免费文献传递   相关文献

Effects of light intensity contrast on clonal integration of Spartina anglica.

光强对比度对大米草克隆整合作用的影响


通过温室控制试验,分析不同光强及光强对比度处理下克隆植物大米草生长性状的差异,研究同质异质光强条件下克隆整合对大米草响应遮阴能力的修饰作用.结果表明: 在同质条件下,大米草在无遮阴(高光强:温室内自然光照强度)条件下的生物量显著大于中度遮阴(中光强:光照强度为高光强的70%)和深度遮阴(低光强:光照强度为高光强的30%).在低对比度异质性光强条件下(分株对的一个分株不遮阴,另一个分株中度遮阴),大米草遮阴分株的叶片数、根长和生物量均显著高于同质中度遮阴处理,而无遮阴分株各生长指标与同质无遮阴处理相比均无显著差异.因此,在低对比度异质性光强下,大米草受体(遮阴)分株通过克隆整合显著受益;同时,对供体(非遮阴)分株没有显著的耗损.然而,在高对比度处理下(分株对的一个分株不遮阴,另一个分株深度遮阴),克隆整合对受体(遮阴)分株的效应不显著.大米草的克隆整合并不随着光强对比度的增加而增加.在自然生境中度遮阴情况下,克隆整合可以提高大米草的生长和克隆繁殖能力,但在深度遮阴情况下,克隆整合对大米草适应性的作用可能很小.

We conducted a greenhouse experiment to test how clonal integration affected the growth responses of Spartina anglica to light intensity heterogeneity in light availability and whether such effects depended on contrast light intensity. The experiment had three homogeneous treatments and two heterogeneous treatments. In the homogeneous treatments, both ramets of a connected ramet pair were unshaded (high light intensity), moderately shaded (medium light intensity, 70% of the high light intensity) and deeply shaded (low light intensity, 30% of the high light intensity). In the heterogeneous treatments, one ramet of a pair was unshaded, but its connected ramet was either moderately shaded (low light intensity contrast) or deeply shaded (high light intensity contrast). In the homogeneous treatments, biomass of S. anglica was significantly higher in the high light intensity treatment than in the medium and low light intensity treatments. Number of leaves, root length, and total biomass were significantly higher in the shaded ramet in the heterogeneous treatment with low light intensity contrast than in the ramet in the homogeneous treatment with medium light intensity. Final size and mass were not significantly different between the unshaded ramet in the heterogeneous treatment with low light intensity contrast and the ramets in the homogeneous high light intensity treatment. These results suggested that clonal integration  benefitted a shaded ramet with little cost to an unshaded ramet when contrast in light intensity was low. However, effects of clonal integration were not significant when contrast was high. It therefore appeared that effects of clonal integration on the growth of S. anglica did not increase with increasing light intensity contrast. In natural habitats, clonal integration might improve growth of S. anglica when its ramets are moderately shaded by other plants but not when they are deeply shaded.
 


全 文 :光强对比度对大米草克隆整合作用的影响*
姜星星摇 董必成摇 罗芳丽摇 朱摇 锐摇 徐希一摇 李红丽**摇 于飞海
(北京林业大学自然保护区学院, 北京 100083)
摘摇 要摇 通过温室控制试验,分析不同光强及光强对比度处理下克隆植物大米草生长性状的
差异,研究同质异质光强条件下克隆整合对大米草响应遮阴能力的修饰作用. 结果表明: 在
同质条件下,大米草在无遮阴(高光强:温室内自然光照强度)条件下的生物量显著大于中度
遮阴(中光强:光照强度为高光强的 70% )和深度遮阴(低光强:光照强度为高光强的 30% ) .
在低对比度异质性光强条件下(分株对的一个分株不遮阴,另一个分株中度遮阴),大米草遮
阴分株的叶片数、根长和生物量均显著高于同质中度遮阴处理,而无遮阴分株各生长指标与
同质无遮阴处理相比均无显著差异.因此,在低对比度异质性光强下,大米草受体(遮阴)分株
通过克隆整合显著受益;同时,对供体(非遮阴)分株没有显著的耗损.然而,在高对比度处理
下(分株对的一个分株不遮阴,另一个分株深度遮阴),克隆整合对受体(遮阴)分株的效应不
显著.大米草的克隆整合并不随着光强对比度的增加而增加.在自然生境中度遮阴情况下,克
隆整合可以提高大米草的生长和克隆繁殖能力,但在深度遮阴情况下,克隆整合对大米草适
应性的作用可能很小.
关键词摇 适应策略摇 克隆植物摇 环境异质性摇 生理整合摇 资源共享
*国家自然科学基金项目(31200313)和北京林业大学团队创新项目(TD鄄JC鄄2013鄄1)资助.
**通讯作者. E鄄mail: lihongli327@ 163. com
2014鄄03鄄11 收稿,2014鄄07鄄31 接受.
文章编号摇 1001-9332(2014)10-2826-07摇 中图分类号摇 Q948. 1摇 文献标识码摇 A
Effects of light intensity contrast on clonal integration of Spartina anglica. JIANG Xing鄄xing,
DONG Bi鄄cheng, LUO Fang鄄li, ZHU Rui, XU Xi鄄yi, LI Hong鄄li, YU Fei鄄hai (College of Nature
Conservation, Beijing Forestry University, Beijing 100083, China) . 鄄Chin. J. Appl. Ecol. , 2014, 25
(10): 2826-2832.
Abstract: We conducted a greenhouse experiment to test how clonal integration affected the growth
responses of Spartina anglica to light intensity heterogeneity in light availability and whether such
effects depended on contrast light intensity. The experiment had three homogeneous treatments and
two heterogeneous treatments. In the homogeneous treatments, both ramets of a connected ramet
pair were unshaded (high light intensity), moderately shaded (medium light intensity, 70% of the
high light intensity) and deeply shaded ( low light intensity, 30% of the high light intensity) . In
the heterogeneous treatments, one ramet of a pair was unshaded, but its connected ramet was either
moderately shaded ( low light intensity contrast) or deeply shaded (high light intensity contrast) .
In the homogeneous treatments, biomass of S. anglica was significantly higher in the high light in鄄
tensity treatment than in the medium and low light intensity treatments. Number of leaves, root
length, and total biomass were significantly higher in the shaded ramet in the heterogeneous treat鄄
ment with low light intensity contrast than in the ramet in the homogeneous treatment with medium
light intensity. Final size and mass were not significantly different between the unshaded ramet in
the heterogeneous treatment with low light intensity contrast and the ramets in the homogeneous high
light intensity treatment. These results suggested that clonal integration benefitted a shaded ramet
with little cost to an unshaded ramet when contrast in light intensity was low. However, effects of
clonal integration were not significant when contrast was high. It therefore appeared that effects of
clonal integration on the growth of S. anglica did not increase with increasing light intensity con鄄
trast. In natural habitats, clonal integration might improve growth of S. anglica when its ramets are
moderately shaded by other plants but not when they are deeply shaded.
应 用 生 态 学 报摇 2014 年 10 月摇 第 25 卷摇 第 10 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
Chinese Journal of Applied Ecology, Oct. 2014, 25(10): 2826-2832
Key words: adaptive strategy; clonal plant; environmental heterogeneity; physiological integra鄄
tion; resource sharing.
摇 摇 光是调控植物生长、发育及分布的重要环境因
子.在自然生境中,由于植物分布的不均匀性,导致
光照在群落中常常为异质性分布[1-2] . 光照异质性
可以影响植物生长、形态、繁殖和分布[3-7],但这种
效应可能依赖于光照异质性的尺度和对比度[7-8] .
在自然条件下,克隆植物通过克隆生长可以在
水平空间形成大的基株(克隆).这些克隆由数量不
等的分株通过匍匐茎、根状茎或根等横生结构相互
连接,常常可以占据不同的斑块[9-10] .在一定的条件
下,生长在不同资源水平斑块中的分株可以实现水
分、养分和碳水化合物等物质的传输与分享[4,9-10],
即克隆整合.研究表明,克隆整合对植物利用异质性
分布资源、胁迫生境中的生存和繁殖、新生境的定居
和拓展等具有重要意义[5,11-13] . 尽管目前已经开展
了许多异质光照条件下克隆整合作用的研
究[8-9,14-16],但研究结果随植物物种、基因型及斑块
设计的不同而存在差异[6,14,17] .
斑块对比度,即不同斑块内资源水平的对比度,
是环境异质性的重要属性之一[18-19] .当相连分株分
别生长在 2 个资源水平不同的斑块中时,这 2 个斑
块内资源水平的对比度可能影响分株之间的源鄄汇
强度,从而进一步影响分株之间的克隆整合作
用[19-20] .然而,有关克隆整合对克隆植物响应遮阴
影响的研究多数是在一种光强对比度下开展
的[4,6-7],而光强对比度对克隆整合作用的研究却较
少[20] .
大米草(Spartina anglica)是多年生根状茎型湿
地克隆植物,天然分布于英国南海岸. 1963 年,大米
草以保滩护岸、促淤造陆、改良土壤等目的被引入我
国,对保护海岸起到了很大的作用[21] .然而,在我国
沿海地区,大米草种群处于退化阶段,植株矮小,常
与其他湿地植物混生,并在很多情况下处于被遮阴
的位置[22-23] .本研究中,将大米草相连分株分别种
植在 3 种同质光强和 2 种对比度不同的异质性光强
条件下,研究光强异质性对大米草生长的影响,以及
这种效应是否依赖于光强对比度. 自然条件下植物
遮阴既降低了光强,也同时改变了光质(降低红光鄄
远红光比率) [24-25] .本研究仅考虑光强的异质性,而
并未涉及光质的异质性. 由于光强对植物的效应主
要体现在对植物生长的影响,而光质对植物的效应
则更多表现为对其光形态建成的影响[24] . 因此,本
研究旨在探讨光强异质性对大米草生长的影响,主
要探讨以下科学问题:克隆整合是否影响大米草对
异质性光强的生长响应? 光强对比度是否影响大米
草的克隆整合作用?
1摇 材料与方法
1郾 1摇 供试材料
大米草是禾本科米草属多年生草本植物,是以
北美互花米草(Spartina alterniflora)为母本和英国
本地的一种欧洲米草( S. maritima)为父本的自然
杂交种.本研究所用大米草采自沿海地带的江苏盐
城 珍 禽 国 家 级 自 然 保 护 区 ( 32毅 36忆 51义—
34毅28忆32义 N,119毅51忆25义—121毅5忆47义 E).
1郾 2摇 试验设计
2010 年 4 月 18 日,在盐城自然保护区采集一
定数量的大米草(带根土),置于北京林业大学温室
内培养. 5 月 18 日,选取生长良好、高度一致的大米
草分株对移植在直径 24 cm、深度 22 cm的塑料培养
盆中,内装 18 cm 深的土壤基质(粘土及沙比例为
1 颐 1),模拟大米草野外的盐沼土壤生境. 每盆种植
1 对分株,共 60 盆,置于金属架内,在金属架上采用
黑色遮阴网进行中度遮阴(光照强度为非遮阴环境
的 70% )或深度遮阴(光照强度为非遮阴环境的
30% )处理,无遮阴处理则不搭遮阴网,采用温室内
的自然光照.
一周后开始试验. 试验包括 5 种处理:1)分株
对的 2 个分株均不遮阴(H鄄H,高光强,温室内的自
然光照强度),即同质无遮阴处理;2)分株对的 2 个
分株均中度遮阴(M鄄M,中光强,光照强度为高光强
的 70% ),即同质中度遮阴处理;3)分株对的 2 个分
株均深度遮阴(L鄄L,低光强,光照强度为高光强的
30% ),即同质深度遮阴处理;4)分株对的一个分株
不遮阴,而另一个分株中度遮阴(H鄄M),即低对比
度异质性光强处理;5)分株对的一个分株不遮阴,
而另一个分株深度遮阴(H鄄L),即高对比度异质性
光强处理(图 1).每处理 12 个重复,在试验过程中,
部分植物死亡,因此收获时每组处理有逸6 个重复.
每 2 ~ 3 d浇 1 次盐度为 15译的海盐水,如遇持续高
温天气,则 1 d 浇 2 次,每次浇水以没过土壤表面
1 cm为准.
728210 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 姜星星等: 光强对比度对大米草克隆整合作用的影响摇 摇 摇 摇 摇 摇
图 1摇 试验设计图
Fig. 1摇 Schematic representation of the experimental design.
H: 无遮阴 High light; M: 中度遮阴 Medium light; L: 深度遮阴 Low
light.
摇 摇 2010 年 8 月 17 日,将植株完整取出,测定绿色
叶片数、最长根长、最高分株株高.随后,将大米草分
解为地上部分(包括叶片、叶柄、叶鞘)和根,在60 益
烘箱烘 72 h后,测定生物量. 总生物量为地上和根
生物量之和.
1郾 3摇 数据处理
采用单因素方差分析法(one鄄way ANOVA)分析
3 种同质遮阴处理对大米草生长的影响,并分析异
质性遮阴对不遮阴一侧分株生长的影响.采用 Dun鄄
can法对均值进行多重比较(琢 = 0. 05).采用 t 检验
分析异质性遮阴对大米草分株对中度遮阴和深度遮
阴分株生长的影响.采用 SPSS 16郾 0 软件进行数据
统计分析,利用 Sigmaplot 11. 0 软件作图.图表中数
据为平均值依标准误.
2摇 结果与分析
2郾 1摇 同质遮阴处理对大米草生长的影响
与同质无遮阴处理(H鄄H)相比,深度遮阴(L鄄
L)显著减少了大米草的总生物量、地上生物量、根
生物量和叶片数,而中度遮阴(M鄄M)显著降低了总
生物量、根生物量和叶片数(图 2).遮阴处理对大米
草的最长根长没有显著影响,但显著增加了最高
株高.
2郾 2摇 克隆整合对大米草分株对不遮阴一侧分株生
长的影响
由图 3 可知,与同质无遮阴处理(H鄄H)相比,高
对比度异质光强处理(H鄄L)显著降低了大米草分株
对不遮阴分株的总生物量、地上生物量和叶片数,但
低对比度异质光强处理(H鄄M)对这 3 个生长指标没
有显著影响.高对比度和低对比度异质光强处理对
不遮阴分株的根生物量、最长根长和最高株高均没
有显著影响.
2郾 3摇 克隆整合对大米草分株对遮阴一侧分株的
影响
与同质中度遮阴处理(M鄄M)相比,低对比度异质
光强处理(H鄄M)显著提高了大米草遮阴分株的总生
图 2摇 3 种同质光照强度下大米草分株对的生长
Fig. 2摇 Growth of the ramet pairs of Spartina anglica in the three homogeneous light intensity treatments.
H鄄H: 同质无遮阴 Homogeneous high light; M鄄M: 同质中度遮阴 Homogeneous medium light; L鄄L: 同质深度遮阴 Homogeneous low light. 不同字母
表示处理间差异显著(P<0. 05)Different letters indicated significant difference among different treatments at 0. 05 level. 下同 The same below.
8282 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷
图 3摇 同质和异质处理下大米草分株对未遮阴分株的生长
Fig. 3摇 Growth of the unshaded ramet of the Spartina anglica ramet pairs in both homogeneous and heterogeneous treatments.
H鄄M: 低对比度异质性光强 Heterogeneous treatment with low light intensity contrast; H鄄L: 高对比度异质性光强 Heterogeneous treatment with high
light intensity contrast. 下同 The same below.
图 4摇 同质和异质处理下大米草分株对中度遮阴分株的生长
Fig. 4摇 Growth of the moderately shaded ramet of the Spartina anglica ramet pairs in both homogeneous and heterogeneous treatments.
物量、叶片数和最长根长,并显著降低了最高株高,
但对地上生物量和根生物量没有显著影响(图 4).
与同质深度遮阴处理(L鄄L)相比,高对比度异
质光强处理(H鄄L)对大米草遮阴分株的总生物量、
地上生物量、根生物量、叶片数、最长根长和最高株
高均没有显著影响(图 5).
3摇 讨摇 摇 论
在无遮阴处理下,大米草植株的长势较强,生物
量和叶片数显著大于其他处理,而且试验中只有无
遮阴(H鄄H)处理下的分株对产生了根状茎.因此,高
光强条件更有利于大米草的生长.大米草的株高对
928210 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 姜星星等: 光强对比度对大米草克隆整合作用的影响摇 摇 摇 摇 摇 摇
图 5摇 同质和异质处理下大米草分株对深度遮阴分株的生长
Fig. 5摇 Growth of the deeply shaded ramet of the Spartina anglica ramet pairs in both homogeneous and heterogeneous treatments.
遮阴表现出一定的适应性,但随着遮阴程度增加,大
米草植株的成活率显著下降(高、中和低光强下存
活率分别为 91. 7% 、58. 3%和 50. 0% ). 这表明,光
强影响大米草的存活和生长.
尽管植物必需资源的空间分布通常是异质性
的,但克隆植物特有的可塑性可以对资源异质性产
生一定的适应性[9-10,26] .许多研究表明,克隆整合可
以使胁迫生境下的分株显著受益,这些胁迫环境包
括低光[4,8]、干旱[27]、养分匮乏[28]、沙埋[11,29]及牲畜
踩踏[13]等.本研究中,与 M鄄M相比,H鄄M中胁迫(遮
阴)条件下分株的根长、叶片数和总生物量均显著
增加.这表明在低对比度异质性光强处理下,克隆整
合显著提高了受胁迫(遮阴)分株的存活和生长能
力,即克隆整合产生了显著的收益.同时,与 H鄄H 相
比,H鄄M中未受胁迫(不遮阴)分株的生长均未下
降.因此,在低对比度异质性光强处理下,克隆整合
并未产生显著的成本或损耗. 这与前期研究结果一
致,表明克隆整合对整个克隆片段可能产生显著的
净收益[11,30],从而提高大米草片段的适合度,具有
选择进化上的意义. 目前,针对这一现象的解释,主
要集中在两个方面:一是对于未受胁迫的分株而言,
通过克隆整合输出的资源为其生长发育多余的资
源,这些多余资源的输出并不会显著削弱未遭受胁
迫分株的生长[31],但却显著促进了受胁迫分株的生
长;二是在异质性胁迫条件下,受胁迫分株“库冶效
应的增加,引起相连的未受胁迫分株的补偿性生
长[32-33],而这种源鄄汇反馈调节机制与光合作用机
构的光化学转化效率可能有一定联系[29] .
然而,克隆整合对大米草生长的影响并不随着
光强对比度的增加而增加. 相反,在高对比度情况
下,克隆整合对大米草生长的影响并不显著.有研究
表明,在异质性环境下,克隆整合并不显著影响未受
胁迫分株的生长[11,30],但也有研究发现,克隆整合
显著降低了这些分株的生长[34] . 克隆整合的成本鄄
收益关系在很大程度上受胁迫类型、胁迫强度、植物
种类和栖息地环境等的影响[9,35] . 胁迫程度增强或
持续时间太长,使得成本鄄收益平衡被打破,进而可
能导致克隆植物适合度降低. 与 H鄄H 相比,H鄄L 中
未受胁迫的分株的生长显著降低,表明在高对比度
异质性光强处理下克隆整合产生了显著的成本或损
耗.同时,克隆整合并不能显著提高受胁迫分株的生
长,从而未产生显著的净收益.因此,可以推测,由于
分株对处理间对比度较大,胁迫分株在深度遮阴下
能量消耗较大,未遮阴分株加大对遮阴分株的能量
供应.然而,遮阴分株获得的收益并不足以支持其自
身的生长,导致整个克隆片段适合度的下降.出现这
一现象的原因可能是,虽然未受胁迫分株通过根状
茎可以实现对胁迫分株的资源输出,但由于克隆整
合过程存在许多潜在的成本与损耗,如维持形体连
接所需要的成本、资源传递过程所需要的能量成本
以及受胁迫分株吸收能量时产生的损耗[36-37],从而
导致大米草片段适合度的降低.
0382 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷
综上所述,中度遮阴胁迫下,克隆整合可以提高
大米草对异质光强的适应性,从而提高克隆片段的
适合度;但在高度遮阴胁迫下,克隆整合则不能带来
适应性净收益.因此,在自然生境中,中度遮阴情况
下,克隆整合可能提高大米草的适应能力,有利于其
与其他植物的共存,而在深度遮阴情况下,克隆整合
不能显著提高大米草的适应性.
参考文献
[1]摇 He WM, Dong M. Physiological acclimation and growth
response to partial shading in Salix matsudana in the Mu
Us Sandland in China. Trees, 2003, 17: 87-93
[2]摇 Wang R (王摇 蕊), Sun B (孙摇 备), Li J鄄D (李建
东), et al. Effects of light intensity on the phenotypic
plasticity of invasive species Ambrosia trifida. Chinese
Journal of Applied Ecology (应用生态学报), 2012, 23
(7): 1797-1802 (in Chinese)
[3]摇 Xu C鄄Y (徐程扬). Response of structural plasticity of
Tilia amurensis sapling crowns to different light condi鄄
tions. Chinese Journal of Applied Ecology (应用生态学
报), 2001, 12(3): 339-343 (in Chinese)
[4]摇 Chen JS, Lei NF, Yu D, et al. Differential effects of
clonal integration on performance in the stoloniferous
herb Duchesnea indica, as growing at two sites with
different altitude. Plant Ecology, 2006, 183: 147-156
[5]摇 Roiloa SR, Alpert P, Tharayil N, et al. Greater capaci鄄
ty for division of labour in clones of Fragaria chiloensis
from patchier habitats. Journal of Ecology, 2007, 95:
397-405
[6]摇 He WM, Alpert P, Yu FH, et al. Reciprocal and coin鄄
cident patchiness of multiple resources differentially
affect benefits of clonal integration in two perennial
plants. Journal of Ecology, 2011, 99: 1202-1210
[7]摇 Wang P, Lei JP, Li MH, et al. Spatial heterogeneity in
light supply affects intraspecific competition of a stoloni鄄
ferous clonal plant. PLoS ONE, 2012, 7(6): e39105
[8]摇 Guo W, Song YB, Yu FH. Heterogeneous light supply
affects growth and biomass allocation of the understory
fern Diplopterygium glaucum at high patch contrast.
PLoS ONE, 2011, 6(11): e27998
[9]摇 Alpert P. Effects of clonal integration on plant plasticity
in Fragaria chiloensis. Plant Ecology, 1999, 141: 99-
106
[10]摇 Chen J鄄S (陈劲松), Dong M (董摇 鸣), Yu D (于摇
丹), et al. Clonal architecture and ramet population
characteristics of Lysimachia congestiflora growing under
different light conditions. Chinese Journal of Applied
Ecology (应用生态学报), 2004, 15(8): 1383-1388
(in Chinese)
[11]摇 Yu FH, Dong M, Krusi B. Clonal integration helps
Psammochloa villosa survive sand burial in an inland
dune. New Phytologist, 2004, 162: 697-704
[12]摇 Otfinowski R, Kenkel NC. Clonal integration facilitates
the proliferation of smooth brome clones invading north鄄
ern fescue prairies. Plant Ecology, 2008, 199: 235 -
242
[13]摇 Xu L, Yu FH, van Drunen E, et al. Trampling, defoli鄄
ation and physiological integration affect growth, mor鄄
phological and mechanical properties of a root鄄suckering
clonal tree. Annals of Botany, 2012, 109: 1001-1008
[14]摇 Xu CY, Schooler SS, van Klinken RD. Effects of clonal
integration and light availability on the growth and physi鄄
ology of two invasive herbs. Journal of Ecology, 2010,
98: 833-844
[15]摇 Stuefer JF, During HJ, de Kroon H. High benefits of
clonal integration in two stoloniferous species, in
response to heterogeneous light environments. Journal of
Ecology, 1994, 82: 511-518
[16]摇 van Kleunen M, Fischer M, Schmid B. Clonal integra鄄
tion in Ranunculus reptans: By鄄product or adaptation?
Journal of Evolutionary Biology, 2000, 13: 237-249
[17]摇 Liu J, He WM, Zhang SM, et al. Effects of clonal inte鄄
gration on photosynthesis of the invasive clonal plant Al鄄
ternanthera philoxeroides. Photosynthetica, 2008, 46:
299-302
[18]摇 He WM, Zhang H, Dong M. Plasticity in fitness and
fitness鄄related traits at ramet and genet levels in a tille鄄
ring grass Panicum miliaceum under patchy soil nutri鄄
ents. Plant Ecology, 2004, 172: 1-10
[19]摇 Peng Y鄄K (彭一可), Luo F鄄L (罗芳丽), Li H鄄L (李
红丽), et al. Growth responses of a rhizomatous herb
Bolboschoenus planiculmis to scale and contrast of soil
nutrient heterogeneity. Chinese Journal of Plant Ecology
(植物生态学报), 2013, 37(4): 335-343 ( in Chi鄄
nese)
[20]摇 Wang ZW, Li YH, During HJ, et al. Do clonal plants
show greater division of labour morphologically and phys鄄
iologically at higher patch contrasts? PLoS ONE, 2011,
6(9): e25401
[21]摇 Xu N鄄J (徐年军), Tang J (唐摇 军), Zhang Z鄄W (张
泽伟), et al. Inhibitory effects of Spartina anglica on
Heterosigma akashiwo and Prorocenrum micans and the
isolation and identification of the algicidal compounds.
Chinese Journal of Applied Ecology (应用生态学报),
2009, 20(10): 2563-2568 (in Chinese)
[22]摇 Deng Z鄄F (邓自发), An S鄄Q (安树青), Zhi Y鄄B (智
颖飙), et al. Preliminary studies on invasive model and
outbreak mechanism of exotic species, Spartina alterni鄄
138210 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 姜星星等: 光强对比度对大米草克隆整合作用的影响摇 摇 摇 摇 摇 摇
flora Loisel. Acta Ecologica Sinica (生态学报), 2006,
26(8): 2678-2686 (in Chinese)
[23]摇 Li HL, Lei GC, Zhi YB, et al. Nitrogen addition chan鄄
ges the interactions between a salt marsh native species
( Scirpus triqueter) and an exotic perennial ( Spartina
anglica) in coastal China. PLoS ONE, 2011, 6(10):
e25629
[24]摇 Schmitt J, Wulff RD. Light spectral quality, phyto鄄
chrome and plant competition. Trends in Ecology and
Evolution, 1993, 8: 47-51
[25]摇 Stuefer JF, Huber H. Differential effects of light quanti鄄
ty and spectral light quality on growth, morphology and
development of two stoloniferous Potentilla species.
Oecologia, 1998, 117: 1-8
[26]摇 Ma W鄄L (马万里), Zhong Z鄄C (钟章成). Morpholo鄄
gical adaptability of clonal herb Iris japonica to changed
light condition. Chinese Journal of Applied Ecology (应
用生态学报), 1998, 9(1): 23-26 (in Chinese)
[27]摇 Zhang Y, Zhang Q, Luo P, et al. Photosynthetic
response of Fragaria orientalis in different water contrast
clonal integration. Ecological Research, 2009, 24:
617-625
[28]摇 Evans JP. Nitrogen translocation in a clonal dune peren鄄
nial, Hydrocotyle bonariensis. Oecologia, 1988, 77:
64-68
[29]摇 Chen JS, Lei NF, Dong M. Clonal integration improves
the tolerance of Carex praeclara to sand burial by com鄄
pensatory response. Acta Oecologica, 2010, 36: 23-28
[30]摇 Slade AJ, Hutchings MJ. Clonal integration and plasti鄄
city in foraging behaviour in Glechoma hederacea. Jour鄄
nal of Ecology, 1987, 75: 1023-1036
[31]摇 van Kleunen M, Stuefer JF. Quantifying the effects of
reciprocal assimilate and water translocation in a clonal
plant by the use of steam鄄girdling. Oikos, 1999, 85:
135-145
[32]摇 Roiloa SR, Retuerto R. Physiological integration amelio鄄
rates effects of serpentine soils in the clonal herb Fra鄄
garia vesca. Physiologia Plantarum, 2006, 128: 662-
676
[33]摇 Xiao KY, Yu D, Xu XW, et al. Benefits of clonal inte鄄
gration between interconnected ramets of Vallisneria spir鄄
alis in heterogeneous light environments. Aquatic Bota鄄
ny, 2007, 86: 76-82
[34]摇 Wang N, Yu FH, Li PX, et al. Clonal integration
supports the expansion from terrestrial to aquatic envi鄄
ronments of the amphibious stoloniferous herb Alternan鄄
thera philoxeroides. Plant Biology, 2009, 11: 483-489
[35]摇 Hartnett DC, Bazzaz FA. Physiological integration
among intraclonal ramets in Solidago canadensis. Ecolo鄄
gy, 1983, 64: 779-788
[36]摇 Tao Y鄄S (陶应时), Hong S鄄C (洪胜春), Liao Y鄄M
(廖咏梅), et al. Cost鄄benefits of the clonal integration
of Cynodon dactylon, a stolon herbaceous plant, under
heterogeneous lighting condition. Acta Ecologica Sinica
(生态学报), 2013, 33 (20): 6509 - 6516 ( in Chi鄄
nese)
[37]摇 van Kleunen M, Fischer M, Schmid B. Costs of plastic鄄
ity in foraging characteristics of the clonal plant Ranun鄄
culus reptans. Evolution, 2000, 54: 1947-1955
作者简介摇 姜星星,女,1993 年生,本科生. 主要从事克隆植
物生态学和湿地生态学研究. E鄄mail: xingxingj93@ 163. com
责任编辑摇 孙摇 菊
2382 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷