区分森林土壤呼吸组分是了解生态系统碳循环的重要环节。该文以福建省三明市格氏栲自然保护区米槠(Castanopsis carlesii)人工林和邻近的杉木(Cunninghamia lanceolata)人工林为研究对象, 于2012年8月至2013年7月, 采用LI-8100开路式土壤碳通量系统, 通过挖壕沟方法, 测定了土壤呼吸及异养呼吸的速率, 同时测定了5 cm深处的土壤温度和0-12 cm深处的土壤含水量。利用指数模型和双因素模型, 分析土壤呼吸及其组分与土壤温度和土壤含水量的关系, 同时计算了土壤呼吸各组分在土壤呼吸中所占的比例, 并分析了不同森林类型对土壤呼吸及其组分的影响。结果表明: 米槠人工林和杉木人工林土壤呼吸及其组分的季节变化显著, 均呈单峰型曲线, 与5 cm深处的土壤温度呈极显著正相关关系。土壤温度可以分别解释米槠人工林土壤呼吸、自养呼吸和异养呼吸变化的70.3%、73.4%和58.2%, 可以解释杉木人工林土壤呼吸、自养呼吸和异养呼吸变化的77.9%、65.7%和79.2%。土壤呼吸及其组分与土壤含水量没有相关关系。米槠和杉木人工林自养呼吸的年通量分别为4.00和2.18 t C·hm-2·a-1, 占土壤呼吸年通量的32.5%和24.1%; 异养呼吸年通量分别为8.32和6.88 t C·hm-2·a-1, 分别占土壤呼吸年通量的67.5%和75.9%, 米槠人工林土壤呼吸及其组分的年通量都大于杉木人工林。
Aims Partitioning the soil respiration is an important step in understanding ecosystem-level carbon cycling. In addition, the heterotrophic and autotrophic components of soil respiration may respond differently to climate change. Our objectives were to evaluate the impact of soil temperature and water content on soil respiration and its components in Castanopsis carlesii and Cunninghamia lanceolata plantations, to determine the relative contributions of autotrophic and heterotrophic respiration to soil respiration, and to explore how different forest types would affect soil respiration and its components. Methods The study site is located in the Nature Reserve of Castanopsis kawakamii, Fujian Province, eastern China. By using a field setup through trenching method and LI-8100 open soil carbon flux system, the dynamics of soil respiration were measured from August 2012 through July 2013. Soil temperature at 5 cm depth and water content of the 0-12 cm soil layer were measured concurrently with the measurements of soil respiration. Relationships of soil respiration with soil temperature and water content were determined by fitting both an exponential model and a two-factor model. Important findings Soil respiration and its components showed significant correlations with soil temperature. There were significant monthly changes, in the form of a single-peaked curve, in soil respiration and its components in the two forest types. Soil temperature explained 70.3%, 73.4%, and 58.2% of the monthly variations in soil respiration, autotrophic respiration, and heterotrophic respiration, respectively, in the Castanopsis carlesii plantation; whilst it explained 77.9%, 65.7%, and 79.2% of the monthly variations in the three variables in the Cunninghamia lanceolata plantation. There was no significant relationship between soil respiration and soil water content in both forest types. The annual estimates of CO2 efflux through autotrophic respiration in the two types forests were 4.00 and 2.18 t C·hm-2·a-1, respectively, accounting for 32.5% and 24.1% of soil respiration. The annual estimates of CO2 efflux through heterotrophic respiration were 8.32 and 6.88 t C·hm-2·a-1, respectively, accounting for 67.5% and 75.9% of soil respiration. The annual estimates of CO2 efflux through soil respiration and partitioning of the components were all higher in the Castanopsis carlesii plantation than in the Cunninghamia lanceolata plantation.
全 文 :植物生态学报 2014, 38 (1): 45–53 doi: 10.3724/SP.J.1258.2014.00005
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-10-21 接受日期Accepted: 2013-12-05
* 通讯作者Author for correspondence (E-mail: daoyang9@163.com)
米槠和杉木人工林土壤呼吸及其组分分析
吴君君 杨智杰* 刘小飞 熊德成 林伟盛 陈朝琪 王小红
1福建师范大学地理科学学院, 湿润亚热带山地生态国家重点实验室培育基地, 福州 350007
摘 要 区分森林土壤呼吸组分是了解生态系统碳循环的重要环节。该文以福建省三明市格氏栲自然保护区米槠
(Castanopsis carlesii)人工林和邻近的杉木(Cunninghamia lanceolata)人工林为研究对象, 于2012年8月至2013年7月, 采用
LI-8100开路式土壤碳通量系统, 通过挖壕沟方法, 测定了土壤呼吸及异养呼吸的速率, 同时测定了5 cm深处的土壤温度和
0–12 cm深处的土壤含水量。利用指数模型和双因素模型, 分析土壤呼吸及其组分与土壤温度和土壤含水量的关系, 同时计算
了土壤呼吸各组分在土壤呼吸中所占的比例, 并分析了不同森林类型对土壤呼吸及其组分的影响。结果表明: 米槠人工林和
杉木人工林土壤呼吸及其组分的季节变化显著, 均呈单峰型曲线, 与5 cm深处的土壤温度呈极显著正相关关系。土壤温度可
以分别解释米槠人工林土壤呼吸、自养呼吸和异养呼吸变化的70.3%、73.4%和58.2%, 可以解释杉木人工林土壤呼吸、自养
呼吸和异养呼吸变化的77.9%、65.7%和79.2%。土壤呼吸及其组分与土壤含水量没有相关关系。米槠和杉木人工林自养呼吸
的年通量分别为4.00和2.18 t C·hm–2·a–1, 占土壤呼吸年通量的32.5%和24.1%; 异养呼吸年通量分别为8.32和6.88 t C·hm–2·a–1,
分别占土壤呼吸年通量的67.5%和75.9%, 米槠人工林土壤呼吸及其组分的年通量都大于杉木人工林。
关键词 自养呼吸, 森林类型, 异养呼吸, 土壤温度, 壕沟法
Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia
lanceolata plantations
WU Jun-Jun, YANG Zhi-Jie*, LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, and WANG
Xiao-Hong
State Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
Abstract
Aims Partitioning the soil respiration is an important step in understanding ecosystem-level carbon cycling. In
addition, the heterotrophic and autotrophic components of soil respiration may respond differently to climate
change. Our objectives were to evaluate the impact of soil temperature and water content on soil respiration and
its components in Castanopsis carlesii and Cunninghamia lanceolata plantations, to determine the relative
contributions of autotrophic and heterotrophic respiration to soil respiration, and to explore how different forest
types would affect soil respiration and its components.
Methods The study site is located in the Nature Reserve of Castanopsis kawakamii, Fujian Province, eastern
China. By using a field setup through trenching method and LI-8100 open soil carbon flux system, the dynamics
of soil respiration were measured from August 2012 through July 2013. Soil temperature at 5 cm depth and water
content of the 0–12 cm soil layer were measured concurrently with the measurements of soil respiration.
Relationships of soil respiration with soil temperature and water content were determined by fitting both an
exponential model and a two-factor model.
Important findings Soil respiration and its components showed significant correlations with soil temperature.
There were significant monthly changes, in the form of a single-peaked curve, in soil respiration and its compo-
nents in the two forest types. Soil temperature explained 70.3%, 73.4%, and 58.2% of the monthly variations in
soil respiration, autotrophic respiration, and heterotrophic respiration, respectively, in the Castanopsis carlesii
plantation; whilst it explained 77.9%, 65.7%, and 79.2% of the monthly variations in the three variables in the
Cunninghamia lanceolata plantation. There was no significant relationship between soil respiration and soil water
content in both forest types. The annual estimates of CO2 efflux through autotrophic respiration in the two types
forests were 4.00 and 2.18 t C·hm–2·a–1, respectively, accounting for 32.5% and 24.1% of soil respiration. The an-
nual estimates of CO2 efflux through heterotrophic respiration were 8.32 and 6.88 t C·hm–2·a–1, respectively,
46 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (1): 45–53
www.plant-ecology.com
accounting for 67.5% and 75.9% of soil respiration. The annual estimates of CO2 efflux through soil respiration
and partitioning of the components were all higher in the Castanopsis carlesii plantation than in the Cunningha-
mia lanceolata plantation.
Key words autotrophic respiration, forest type, heterotrophic respiration, soil temperature, trenching method
土壤呼吸是植物固定的CO2向大气排放的主要
途径(Högberg & Read, 2006; Gaumont-Guay et al.,
2009)。全球范围内土壤呼吸每年向大气释放约
80–100 Pg的碳(Raich et al., 2002; Bond-Lamberty &
Thomson, 2010), 是化石燃料燃烧碳排放量的10多
倍(Reichstein et al., 2003)。因此, 土壤呼吸的微小变
化都能够改变大气中CO2的浓度, 进而影响气候变
化。理解调控地下生态系统碳循环过程的因素对评
估全球碳收支非常关键。
土壤呼吸包括自养呼吸(根和根际微生物呼吸)
和异养呼吸(土壤微生物呼吸)(Kuzyakov, 2006)。土
壤呼吸对环境因子(例如温度(Craine et al., 2010)、水
分(Jassal et al., 2008)、底物质量(Karhu et al., 2010)
等)较为敏感。自养呼吸和异养呼吸可能对气候变化
产生不同的响应 (Gaumont-Guay et al., 2008;
Schindlbacher et al., 2009), 因此区分土壤呼吸的组
分是了解全球气候变化背景下生态系统碳循环的重
要环节。自养呼吸对土壤呼吸的贡献因研究区域和
研究方法的不同变化幅度较大, 但集中在45%–50%
的范围内(Subke et al., 2006)。
植物群落组成在调控森林土壤呼吸过程中也
起着重要作用。不同类型的植物群落表现出不同的
土壤呼吸速率(Carbone & Trumbore, 2007; Johnson
et al., 2008)。植物群落组成不同, 其生产力就会产
生差异, 光合作用同化的碳分配到自养呼吸的比例
就不同(Kuzyakov & Gabrichkova, 2010), 从而影响
了土壤呼吸速率。树种的变化也能够影响土壤呼吸
速率(Fischer et al., 2007), 因为树种和植物群落不
同会造成凋落物质量和数量(Borken et al., 2002)的
差异, 从而间接地影响土壤呼吸速率。
本研究选择中亚热带演替后期顶级群落米槠
(Castanopsis carlesii)人工种植林和种植面积较大的
杉木人工林(Cunninghamia lanceolata)为研究对象 ,
旨在弄清以下3个问题: (1)土壤呼吸及其组分的季
节变化规律以及土壤呼吸及其组分与土壤温度和土
壤含水量的量化关系; (2)自养呼吸和异养呼吸占土
壤呼吸的比例; (3)不同森林类型对土壤呼吸及其组
分的影响。
1 材料和方法
1.1 试验地区概况
试验地设在福建省三明市金丝湾森林公园陈
大林业采育场(26º19 N, 117º36 E)和三明市格氏栲
自然保护区(26º11 N, 117º28 E)内, 两地的直线距
离不超过30 km。试验地主要特征和表层土壤性质
如表1所示。两个试验地的土壤类型均为山地红壤。
米槠人工林位于福建省三明格氏栲自然保护区内。
该保护区气候属于中亚热带季风气候, 试验地附近
的三明市年平均气温20.1 ℃, 年降水量1 670 mm,
降水多集中于3–8月份。米槠人工林的前身为米槠次
生林, 20世纪70年代经过皆伐、火烧、挖穴造林和幼
林抚育, 形成米槠人工林, 树龄39年。林分密度为
2 042株·hm–2, 平均胸径16.6 cm, 平均树高14.2 m。
样地海拔305 m, 坡度为15º。林下植被主要以毛冬
青(Ilex pubescens)、乌饭树(Vaccinium bracteatum)、
薄叶山矾(Symplocos anomala)、桂北木姜子(Litsea
subcoriacea)、山姜(Alpinia japonica)等为主, 草本植
物以芒萁(Dicranopteris dichotoma)为主。
表1 试验地主要特征和表层土壤(0–20 cm深处)性质
Table 1 Major characteristics of study sites and surface soil (0–20 cm depth) properties
试验地
Study site
土壤深度
Soil depth
(cm)
有机碳
Organic carbon
(g·kg–1)
全氮
Total N
(g·kg–1)
全磷
Total P
(g·kg–1)
容重
Bulk density
(g·cm–3)
pH
年凋落物量
Annual litter-fall biomass
(t·hm–2)
0–10 29.84 1.97 0.48 1.12 4.40 米槠人工林
Castanopsis carlesii
plantation
10–20 17.90 1.36 0.52 1.24 4.10
5.91
0–10 22.91 1.51 0.36 1.20 4.87 杉木人工林
Cunninghamia
lanceolata plantation
10–20 14.47 1.01 0.31 1.35 4.64
3.40
吴君君等: 米槠和杉木人工林土壤呼吸及其组分分析 47
doi: 10.3724/SP.J.1258.2014.00005
杉木人工林位于福建省三明市金丝湾森林公
园陈大林业采育场, 为1976年米槠次生林皆伐后营
造人工纯林形成, 树龄37年。杉木人工林样地海拔
301 m, 林分密度为2 858株·hm–2。平均胸径15.6 cm,
平均树高18.2 m。杉木林为西北坡向, 坡度30º。林
冠单层, 林下植被主要以狗骨柴(Tricalysia dubia)、
毛冬青、芒萁为主。
1.2 样地布设与土壤呼吸测定
2012年6月, 分别于米槠人工林和杉木人工林
的上、中、下坡, 随机布设3块20 m × 20 m的标准样
地, 在每块标准样地内随机布设3个聚氯乙烯(PVC)
环(20 cm内径× 10 cm高)为对照, 在附近均匀布设3
个去根处理的PVC环, PVC环底部用车床削尖, 然
后用铁锤敲击插入土壤3–5 cm深处。去根处理采用
壕沟法: 选择一块1 m × 1 m的正方形区域, 在其四
周用铁锹挖壕沟, 垂直挖深0.6–0.8 m (看不到根系
的深度), 切断根(不移走)后插入细密的尼龙网(100
目)以阻止根向小区内生长(Kuzyakov, 2006), 贴地
面剪除小区内的植被, 所有挖壕沟小区定期清理地
表植被。对照和壕沟处理都为9个重复。
从2012年8月至2013年7月, 于每月上旬(10号左
右)和下旬(25号左右)各选择1天对各处理测量1次土壤
呼吸。土壤呼吸采用两台LI-8100土壤碳通量测量系
统(LI-COR, Nebraska, USA)连接短期测量室进行测
量。测定时间均为9:00–11:00; 在观测土壤呼吸的同
时, 使用手持长杆电子温度探针(SK-250WP, Sato Keir-
yoki, Kanda, Japan)测定5 cm深处的土壤温度, 并且使
用时域反射仪(TDR300, Spectrum, Aurora, USA)测定
每个PVC圈附近0–12 cm范围内的土壤含水量。
1.3 数据处理
所有数据统计分析基于SPSS 17.0软件进行。采
用单因素方差分析(one-way ANOVA)检验米槠和杉
木人工林土壤呼吸及其组分之间差异的显著性。为
分析土壤温度、土壤含水量和土壤呼吸速率的关系,
采用如下模型:
Rs = aebT ; Rs= aW + b ; Rs = aebTWc
式中: Rs表示土壤呼吸速率; T表示5 cm深处的土壤
温度; W表示0–12 cm深处的土壤含水量; a、b、c为
待定参数。
土壤呼吸的温度敏感性(Q10)采用指数模型Q10
= e10b计算。显著性水平设定为α = 0.05。
将挖壕沟处理的土壤呼吸作为异养呼吸, 自养
呼吸为对照的土壤呼吸减挖壕沟处理的土壤呼吸。
以某次测定的9个重复的土壤呼吸速率的平均
值代表该半月每天的土壤呼吸速率, 计算每天的土
壤呼吸通量、半月土壤呼吸通量, 通过逐渐累加计
算, 求得土壤呼吸年通量。
2 结果
2.1 两种林分土壤呼吸及其组分的月变化
观测期间, 米槠和杉木人工林土壤呼吸、异养
呼吸和自养呼吸均呈现明显的季节变化, 且都呈较
明显的单峰型曲线(图1)。米槠和杉木人工林土壤呼
吸速率的年变化范围分别为1.57–8.60和0.95–5.15
μmol·m–2·s–1, 最大值都出现在6月下旬, 最小值都出
现在1月上旬, 呼吸速率的年平均值分别为3.48和
2.45 μmol·m–2·s–1, 两者之间差异显著(p < 0.05)。
米槠和杉木人工林异养呼吸速率的年变化范
围分别为0.97–4.31和0.89–3.75 μmol·m–2·s–1, 最大
值都出现在6月下旬, 最小值分别出现在1月上旬和
12月下旬, 异养呼吸速率的年平均值分别为2.31和
1.72 μmol·m–2·s–1, 两者之间差异显著(p < 0.05)。
米槠和杉木人工林自养呼吸速率的年变化范
围分别为0.13–3.76和0.16–1.88 μmol·m–2·s–1, 最大
值分别出现在6月下旬和6月上旬, 最小值都出现在
12月下旬, 自养呼吸速率的年平均值分别为1.22和
0.92 μmol·m–2·s–1, 米槠人工林大于杉木人工林, 但
两者之间没有显著差异。
米槠和杉木人工林异养呼吸速率的年平均值
占土壤呼吸速率年平均值的66.4%和70.2%, 自养呼
吸速率的年平均值占土壤呼吸速率年平均值的
35.1%和37.6%。
2.2 两种林分土壤呼吸及其组分的年通量
用每月中、下旬两次测定的土壤呼吸速率分别
代表上半月和下半月的平均呼吸速率, 通过累加计
算得出米槠人工林土壤呼吸、异养呼吸和自养呼吸
的年通量分别为12.31、8.32和4.00 t C·hm–2·a–1 (表2);
杉木人工林土壤呼吸、异养呼吸和自养呼吸的年通
量分别为9.06、6.88和2.18 t C·hm–2·a–1, 米槠人工林
土壤呼吸和各组分的年通量都要显著大于杉木人工
林(p < 0.05)。其中米槠人工林中异养呼吸、自养呼
吸的年通量分别占土壤呼吸年通量的67.5%和
32.5%, 杉木人工林异养呼吸和自养呼吸的年通量
分别占土壤呼吸年通量的75.9%和24.1%。
48 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (1): 45–53
www.plant-ecology.com
图1 米槠和杉木人工林土壤呼吸速率(RS)、异养呼吸速率
(RH)和自养呼吸速率(RA)的年动态(平均值±标准偏差)。
Fig. 1 Annual dynamics of soil respiration rate (RS), hetero-
trophic respiration rate (RH), and autotrophic respiration rate
(RA) in Castanopsis carlesii and Cunninghamia lanceolata
plantations (mean ± SD).
2.3 两种林分土壤呼吸及其组分对土壤温度和土
壤含水量的响应
米槠和杉木人工林土壤呼吸、异养呼吸和自养
呼吸与土壤5 cm深处的温度呈显著的正相关关系
(表3)。采用指数模型模拟发现, 土壤温度可以分别
解释米槠人工林土壤呼吸、异养呼吸和自养呼吸的
70.3%、58.2%和73.4%, 可以分别解释杉木人工林土
壤呼吸、异养呼吸和自养呼吸的77.9%、79.2%和
65.7%。两种林分的土壤呼吸及各组分与土壤含水
量不具有相关关系。采用温度和含水量双因素模型
模拟发现, 其拟合结果与仅考虑温度的单因素模型
差别不大(表3)。根据5 cm深处的土壤温度计算出
Q10值(表2), 米槠人工林土壤呼吸、异养呼吸和自养
呼吸的Q10值分别为2.41、1.92和3.74; 杉木人工林土
壤呼吸、异养呼吸和自养呼吸的Q10值分别为2.12、
1.82和3.00, 两种林分自养呼吸的Q10值较土壤呼吸
和异养呼吸大。
3 讨论
3.1 温度和含水量对土壤呼吸及其组分的影响
土壤温度和含水量的单独或交互作用是影响
土壤呼吸时空变化的重要因素。本研究结果表明两
种林分土壤呼吸及其各组分都与温度呈现显著的指
数关系 , 这与Moren和Lindroth (2000)、Fang和
Moncrieff (2001)、Sulzman等(2005)的研究结果是一
致的, 即: 在不同生态系统中土壤呼吸与温度存在
显著的指数关系。这主要是因为温度通过影响微生
物活性(Mikan et al., 2002)、根系生长(Kutsch et al.,
2001)和植物的发育阶段(Fu et al., 2002; Kuzyakov
& Gabrichkova, 2010)来影响土壤呼吸。与土壤温度
相比, 土壤含水量与土壤呼吸季节变化则不具有相
关关系(表3), 这主要是因为研究区域山地的平均坡
度较大, 土壤排水较好, 同时, 中亚带地区多数月
份均有降水, 米槠和杉木人工林除10月土壤含水量
较低外, 其余月份平均含水量都在15%左右(图2),
水分不是土壤呼吸的限制因子。
陈光水等(2008)收集我国62个森林样地的土壤
呼吸数据分析后得出, 我国森林土壤呼吸Q10值变
化范围为1.33–5.53, 平均值为2.65。本研究中两种林
分土壤呼吸及各组分呼吸的Q10值都落入这个范围。
土壤呼吸的不同组分对温度表现出不同的敏感性,
Wang等(2010)通过总结世界范围内森林土壤自养呼
吸和异养呼吸的Q10值发现, 在野外观测的结果中,
自养呼吸的Q10值(3.40 ± 0.32)显著大于异养呼吸
(2.42 ± 0.15)。本研究中米槠和杉木人工林土壤自养
呼吸的Q10值大于异养呼吸, 其原因可能是由于自
养呼吸较异养呼吸有更强的季节节律(Widen &
Majdi, 2001; Tierney et al., 2003)。此外, 从光合作用
中得到的底物供应的改变也大部分被忽视, 从而导
吴君君等: 米槠和杉木人工林土壤呼吸及其组分分析 49
doi: 10.3724/SP.J.1258.2014.00005
表2 土壤呼吸及其组分的年通量和土壤呼吸温度敏感性(Q10) (平均值±标准偏差)
Table 2 Annual CO2 efflux of soil respiration and partitioning of the components and the temperature sensitivity of soil respiration
(Q10) (mean ± SD)
米槠人工林 Castanopsis carlesii plantation 杉木人工林 Cunninghamia lanceolata plantation
ERA ERH ERS ERA ERH ERS
年通量 Annual CO2 efflux (t C·hm–2·a–1) 4.00 ± 0.77 8.32 ± 0.52 12.30 ± 0.80 2.18 ± 0.88 6.88 ± 1.23 9.06 ± 0.82
ERA和ERH在ERS中的比例(%)
The proportion of ERH and ERAto ERS (%)
32.5 67.5 100.0 24.1 75.9 100.0
Q10 3.74 1.92 2.41 3.00 1.82 2.12
ERA, 自养呼吸年通量; ERH, 异养呼吸年通量; ERS, 土壤呼吸年通量。
ERA, annual CO2 efflux of autotrophic respiration; ERH, annual CO2 efflux of heterotrophic respiration; ERS, annual CO2 efflux of soil respiration.
表3 土壤呼吸速率与土壤温度(T)和土壤含水量(W)不同模型的参数
Table 3 Parameters for different models showing the relationships of soil respiration with soil temperature (T) and soil water
content (W)
RS = aebT RS = aW + b RS = aebTWc
a b R2 a b R2 a b c R2
RA 0.047 0.154 0.734** 1.693 –0.027 0.025 0.021 0.186 0.055 0.701**
RH 0.616 0.065 0.582** 1.184 0.055 0.149 0.160 0.087 0.312 0.677**
米槠人工林
Castanopsis carlesii
plantation RS 0.573 0.088 0.703** 3.774 –0.014 0.002 0.181 0.119 0.197 0.727**
RA 0.094 0.110 0.657** 0.653 0.015 0.044 0.069 0.094 0.256 0.652**
RH 0.528 0.060 0.792** 1.738 –0.001 0.000 0.278 0.066 0.127 0.720**
杉木人工林
Cunninghamia
lanceolata plantation
RS 0.593 0.075 0.779** 2.103 0.029 0.038 0.323 0.079 0.194 0.785**
RA, 自养呼吸速率; RH, 异养呼吸速率; RS, 土壤呼吸速率。**, p < 0.01。a、b、c表示不同模型的参数。
RA, autotrophic respiration rate; RH, heterotrophic respiration rate; RS, soil respiration rate. **, p < 0.01. a, b, c represents the parameters of model
fitting.
图2 米槠和杉木人工林土壤温度和含水量年动态(平均值±标准偏差)。
Fig. 2 Annual dynamics of soil temperature and water content in Castanopsis carlesii and Cunninghamia lanceolata plantations
(mean ± SD).
50 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (1): 45–53
www.plant-ecology.com
致了对自养呼吸温度敏感性的过高估算(Nordgren
et al., 2003; Davidson et al., 2006)。
3.2 自养呼吸和异养呼吸占土壤呼吸的比例
自养呼吸每年所消耗的呼吸底物占林木总光
合作用产物的35%–80% (Ryan & Law, 2005), 占土
壤呼吸的 10%–90%, 平均范围在 50%–60%之间
(Hanson et al., 2000)。表4收集了近几年不同气候带
内森林土壤自养呼吸占土壤呼吸的比例, 范围为
18.4%–83.0%。造成自养呼吸占土壤呼吸比例差异
的原因主要有生态系统的多样性 (Subke et al.,
2006)、测定季节(Lavigene et al., 2003)以及测定方法
固有的扰动(Bond-Lamberty et al., 2004; Kuzyakov,
2006)。开沟隔离法是通过挖壕沟并用隔离板阻止样
地外部根系侵入, 将对照区与处理区的土壤呼吸之
差作为自养呼吸。本研究中米槠人工林自养呼吸年
通量占土壤呼吸年通量的32.5%, 杉木人工林自养
呼吸年通量占土壤呼吸年通量的24.1%, 由于没有
考虑非正常死亡细根分解的影响(Ngao et al., 2007;
Comstedt et al., 2011), 本研究估算的自养呼吸贡献
率可能偏低。
本研究中米槠和杉木人工林异养呼吸所占比
例分别为67.5%和75.9%。Wang等(2010)通过收集世
表4 不同气候带森林土壤自养呼吸年通量占土壤呼吸的比例
Table 4 Proportions of annual CO2 efflux through autotrophic respiration of forest soil to soil respiration in different climate zones
气候带
Climatic zone
植被类型
Vegetation type
方法
Method
RA/RS
(%)
参考文献
Reference
挪威云杉林 Picea abies forest 环割 Tree-girdling 53 Högberg et al., 2009 寒温带
Cold temperate
zone
枹栎林 Quercus serrata forest 壕沟 Trench 23 Tomotsune et al., 2013
落叶林 Deciduous forest 环割 Tree-girdling 50 Levy-Varon et al., 2012
冷杉林 Abies holophylla forest 壕沟 Trench 34 Lee et al., 2010
落叶林 Deciduous forest 壕沟 Trench 31 Lee et al., 2010
蒙古栎林 Quercus mongolica forest 壕沟 Trench 67 Wang &Yang, 2007
山杨林 Populus davidiana forest 壕沟 Trench 77 Wang &Yang, 2007
阔叶林 Broad-leaved forest 壕沟 Trench 69 Wang &Yang, 2007
山杨和白桦混交林 Populus davidiana and
Betula platyphylla mixed forest
壕沟 Trench 62 Wang &Yang, 2007
红松林 Pinus koraiensis forest 壕沟 Trench 83 Wang &Yang, 2007
落叶松林 Larix gmelinii forest 壕沟 Trench 52 Wang &Yang, 2007
锐齿栎林 Quercus acutidentata forest 壕沟 Trench 18.4–39.9 Luan et al., 2011
温带
Temperate zone
杨树林 Hybrid poplar forest 壕沟 Trench 37 Saurette et al., 2008
杉木林 Cunninghamia lanceolata forest 壕沟 Trench 33 Tian et al., 2011
次生林 Secondary forest 壕沟 Trench 31 Shen et al., 2011
锥栗林 Castanopsis chinensis forest 壕沟和排除根系
Trench and root exclusion
52–56 Yi et al., 2007
马尾松林 Pinus massoniana forest 壕沟和排除根系
Trench and root exclusion
55–63 Yi et al., 2007
马尾松和木荷混交林 Pinus massoniana and
Schima superba mixed forest
壕沟和排除根系
Trench and root exclusion
54–59 Yi et al., 2007
马尾松林 Pinus massoniana forest 壕沟 Trench 39.48 Han et al., 2011
针阔叶混交林 Coniferous and broad-leaved
mixed forest
壕沟 Trench 33.29 Han et al., 2011
季风常绿阔叶林 Monsoon evergreen
broad-leaved forest
壕沟 Trench 44.52 Han et al., 2011
杉木林 Cunninghamia lanceolata forest 壕沟 Trench 24.1 本研究 This study
亚热带
Subtropical zone
米槠林 Castanopsis carlesii forest 壕沟 Trench 32.5 本研究 This study
低地雨林 Lowland tropical forest 壕沟 Trench 38 Sayer & Tanner, 2010
桉树林 Eucalyptus forest 壕沟 Trench 48 Marsden et al., 2008
热带
Tropical zone
多树草原 Woody savannas 壕沟 Trench 63 Butler et al., 2012
RA/RS, 自养呼吸占土壤呼吸的比例。
RA/RS, proportion of autotrophic respiration to soil respiration.
吴君君等: 米槠和杉木人工林土壤呼吸及其组分分析 51
doi: 10.3724/SP.J.1258.2014.00005
界范围内森林土壤异养呼吸数据获悉, 异养呼吸占
土壤呼吸的比例为13.4%–94.0%, 常绿阔叶林和常
绿针叶林异养呼吸占土壤呼吸的比例都在
40%–80%的范围内, 两者之间没有显著差异。
3.3 影响自养呼吸和异养呼吸的因素
影响土壤呼吸的因素除了温度和含水量等环
境因子外, 生物因子的作用也非常重要。影响自养
呼吸的因素主要有植物细根的空间分布(Tang et al.,
2009)、植物光合作用(Moyano et al., 2007)、叶面积
和初级生产力(Rey et al., 2002; Janssens et al., 2004)
以及光合作用产物向根系的分配模式(Högberg et
al., 2001)。米槠人工林和杉木人工林自养呼吸的年
通量分别为4.00和2.18 t C·hm–2·a–1, 米槠人工林显
著大于杉木人工林。Yang等(2007)在亚热带的研究
发现, 常绿阔叶林的年净初级生产力比杉木人工林
高42%, 植物的生产力越高, 光合作用同化的碳分
配到自养呼吸的比例就越多 (Kuzyakov & Gab-
richkova, 2010), 从而导致了米槠人工林土壤自养
呼吸大于杉木人工林。另外, 被子植物在进化过程
中形成了筛管结构, 其光合作用同化产物的传导性
比裸子植物好(Dannoura et al., 2011), 在一定程度
上也造成了米槠人工林自养呼吸比杉木人工林大。
异养呼吸的变化主要受到环境的生物物理学
性质和底物可利用性的控制 (Vasconcelos et al.,
2004)。比如, 地上和地下凋落物量(Ryan & Law,
2005)、土壤有机碳含量(Wang & Yang, 2007)以及易
变碳含量(Laik et al., 2009)的影响。Yang等(2003)在
中亚热带的研究发现, 阔叶树种的树叶分解比针叶
树种快, 并且N、P、K及养分总归还量也显著高于
针叶林, 从而增强了土壤资源的有效性, 使得阔叶
林土壤自养呼吸和异养呼吸高于针叶林。刘强
(2012)在中亚热带的研究发现: 针叶林落叶的纤维
素含量高于阔叶林, 并且杉木人工林凋落物的各组
成部分(叶、枝、花果等)中的难分解物质(木质素、
丹宁等)显著高于米槠人工林, 这些都会阻碍土壤
表层微生物对凋落物的分解, 从而引起米槠人工林
的异养呼吸大于杉木人工林。此外, 米槠人工林地
上凋落物量显著大于杉木人工林, 也造成米槠人工
林异养呼吸较杉木人工林大。土壤有机碳作为土壤
微生物主要的能量来源(Adachi et al., 2006), 对土
壤呼吸, 尤其是异养呼吸有重要贡献, 米槠人工林
土壤表层有机碳含量高于杉木人工林, 在一定程度
上引起了异养呼吸高于杉木人工林。
基金项目 国家自然科学基金(31130013)。
致谢 野外数据观测中得到陈坦、林庭武等同学的
大力帮助, 在此表示感谢。
参考文献
Adachi M, Bekku YS, Rashidah W, Okuda T, Koizumi H
(2006). Differences in soil respiration between different
tropical ecosystems. Applied Soil Ecology, 34, 258–265.
Bond-Lamberty B, Thomson A (2010). Temperature-associated
increases in the global soil respiration record. Nature, 464,
579–583.
Bond-Lamberty B, Wang CK, Gower ST (2004). A global
relationship between the heterotrophic and autotrophic
components of soil respiration? Global Change Biology,
10, 1756–1766.
Borken W, Xu YJ, Davidson EA, Beese F (2002). Site and
temporal variation of soil respiration in European beech,
Norway spruce and Scots pine forests. Global Change
Biology, 8, 1205–1216.
Butler A, Meir P, Saiz G, Maracahipes L, Marimon BS, Grace J
(2012). Annual variation in soil respiration and its
component parts in two structurally contrasting woody
savannas in Central Brazil. Plant and Soil, 352, 129–142.
Carbone MS, Trumbore SE (2007). Contribution of new
photosynthetic assimilates to respiration by perennial
grasses and shrubs: residence times and allocation
patterns. New Phytologist, 176, 124–135.
Chen GS, Yang YS, Lü PP (2008). Regional patterns of soil
respiration in China’s forests. Acta Ecologica Sinica, 28,
1748–1761. (in Chinese with English abstract) [陈光水,
杨玉盛, 吕萍萍 (2008). 中国森林土壤呼吸模式. 生态
学报, 28, 1748–1761.]
Comstedt D, Boström B, Ekblad A (2011). Autotrophic and
heterotrophic soil respiration in a Norway spruce forest:
estimating the root decomposition and soil moisture
effects in a trenching experiment. Biogeochemistry, 104,
121–132.
Craine JM, Fierer N, McLauchlan K (2010). Widespread
coupling between the rate and temperature sensitivity of
organic matter decay. Nature Geoscience, 3, 854–857.
Dannoura M, Maillard P, Fresneau C, Plain C, Berveiller D,
Gerant D, Chipeaux C, Bosc A, Ngao J, Damesin C,
Loustau D, Epron D (2011). In situ assessment of the
velocity of carbon transfer by tracing 13C in trunk CO2
efflux after pulse labelling: variations among tree species
and seasons. New Phytologist, 190, 181–192.
Davidson EA, Janssens IA, Luo YQ (2006). On the variability
of respiration in terrestrial ecosystems: moving beyond
Q10. Global Change Biology, 12, 154–164.
Fang C, Moncrieff JB (2001). The dependence of soil CO2
52 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (1): 45–53
www.plant-ecology.com
efflux on temperature. Soil Biology & Biochemistry, 33,
155–165.
Fischer DG, Hart SC, LeRoy CJ, Whitham TG (2007).
Variation in below-ground carbon fluxes along a Populus
hybridization gradient. New Phytologist, 176, 415–425.
Fu SL, Cheng WX, Susfalk R (2002). Rhizosphere respiration
varies with plant species and penology, a greenhouse pot
experiment. Plant and Soil, 239, 133–140.
Gaumont-Guay D, Black TA, Barr AG, Jassal RS, Nesic Z
(2008). Biophysical controls on rhizospheric and
heterotrophic components of soil respiration in a boreal
black spruce stand. Tree Physiology, 28, 161–171.
Gaumont-Guay D, Black TA, Mccaughey H, Barr AG,
Krishnan P, Jassal RS, Nesic Z (2009). Soil CO2 efflux in
contrasting boreal deciduous and coniferous stands and its
contribution to the ecosystem carbon balance. Global
Change Biology, 15, 1302–1319.
Han TF, Zhou YG, Li YL, Liu XJ, Zhang DQ (2011).
Partitioning soil respiration in lower subtropical forests at
different successional stages in southern China. Chinese
Journal of Plant Ecology, 35, 946–954. (in Chinese with
English abstract) [韩天丰, 周国逸, 李跃林, 刘菊秀, 张
德强 (2011). 中国南亚热带森林不同演替阶段土壤呼
吸的分离量化. 植物生态学报, 35, 946–954.]
Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000).
Separating root and soil microbial contributions to soil
respiration: a review of methods and observations.
Biogeochemistry, 48, 115–146.
Högberg P, Bhupinderpal-Singh, Löfvenius MO, Nordgren A
(2009). Partitioning of soil respiration into its autotrophic
and heterotrophic components by means of tree-girdling in
old boreal spruce forest. Forest Ecology and Management,
257, 1764–1767.
Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A,
Högberg MN, Nyberg G, Löfvenius MO, Read DJ (2001).
Large-scale forest girdling shows that current photosy-
nthesis drives soil respiration. Nature, 411, 789–792.
Högberg P, Read DJ (2006). Towards a more plant
physiological perspective on soil ecology. Trends in
Ecology and Evolution, 21, 548–554.
Janssens IA, Carrara A, Ceulemans R (2004). Annual Q10 of
soil respiration reflects plant phenological patterns as well
as temperature sensitivity. Global Change Biology, 10,
161–169.
Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z
(2008). Effect of soil water stress on soil respiration and its
temperature sensitivity in an 18-year-old temperate
Douglas-fir stand. Global Change Biology, 14, 1305–1318.
Johnson D, Phoenix GK, Grime JP (2008). Plant community
composition, not diversity, regulates soil respiration in
grasslands. Biology Letters, 4, 345–348.
Karhu K, Fritze H, Hämäläinen K, Vanhala P, Jungner H,
Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V,
Liski J (2010). Temperature sensitivity of soil carbon frac-
tions in boreal forest soil. Ecology, 91, 370–376.
Kutsch LW, Staack A, Wötzel J, Middelhoff U, Kappen L
(2001). Field measurements of root respiration and total
soil respiration in an alder forest. New Phytologist, 150,
157–168.
Kuzyakov Y (2006). Sources of CO2 efflux from soil and
review of partitioning methods. Soil Biology &
Biochemistry, 38, 425–488.
Kuzyakov Y, Gabrichkova O (2010). Time lag between
photosynthesis and carbon dioxide efflux from soil: a
review of mechanisms and controls. Global Change
Biology, 16, 3386–3406.
Laik R, Kumar K, Das DK, Chaturvedi OP (2009). Labile soil
organic matter pools in a calciorthent after 18 years of
afforestation by different plantations. Applied Soil
Ecology, 42, 71–78.
Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY,
Robitaille G (2003). Soil respiration responses to tempera-
ture are controlled more by roots than by decomposition in
balsam fir ecosystems. Canadian Journal of Forest
Research, 33, 1744–1753.
Lee NY, Koo JW, Noh NJ, Kim J, Son Y (2010). Autotrophic
and heterotrophic respiration in needle fir and Quercus-
dominated stands in a cool-temperate forest, central Korea.
Journal of Plant Research, 123, 485–495.
Levy-Varon JH, Schuster WSF, Griffin KL (2012). The
autotrophic contribution to soil respiration in a northern
temperate deciduous forest and its response to stand
disturbance. Oecologia, 169, 211–220.
Liu Q (2012). The Amount and Nutrient Dynamics of Litterfall
in Mid-subtropical Forest with Different Regeneration
Patterns. Master degree dissertation, Fujian Normal
University, Fuzhou. (in Chinese with English abstract) [刘
强 (2012). 中亚热带不同更新方式森林凋落物数量及
养分动态. 硕士学位论文, 福建师范大学, 福州.]
Luan JW, Liu SR, Wang JX, Zhu XL, Shi ZM (2011).
Rhizospheric and heterotrophic respiration of a warm-tem-
perate oak chronosequence in China. Soil Biology &
Biochemistry, 43, 503–512.
Marsden C, Nouvellon Y, M’Bou AT, Saint-Andre L, Jourdan
C, Kinana A, Epron D (2008). Two independent
estimations of stand-level root respiration on clonal
Eucalyptus stands in Congo: up scaling of direct
measurements on roots versus the trenched-plot technique.
New Phytologist, 177, 676–687.
Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls
of microbial respiration in arctic tundra soils above and
below freezing. Soil Biology & Biochemistry, 34, 1785–
1795.
Moren AS, Lindroth A (2000). CO2 exchange at the floor of a
boreal forest. Agricultural and Forest Meteorology, 101,
1–14.
吴君君等: 米槠和杉木人工林土壤呼吸及其组分分析 53
doi: 10.3724/SP.J.1258.2014.00005
Moyano FE, Kutsch WL, Schulze ED (2007). Response of
mycorrhizal, rhizosphere and soil basal respiration to
temperature and photosynthesis in a barley field. Soil
Biology & Biochemistry, 39, 843–853.
Ngao J, Longdoz B, Granier A, Epron D (2007). Estimation of
autotrophic and heterotrophic components of soil
respiration by trenching is sensitive to corrections for root
decomposition and changes in soil water content. Plant
and Soil, 301, 99–110.
Nordgren A, Löfvenius MO, Högberg MN, Mellander PE,
Högberg P (2003). Tree root and soil heterotrophic
respiration as revealed by girdling of boreal Scots pine
forest: extending observations beyond the first year. Plant,
Cell & Environment, 26, 1287–1296.
Raich JW, Potter CS, Bhagawati D (2002). Inter annual
variability in global soil respiration, 1980–94. Global
Change Biology, 8, 800–812.
Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R,
Banza J, Casals P, Cheng YF, Grünzweig JM, Irvine J,
Joffre R, Law BE, Loustau D, Miglietta F, Oechel W,
Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y,
Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V,
Tirone G, Xu M, Yakir D (2003). Modeling temporal and
large-scale spatial variability of soil respiration from soil
water availability, temperature and vegetation productivity
indices. Global Biogeochemistry Cycles, 17, 1104–1119.
Rey A, Pegoraro E, Tedeschi V, Parri ID, Jarvis PG, Valentini
R (2002). Annual variation in soil respiration and its
components in a coppice oak forest in Central Italy.
Global Change Biology, 8, 851–886.
Ryan MG, Law BE (2005). Interpreting, measuring , and
modeling soil respiration. Biogeochemistry, 73, 3–27.
Saurette DD, Chang SX, Thomas BR (2008). Autotrophic and
heterotrophic respiration rates across a chronosequence of
hybrid poplar plantations in northern Alberta. Canadian
Journal of Soil Science, 88, 261–272.
Sayer EJ, Tanner EV (2010). A new approach to trenching
experiments for measuring root-rhizosphere respiration in
a lowland tropical forest. Soil Biology & Biochemistry, 42,
347–352.
Schindlbacher A, Zechmeister-Boltenstern S, Jandl R (2009).
Carbon losses due to soil warming: Do autotrophic and
heterotrophic soil respiration respond equally? Global
Change Biology, 15, 901–913.
Shen XS, Chen ST, Hu ZH, Shi YS, Zhang Y (2011).
Investigation of heterotrophic and autotrophic components
of soil respiration in a secondary forest in subtropical
China. Environmental Science, 32, 3181–3187. (in
Chinese with English abstract) [沈小帅, 陈书涛, 胡正华,
史燕姝, 张勇(2011). 亚热带次生林土壤自养和异养呼
吸研究. 环境科学, 32, 3181–3187.]
Subke JA, Inglima I, Cotrufo MF (2006). Trends and metho-
dological impacts in soil CO2 efflux partitioning: a meta-
analytical review. Global Change Biology, 12, 921–943.
Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005).
Contribution of aboveground litter, belowground litter and
rhizosphere respiration to total soil CO2 efflux in an old
growth coniferous forest. Biogeochemistry, 73, 231–256.
Tang JW, Bolstad PV, Martin JG (2009). Soil carbon fluxes and
stocks in a Great Lakes forest chronosequence. Global
Change Biology, 15, 145–155.
Tian DL, Wang GJ, Peng YY, Yan WD, Fang X, Zhu F, Chen
XY (2011). Contribution of autotrophic and heterotrophic
respiration to soil CO2 efflux in Chinese fir plantations.
Australian Journal of Botany, 59, 26–31.
Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD,
Driscoll CT, Yavitt JB (2003). Environmental control of
fine root dynamics in a northern hardwood forest. Global
Change Biology, 9, 670–679.
Tomotsune M, Yoshitake S, Watanabe S, Koizumi H (2013).
Separation of root and heterotrophic respiration within soil
respiration by trenching, root biomass regression and root
excising methods in a cool-temperate deciduous forest in
Japan. Ecological Research, 28, 259–269.
Vasconcelos SS, Zarin DJ, Capanu M, Littell R, Davidson
EA, Ishida FY, Santos EB, Araújo MM, Aragão DV,
Rangel-Vasconcelos LGT, Oliveira F, McDowell WH, de
Carvalho CJR (2004). Moisture and substrate availability
constrain soil trace gas fluxes in an eastern Amazonian
regrowth forest. Global Biogeochemical Cycles, 18, 1–10.
Wang CK, Yang JY (2007). Rhizospheric and heterotrophic
components of soil respiration in six Chinese temperate
forests. Global Change Biology, 13, 123–131.
Wang W, Chen WL, Wang SP (2010). Forest soil respiration
and its heterotrophic and autotrophic components: global
patterns and responses to temperature and precipitation.
Soil Biology & Biochemistry, 42, 1236–1244.
Widen B, Majdi H (2001). Soil CO2 efflux and root respiration
at three sites in a mixed pine and spruce forest: seasonal
and diurnal variation. Canadian Journal of Forest
Research, 31, 786–796.
Yang YS, Chen GS, Guo JF, Xie JS, Wang XG (2007). Soil
respiration and carbon balance in a subtropical native forest
and two managed plantations. Plant Ecology, 193, 71–84.
Yang YS, Chen GS, Lin P, Huang RZ, Chen YX, He ZM
(2003). Fine root distribution, seasonal pattern and produc-
tion in a native forest and monoculture plantations in
subtropical China. Acta Ecologica Sinica, 23, 1719–1730.
Yi ZG, Fu SL, Yi WM, Zhou GY, Mo JM, Zhang DQ, Ding
MM, Wang XM, Zhou LX (2007). Partitioning soil respi-
ration of subtropical forests with different successional
stages in south China. Forest Ecology and Management,
243, 178–186.
特邀编委: 赵 平 责任编辑: 王 葳