370589)、福建省教育厅新世纪优秀人才支持计
划(JA12055)和福建省杰出青年基金(2013J06009)。
参考文献
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP
(2002). Leaf size, specific leaf area and microhabitat dis-
tribution of chaparral woody plants: contrasting patterns in
species level and community level analyses. Oecologia,
130, 449–457.
Bentley LP, Stegen JC, Savage VM, Smith DD, von Allmen EI,
Sperry JS, Reich PB, Enquist BJ (2013). An empirical as-
sessment of tree branching networks and implications for
plant allometric scaling models. Ecology Letters, 16,
1069–1078.
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB
(2004). Toward a metabolic theory of ecology. Ecology,
85, 1771–1789.
Cheng DL, Li T, Zhong QL, Wang GX (2010). Scaling rela-
tionship between tree respiration rates and biomass. Biol-
ogy Letters, 6, 715–717.
Deng JM, Wang GX, Wei XP (2006). The advance of metabol-
ic regulation studies for macroscopical ecology processes.
Acta Ecologica Sinica, 26, 3413–3423. (in Chinese with
English abstract) [邓建明, 王根轩, 魏小平 (2006). 宏
观生态过程的代谢调控研究进展 . 生态学报 , 26,
3413–3423.]
Enquist BJ, Allen AP, Brown JH, Gillooly JF, Kerkhoff AJ,
Niklas KJ, Price CA, West GB (2007). Biological scaling:
Does the exception prove the rule? Nature, 445, E9–E10.
Enquist BJ, Brown JH, West GB (1998). Allometric scaling of
plant energetics and population density. Nature, 395,
163–165.
Enquist BJ, Niklas KJ (2002). Global allocation rules for pat-
terns of biomass partitioning in seed plants. Science, 295,
1517–1520.
Enquist BJ, West GB, Charnov EL, Brown JH (1999). Al-
lometric scaling of production and life-history variation in
vascular plants. Nature, 401, 907–911.
Falster DS, Warton DI, Wright IJ (2003). (S)MATR: Standard-
ised major axis tests and routines. http://www.bio.mq.
edu.au/ecology/SMATR. Cited 2013-05-09.
Glazier DS (2005). Beyond the ‘3/4-power law’: variation in
the intra-and interspecific scaling of metabolic rate in an-
imals. Biological Reviews, 80, 611–662.
Glazier DS (2006). The 3/4-power law is not universal: evolu-
tion of isometric, ontogenetic metabolic scaling in pelagic
animals. BioScience, 56, 325–332.
Glazier DS (2010). A unifying explanation for diverse meta-
bolic scaling in animals and plants. Biological Reviews,
85, 111–138.
Koontz TL, Petroff A, West GB, Brown JH (2009). Scaling
relations for a functionally two-dimensional plant:
Chamaesyce setiloba (Euphorbiaceae). American Journal
of Botany, 96, 877–884.
Li HT, Han XG, Wu JG (2005). Lack of evidence for 3/4 scal-
ing of metabolism in terrestrial plants. Journal of Integra-
tive Plant Biology, 47, 1173–1183.
Mäkelä A, Valentine HT (2006). Crown ratio influences al-
lometric scaling in trees. Ecology, 87, 2967–2972.
Martin JG, Kloeppel BD, Schaefer TL, Kimbler DL, McNulty
SG (1998). Aboveground biomass and nitrogen allocation
of ten deciduous southern Appalachian tree species. Cana-
dian Journal of Forest Research, 28, 1648–1659.
Mori S, Yamaji K, Ishida A, Prokushkin SG, Masyagina OV,
Hagihara A, Hoque ATMR, Suwa R, Osawa A, Nishizono
T, Ueda T, Kinjo M, Miyagi T, Kajimoto T, Koike T,
Matsuura Y, Toma T, Zyryanova OA, Abaimov AP,
Awaya Y, Araki MG, Kawasaki T, Chiba Y, Umari M
(2010). Mixed-power scaling of whole-plant respiration
from seedings to giant trees. Proceedings of the National
Academy of Sciences of the United States of America, 107,
1447–1451.
Niklas KJ, Cobb ED (2008). Evidence for “diminishing
马玉珠等: 7种木本植物的分支指数与代谢指数 607

doi: 10.3724/SP.J.1258.2014.00055
returns” from the scaling of stem diameter and specific
leaf area. American Journal of Botany, 95, 549–557.
Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley
B, Wright IJ (2007). “Diminishing returns” in the scaling
of functional leaf traits across and within species groups.
Proceedings of the National Academy of Sciences of the
United States of America, 104, 8891–8896.
Niklas KJ, Enquist BJ (2001). Invariant scaling relationships
for interspecific plant biomass production rates and body
size. Proceeding of the National Academy of Sciences of
the United States of America, 98, 2922–2927.
Pan S, Liu C, Zhang WP, Xu SS, Wang N, Li Y, Gao J, Wang
Y, Wang GX (2013). The scaling relationships between
leaf mass and leaf area of vascular plant species change
with altitude. PLoS ONE, 8, e76872.
Peng YH, Niklas KJ, Reich PB, Sun SC (2010). Ontogenetic
shift in the scaling of dark respiration with whole-plant
mass in seven shrub species. Functional Ecology, 24,
502–512.
Price CA, Enquist BJ, Savage VM (2007). A general model for
allometric covariation in botanical form and function.
Proceedings of the National Academy of Sciences of the
United States of America, 104, 13204–13209.
Price CA, Ogle K, White EP, Weitz JS (2009). Evaluating
scaling models in biology using hierarchical Bayesian ap-
proaches. Ecology Letters, 12, 641–651.
Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006). Uni-
versal scaling of respiratory metabolism, size and nitrogen
in plants. Nature, 439, 457–461.
Savage VM, Deeds EJ, Fontana W (2008). Sizing up allometric
scaling theory. PLoS Computational Biology, 4, e1000171.
Wang JF, Feng YL (2004). The effect of light intensity on bio-
mass allocation, leaf morphology and relative growth rate
of two invasive plants. Acta Phytoecologica Sinica, 28,
781–786. (in Chinese with English abstract) [王俊峰, 冯
玉龙 (2004). 光强对两种入侵植物生物量分配、叶片形
态和相对生长速率的影响 . 植物生态学报 , 28,
781–786.]
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate
line-fitting methods for allometry. Biological Reviews, 81,
259–291.
West GB, Brown JH, Enquist BJ (1997). A general model for
the origin of allometric scaling laws in biology. Science,
276, 122–126.
West GB, Brown JH, Enquist BJ (1999a). A general model for
the structure and allometry of plant vascular systems. Na-
ture, 400, 664–667.
West GB, Brown JH, Enquist BJ (1999b). The fourth dimen-
sion of life: fractal geometry and allometric scaling of or-
ganisms. Science, 284, 1677–1679.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z,
Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC,
Diemer M, Flexas J, Garnier E, Groom PK, Gulias J,
Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley
JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter
H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC,
Tjoelker MG, Veneklaas EJ, Villar R (2004). The world-
wide leaf economics spectrum. Nature, 428, 821–827.


责任编委: 曾 波 责任编辑: 王 葳