作 者 :冯文婷, 邹晓明, 沙丽清, 陈建会, 冯志立, 李检舟
期 刊 :植物生态学报 2008年 32卷 1期 页码:31-39
关键词:土壤呼吸日变化;Q10值;土壤温度;土壤含水量;土壤呼吸;
Keywords:diurnalvariation, Q10value, soilmoisture, soilrespiration, soiltemperature,
摘 要 :由于受到多种生物和非生物因素的影响,土壤呼吸在不同时间尺度上的动态变化可能不一致。对不同时间尺度的土壤呼吸动态变化的研究有助
于深入了解土壤呼吸变化的机理,也有利于精确推算土壤碳的排放。采用红外CO2分析法测定哀牢山中山湿性常绿阔叶林季节间(2004年4月~
2005年3月)和昼夜间 (2004年7、9和11月及2005年1、3和5月共6次)的土壤呼吸。哀牢山中山湿性常绿阔叶林中土壤呼吸的季节变化显著,其中
湿季(5~10月)的土壤呼吸高于干季(11月~翌年4月),全年土壤呼吸的平均值为0.442 g CO2•m-2•h-1。6 次测定的土壤呼吸日变化模式并不
相同,7和9月、翌年1和3月夜间土壤呼吸大于昼间土壤呼吸,11月和翌年5月则相反;5、7和9月昼夜间的土壤呼吸最大值与最小值的差异比11
月、翌年1和3月的测定结果大。季节间土壤呼吸与土壤温度(p=0.000)和土壤含水量(p=0. 007) 均有显著的指数相关,土壤温度可以解释土壤
呼吸变化的56.1%,土壤含水量可以解释土壤呼吸变化的11.1%。不同季节测定的土壤呼吸日变化与土壤温度、气温和土壤含水量则没有显著
的指数相关。由土壤呼吸与土壤温度拟合的指数方程计算Q10值,在温度为 5.9~16.6 ℃内,全年土壤呼吸的Q10值为4.53,在温度为5.9~
11.0 ℃内,干季土壤呼吸的Q10值为7.17,在温度为10.3~16.6 ℃内,湿季土壤呼吸的Q10值为2.34。在不同时间尺度上,生物和非生物因素
对哀牢山中山湿性常绿阔叶林的土壤呼吸表现出不同的影响。土壤呼吸的季节变化主要受非生物因子温度和水分变化的调控,而土壤呼吸的昼
夜变化则可能主要受植物的生理活动周期性等生物因素的影响。通过温度的指数函数关系,用土壤呼吸的瞬时值来推算土壤呼吸的日通量和年
通量时,需要考虑温度和水分外的其它生物因子的影响。
Abstract:Aims Soil respiration may have distinct dynamic patterns at different temporal scales since it is affected by diverse
abiotic and biotic factors. Seasonal variation in soil respiration is largely controlled by abiotic factors such as
temperature and soil moisture, whereas the regulation of diurnal variation is likely physiological rhythms of plants. Our
objectives were to compare seasonal and diurnal patterns of soil respiration and to evaluate relationships between soil
respiration and temperature at annual and diurnal scales.
Methods We examined seasonal variations of soil respiration using infrared gas analyzers at monthly or bimonthly intervals
from April 2004 to March 2005, and diurnal variations in July, September and November 2004 as well as in January, March and
May 2005 in a montane evergreen broad-leaved forest in Ailao Mountains, China. Soil temperature, air temperature, soil water
content and air humidity were measured at the same time. We evaluated Q10 values of soil respiration and correlations between
soil respiration and soil temperature.
Important findings Soil respiration fluctuated with distinct seasonal and diurnal patterns. Soil respiration was higher in
the wet season (May through October) than in the dry season (November through April). Diurnal patterns of soil respiration
varied among seasons. The mean rate of soil respiration was higher in nighttime than in daytime in July, September, January
and March, but lower in November and May. On the whole year basis, soil respiration correlated strongly with soil temperature
and soil water content. However, on a diurnal scale, these regressions were not significant. Q10 values were 4.48, 7.17 and
2.34 for the whole year, dry season and wet season, and their corresponding soil temperature ranges were 5.9-16.6, 5.9-11.0
and 10.3-16.6 ℃, respectively. Our results demonstrate that biotic and abiotic factors have distinct impacts on soil
respiration at different temporal scales in the forest. Estimation on daily and annual car bon fluxes based on instantaneous
measurements of soil respiration, rather than 24 hour measurements, may cause severe deviation from actual values because of
the lack of diurnal correlation between soil respiration and temperature.