A comparative study was conducted on the soil C and N pools in a 19year-old broadleaf plantation and a Chinese fir (Cunninghamia lanceolata) plantation in subtropical China, aimed to understand the effects of tree species on the soil C and N pools. In the broadleaf plantation, the C and N stocks in 0-40 cm soil layer were 99.41 Mg·hm-2 and 6.18 Mg·hm-2, being 33.1 % and 22.6 % larger than those in Chinese fir plantation, respectively. The standing biomass and the C and N stocks of forest floor in the broadleaf plantation were 1.60, 1.49, and 1.52 times of those in Chinese fir plantation, respectively, and the differences were statistically significant. There was a significant negative relationship between the forest floor C/N ratio and the soil C and N stocks. In the broadleaf plantation, the fine root biomass in 0-80 cm soil layer was 1.28 times of that in the Chinese fir plantation, and the fine root biomass in 0-10 cm soil layer accounted for 48.2 % of the total fine root biomass. The C and N stocks in the fine roots in the broadleaf plantation were also higher than those in the Chinese fir plantation. In 0-10 cm soil layer, its C stock had a significant positive relationship with the fine root C stock. It was suggested that as compared with Chinese fir plantation, the soil in broadleaf plantation had a greater potential to accumulate organiccarbon.
全 文 :阔叶和杉木人工林对土壤碳氮库的影响比较*
万晓华1,2 摇 黄志群1,2 摇 何宗明3**摇 胡振宏1,2 摇 杨靖宇3 摇 余再鹏1,2 摇 王民煌1,2
( 1湿润亚热带山地生态国家重点实验室培育基地, 福州 350007; 2福建师范大学地理科学学院, 福州 350007; 3福建农林大学
林学院, 福州 350002)
摘摇 要摇 通过比较我国亚热带地区 19 年生阔叶人工林和杉木人工林土壤碳氮储量,探讨树
种对土壤碳氮库的影响. 结果表明:阔叶人工林 0 ~ 40 cm 土层碳储量平均为 99. 41
Mg·hm-2,比杉木人工林增加 33. 1% ;土壤氮储量为 6. 18 Mg·hm-2,比杉木人工林增加
22郾 6% .阔叶人工林林地枯枝落叶层现存量、碳和氮储量分别是杉木人工林的 1. 60、1. 49 和
1. 52 倍,两个树种的枯落叶生物量、碳和氮储量均有显著差异.枯枝落叶层碳氮比值与土壤
碳、氮储量之间呈显著负相关.阔叶人工林细根生物量(0 ~ 80 cm)是杉木林的 1. 28 倍,其中
0 ~ 10 cm土壤层细根生物量占 48. 2% ;阔叶人工林细根碳、氮储量均高于杉木人工林.在 0 ~
10 cm土层,细根碳储量与土壤碳储量具有显著正相关关系.阔叶树种比杉木的土壤有机碳储
存能力更大.
关键词摇 杉木摇 土壤碳摇 土壤氮摇 枯枝落叶层摇 细根
文章编号摇 1001-9332(2013)02-0345-06摇 中图分类号摇 S718. 5摇 文献标识码摇 A
Effects of broadleaf plantation and Chinese fir (Cunninghamia lanceolata) plantation on soil
carbon and nitrogen pools. WAN Xiao鄄hua1,2, HUANG Zhi鄄qun1,2, HE Zong鄄ming3, HU Zhen鄄
hong1,2, YANG Jing鄄yu3, YU Zai鄄peng1,2, WANG Min鄄huang1,2 ( 1 Cultivation Base of State Key
Laboratory of Humid Subtropical Mountain Ecology, Fuzhou 350007, China; 2School of Geograph鄄
ical Science, Fujian Normal University, Fuzhou 350007, China; 3Forestry College of Fujian Agricul鄄
ture and Forestry University, Fuzhou 350002,China) . 鄄Chin. J. Appl. Ecol. ,2013,24 (2): 345 -
350.
Abstract: A comparative study was conducted on the soil C and N pools in a 19鄄year鄄old broadleaf
plantation and a Chinese fir (Cunninghamia lanceolata) plantation in subtropical China, aimed to
understand the effects of tree species on the soil C and N pools. In the broadleaf plantation, the C
and N stocks in 0-40 cm soil layer were 99. 41 Mg·hm-2 and 6. 18 Mg·hm-2, being 33. 1 % and
22. 6 % larger than those in Chinese fir plantation, respectively. The standing biomass and the C
and N stocks of forest floor in the broadleaf plantation were 1. 60, 1. 49, and 1. 52 times of those in
Chinese fir plantation, respectively, and the differences were statistically significant. There was a
significant negative relationship between the forest floor C / N ratio and the soil C and N stocks. In
the broadleaf plantation, the fine root biomass in 0-80 cm soil layer was 1. 28 times of that in the
Chinese fir plantation, and the fine root biomass in 0-10 cm soil layer accounted for 48. 2 % of the
total fine root biomass. The C and N stocks in the fine roots in the broadleaf plantation were also
higher than those in the Chinese fir plantation. In 0-10 cm soil layer, its C stock had a significant
positive relationship with the fine root C stock. It was suggested that as compared with Chinese fir
plantation, the soil in broadleaf plantation had a greater potential to accumulate organic carbon.
Key words: Chinese fir (Cunninghamia lanceolata); soil organic carbon; soil organic nitrogen;
forest floor; fine root.
*2011 教育部新世纪优秀人才计划项目(DB鄄168)资助.
**通讯作者. E鄄mail: hezm2@ 126. com
2012鄄05鄄20 收稿,2012鄄12鄄04 接受.
应 用 生 态 学 报摇 2013 年 2 月摇 第 24 卷摇 第 2 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
Chinese Journal of Applied Ecology, Feb. 2013,24(2): 345-350
摇 摇 森林生态系统储存着陆地地上部分总碳储量的
82% ~ 86% [1],森林土壤中的碳占土壤总有机碳的
70% ~ 73% [2] .因此,森林土壤有机碳的较小变化,
都可能改变森林生态系统的碳平衡. 土壤有机碳主
要来源于地上部分的枯落物输入以及地下部分根系
周转产生的碎屑,而树种主要通过控制有机质输入
的数量和质量,以及分解机制来影响土壤有机碳库
及其动态变化[3] .研究表明,不同树种的生产力、碳
分配和凋落物的数量、质量等均有很大差异,从而影
响着人工林生态系统土壤碳汇(源)功能[4-5] . Lag鄄
aniere等[6]研究表明,在农田上用阔叶树种造林后,
土壤有机碳储量增加 25% ,而种植针叶树种后土壤
有机碳储量仅增加 2% . Br佴chet等[7]通过分析 16 个
单一树种下土壤呼吸速率的差异,发现凋落叶和树
木的断面积是影响土壤呼吸的主要因子. 目前很多
地区将植树造林或改变造林树种作为减少 CO2排放
量的一项重要举措[8] .但是关于树种对土壤碳库影
响的定量估计及对土壤有机碳稳定性的直接影响等
还缺乏深入研究[9-10] .
杉木(Cunninghamia lanceolata)是我国南方亚
热带地区主要的造林树种之一.近几十年来,由于经
济利益的驱动,大面积天然林被具有高经济价值的
杉木人工林所取代. 目前,全国杉木人工林面积为
911伊104 hm2,在全国和世界人工林总面积中分别占
18%和 5% [11],大规模营造杉木人工林的后果是树
种组成的单一化和针叶化现象严重,影响森林生态
功能的正常发挥[12] .杉木的多代连栽还会造成林地
生产力衰退、土壤肥力下降[13-15] . 俞新妥[12]在对福
建省树种结构进行调整中提出,要鼓励阔叶树种造
林,特别是在杉木林采伐迹地上营造阔叶林.冯宗炜
等[16]通过对针阔混交林综合定位研究,发现杉木和
火力楠(Michelia macclurei)种植比例为 8 ︰ 2 的针
阔混交林能够显著提高森林生产力和土壤肥力. 邓
仕坚等[17]、陈楚莹等[18]和罗云建等[19]研究表明,
杉鄄阔混交能够增加凋落物量,改善土壤理化性质,
提高土壤微生物活性.然而,目前关于树种对土壤有
机碳的长期变化研究很少. 本研究探讨了我国亚热
带地区在杉木采伐迹地上用阔叶树种营林对土壤碳
氮储量的影响,以期为森林生态系统的科学管理提
供参考.
1摇 研究区域与研究方法
1郾 1摇 研究地概况及试验设计
研究地点 设 在 福 建 省 南 平 市 峡 阳 林 场
(26毅48忆 N,117毅59忆 E),地处武夷山脉东南侧、闽江
上游,海拔 229 ~ 246 m. 该区属中亚热带季风型气
候,年均气温 20. 0 益,年均降水量 1644 mm,年均蒸
发量 1370 mm,年均相对湿度 75. 2% . 土壤为红黄
壤,pH值 4. 0 ~ 5. 0.
试验地于 1993 年春在第二代杉木林采伐迹地
上营造.试验林包括:阔叶树纯林[米老排(Mytilaria
laosensis)]、阔叶树混交林(米老排鄄火力楠混交林)、
阔叶树鄄杉木混交林和杉木纯林. 阔叶树鄄杉木混交
林后来因杉木生长较差,大多被压后死亡,保存下来
的杉木数量少、个体小,最初的混交林目前已成为以
阔叶林为主的阔叶树鄄杉木混交林.目前的试验地主
要包括阔叶人工林和杉木人工林两种生态系统,林
龄均为 19 年,初植密度均为 2500 株·hm-2 .试验地
采用完全随机区组设计方法,共 8 个试验小区,平均
面积 400 m2 . 2011 年 7 月调查时,阔叶人工林以米
老排为主,平均树高 15. 40 m,平均胸径14. 72 cm;
杉木平均树高 13. 84 m,平均胸径 15. 93 cm.林下植
被主要有:苦竹(Pleioblastus amarus)、粗叶榕(Ficus
simplicissima)、芒萁 (Dicranopteris dichotoma)、狗脊
(Woodwardia japonica)、玉叶金花 (Mussaenda pu鄄
bescens)和稀羽鳞毛蕨(Dryopteris sparsa)等.
1郾 2摇 研究方法
1郾 2郾 1 土壤样品采集及处理 摇 在试验小区内,用内
径为 3. 7 cm 的土钻沿对角线等距离钻取 12 个点,
将钻取的土样分为 0 ~ 5、5 ~ 10、10 ~ 20 和 20 ~
40 cm 4 个土层,并将同一个小区相同土层的土样均
匀混合,取混合样. 将土样带回实验室,在室温下自
然风干,过 2 mm 筛,然后取部分土样过 0. 15 mm
筛,用元素分析仪(Elemental EL MAX CNS analyzer,
德国)测定土壤碳氮含量(% ).同时,采用环刀法取
原状土, 测定土壤容重. 土壤碳储量 ( SCM,
Mg·hm-2)和氮储量(SNM,Mg·hm-2)按下式计算:
SCM =移
n
i = 1
SC iB iHi (1)
SNM =移
n
i = 1
SNiB iHi (2)
式中:n为土壤剖面分割的层数;SC i和 SNi分别为第
i层土壤碳、氮含量;B i和 Hi分别为第 i 层土壤容重
(g·cm-3)和土层厚度(cm).
1郾 2郾 2 枯枝落叶层和细根的采集、生物量估算及碳
氮分析摇 枯枝落叶层生物量采用样方收获法测定.
即在每个试验小区内的上坡、中坡和下坡位分别设
立 0. 5 m伊0. 5 m小样方 1 个,收集样方内全部的灌
643 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 24 卷
木、杂草、凋落物等,在室内按分解速率将枯落叶分
拣成未分解叶和半分解叶、枝、花、果以及其他成分
(包括杂枝、杂叶等) 6 部分.
细根样品的采集采用土芯法,即在每个试验小
区内,沿对角线用内径 4. 0 cm 的土钻等距离钻取
10 个点,将每根土芯分割为 0 ~ 10、10 ~ 20、20 ~ 40
和 40 ~ 80 cm 4 个层次.在室内把土样放在套筛上,
用自来水冲洗,然后分出 0 ~ 2 mm(细根)和 >2 mm
(粗根)两个径级.细根的生物量(Br, Mg·hm-2)按
下式计算:
Br =(Rdm伊10-6) / [仔(D / 2) 2伊10-8] (3)
式中:Rdm为平均每根土芯中细根样品干质量(g);
D为土钻内径(4. 0 cm).
枯枝落叶和细根样品均在 60 益下烘干至恒量,
粉碎后过 100 目筛,用碳氮元素分析仪(Elemental
Analyzer Vario EL III,德国)测定其碳氮元素含量
(% ).
1郾 3摇 数据处理
所有数据处理和统计分析均在 Excel 2003 和
SPSS 17. 0 软件上进行,由 Excel绘图.采用 t检验法
检验两个变量之间的差异显著性(琢 = 0. 05). 采用
一元线性回归模型建立两个变量之间的相关关系.
2摇 结果与分析
2郾 1摇 两种林分土壤碳氮储量及碳氮比
研究结果显示,阔叶人工林、杉木人工林 0 ~
40 cm土层平均土壤容重分别为 1. 08 和 1. 10
g·cm-3 .阔叶人工林土壤碳储量比杉木人工林增加
33. 1% ,氮储量比杉木人工林增加 22. 6% . 经 t 检
验,两个林分之间的土壤碳储量在 0 ~ 5 和 5 ~
10 cm土层具有显著差异,而两个林分的土壤氮储量
和碳氮比值在所有土层上均无显著差异(表 1).
2郾 2摇 两种林分枯枝落叶层的碳、氮储量及碳氮比
由表 2 可以看出,阔叶人工林枯枝落叶层现存
量是杉木林的 1. 60 倍.从枯枝落叶层各组分所占比
例来看,阔叶人工林中半分解叶所占比例最大,为
43. 0% ,其次是枝(20. 1% );而杉木人工林中半分
解叶和未分解叶生物量仅占 24. 7%和 18. 8% .这是
由于杉木人工林中,灌木层和草本层植物覆盖度较
高,生物量较大,使其他组分在枯枝落叶层中占优势
(39. 1% ).
阔叶人工林枯枝落叶层碳储量是杉木人工林的
1. 49 倍. 枯枝落叶层碳储量在各组分中的分配不
同 .在阔叶人工林中,64. 6%的碳存储在枯落叶中
表 1摇 不同人工林土壤的碳氮储量及碳氮比
Table 1摇 Soil total C and N stocks and C / N ratios in different plantations (mean依SE)
土壤深度
Soil depth
(cm)
碳储量
C stock (Mg·hm-2)
BL CF
氮储量
N stock (Mg·hm-2)
BL CF
碳氮比
C / N
BL CF
0 ~ 5 18. 60依1. 90a 14. 05依0. 85b 1. 04依0. 12a 0. 88依0. 09a 17. 91依0. 42a 16. 22依1. 08a
5 ~ 10 14. 47依1. 53a 10. 69依0. 78b 0. 86依0. 09a 0. 71依0. 09a 16. 88依0. 13a 15. 40依0. 88a
10 ~ 20 26. 92依2. 76a 21. 19依1. 78a 1. 66依0. 16a 1. 38依0. 12a 16. 24依0. 17a 15. 45依1. 04a
20 ~ 40 37. 74依5. 39a 28. 74依4. 38a 2. 54依0. 29a 2. 07依0. 22a 14. 76依0. 37a 13. 80依1. 04a
0 ~ 40 99. 41依10. 69a 74. 67依5. 85a 6. 18依0. 60a 5. 03依0. 42a 16. 04依0. 20a 14. 95依0. 92a
同行不同小写字母表示两个林分之间差异显著(P<0郾 05) Different letters in the same row denoted significant difference between the two plantations
at 0郾 05 level. BL:阔叶人工林 Broadleaf plantation; CF:杉木人工林 Chinese fir plantation. 下同 The same below.
表 2摇 不同人工林枯枝落叶层的生物量、碳氮储量及碳氮比
Table 2摇 Forest floor biomass, C and N stocks and C / N ratios in different plantations (mean依SE)
组分
Components
现存量
Biomass (Mg·hm-2)
BL CF
碳储量
C stock (Mg·hm-2)
BL CF
氮储量
N stock (kg·hm-2)
BL CF
碳氮比
C / N
BL CF
未分解叶
Undecomposed leaves
1. 46依0. 40a 0. 59依0. 20 b 0. 72依0. 20a 0. 30依0. 10a 11. 83依3. 42a 4. 96依1. 66a 61. 99依3. 01a 63. 30依5. 34a
半分解叶
Decomposing leaves
3. 41依0. 57a 0. 93依0. 20b 1. 49依0. 28a 0. 45依0. 11b 32. 31依4. 96a 9. 75依2. 91b 46. 29依2. 99a 50. 74依8. 83a
枝 Branch 1. 59依0. 62a 1. 22依0. 31a 0. 75依0. 29a 0. 59依0. 15a 6. 06依1. 60a 6. 19依1. 47a 113. 26依13. 86a 96. 78依0. 91a
果 Fruit 0. 22依0. 06a 0. 28依0. 08a 0. 10依0. 03a 0. 13依0. 04a 2. 11依0. 49a 2. 50依0. 84a 53. 19依5. 06a 50. 05依1. 77a
其他成分 Others 1. 22依0. 15a 1. 93依0. 63a 0. 36依0. 10a 0. 83依0. 28a 8. 39依1. 07a 16. 42依3. 69a 39. 81依6. 17a 49. 27依8. 64a
合计 Total 7. 90依1. 00a 4. 94依0. 67b 3. 42依0. 48a 2. 29依0. 32b 60. 70依5. 18a 39. 82依7. 45b 55. 79依3. 55a 59. 47依6. 05a
7432 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 万晓华等: 阔叶和杉木人工林对土壤碳氮库的影响比较摇 摇 摇 摇 摇 摇
表 3摇 不同林分细根生物量、碳氮储量及碳氮比
Table 3摇 Fine root biomass, C and N stocks and C / N ratios in different plantations (mean依SE)
林分类型
Forest type
取样深度
Sampling depth
(cm)
生物量
Biomass
(Mg·hm-2)
碳储量
C stock
(Mg·hm-2)
氮储量
N stock
(kg·hm-2)
碳氮比
C / N
BL 0 ~ 10 4. 73依0. 88a 1. 54依0. 27a 41. 01依7. 04a 37. 59依0. 44a
10 ~ 20 1. 89依0. 34a 0. 65依0. 11a 13. 58依2. 31a 47. 96依0. 56a
20 ~ 40 1. 59依0. 33a 0. 52依0. 09a 10. 37依1. 91a 50. 21依1. 90a
40 ~ 80 1. 60依0. 26a 0. 51依0. 07a 10. 05依1. 48a 51. 09依1. 64a
合计 Total 9. 81依1. 79a 3. 23依0. 53a 75. 02依12. 65a 43. 04依0. 73a
CF 0 ~ 10 2. 52依0. 28a 0. 89依0. 09a 22. 00依2. 98a 41. 39依2. 59a
10 ~ 20 1. 66依0. 31a 0. 59依0. 13a 11. 37依2. 38a 52. 63依3. 42a
20 ~ 40 1. 83依0. 15a 0. 66依0. 08a 11. 40依0. 84a 57. 23依2. 58a
40 ~ 80 1. 67依0. 13a 0. 59依0. 07a 11. 03依0. 88a 53. 10依2. 92a
合计 Total 7. 67依0. 48a 2. 73依0. 22a 55. 80依4. 73a 49. 25依3. 23a
同一土层不同小写字母表示两个林分之间差异显著 (P<0郾 05) Different letters in the same soil depth denoted significant difference between the two
plantations at 0郾 05 level.
(其中,未分解叶占 21. 1% 、半分解叶占 43. 6% );
而杉木人工林未分解叶和半分解叶碳储量仅分别占
枯枝落叶层碳储量的 13. 1%和 19. 7% .阔叶人工林
枯枝落叶层氮储量是杉木人工林的 1. 52 倍.在阔叶
人工林中,大部分氮储存于半分解叶(53. 2% )和未
分解叶(19. 5% )中;而在杉木人工林中,未分解叶
和半分解叶氮储量仅分别占枯枝落叶层氮储量的
12郾 5%和 24. 5% .阔叶人工林枯枝落叶层的碳氮比
值低于杉木人工林.
2郾 3摇 两种林分细根碳、氮储量及碳氮比
由表 3 可以看出,阔叶人工林细根生物量是杉
木人工林的 1. 28 倍.其中,阔叶人工林和杉木人工
林 0 ~ 10 cm土层细根生物量分别占细根总生物量
的 48. 2%和 32. 8% .阔叶人工林细根碳氮储量均高
于杉木人工林,但两个林分之间的差异均未达到显
著水平.阔叶人工林中 0 ~ 10 cm 土层细根的碳、氮
储量分别占细根总碳、 总氮储量的 47郾 8% 和
54郾 7% ,而在杉木人工林中的比例分别为 32. 2%和
39郾 4% .阔叶人工林细根的碳氮比值低于杉木人
工林.
2郾 4摇 土壤、枯枝落叶层和细根之间碳、氮储量及碳
氮比的相关性
一元线性回归分析表明,枯枝落叶层碳氮比值
与土壤碳、氮储量之间均具有显著负相关关系,且能
够解释土壤碳储量变异的 46. 7% 、土壤氮储量变异
的 60. 2% (图 1).在 0 ~ 10 cm 土层,细根碳储量与
土壤碳储量具有显著正相关关系(图 2),而在其他
土层上二者之间无显著相关性.
图 1摇 土壤碳(C)、氮(N)储量与枯枝落叶层碳氮比的关系
Fig. 1 摇 Relationships between forest floor C / N ratios and soil
carbon and nitrogen stocks.
图 2摇 0 ~ 10 cm土层土壤碳储量与细根碳储量的关系
Fig. 2 摇 Relationships between soil carbon stock and fine root
carbon stock at 0-10 cm soil depth.
3摇 讨摇 摇 论
本研究中,阔叶人工林和杉木人工林均是在二
代杉木林采伐迹地上营造的,土地利用历史、立地条
843 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 24 卷
件、气候和林龄均一致,因此,两个林分之间土壤特
性的差异主要归因于树种的影响[20-21] .树种对土壤
过程的影响主要通过两类机制实现,一是通过地上
和地下凋落物数量和质量,二是通过控制根诱导的
呼吸(根呼吸和根分泌物) [22] . 本研究结果表明,在
杉木林采伐迹地上用阔叶树种营林,增加了土壤全
碳储量,而土壤全氮储量增加不明显(表 1).这与亚
热带地区其他研究结果一致.如黄宇等[23]报道了湖
南会同地区火力楠人工林土壤碳、氮储量均高于杉
木纯林;杨玉盛等[24]报道了福建三明地区格氏栲
(Castanopsis kawakamii)人工林土壤碳库高于杉木
人工林.本研究中,阔叶人工林枯枝落叶层现存量、
碳和氮储量均高于杉木人工林(表 2);阔叶人工林
表土层(0 ~ 10 cm)细根生物量较大(表 3),且表土
层细根碳储量与土壤碳储量之间具有显著正相关关
系(图 2),因此,两个林分之间土壤碳库的差异主要
来源于地上凋落物数量和质量、地下根系生产力的
差异.由于土壤碳库周转相对缓慢,在短期内难以观
测到其变化,而土壤碳、氮库中一些相对易变的组分
(如微生物生物量碳氮和可溶性有机碳氮),对土壤
管理措施的响应比较敏感,因此可以用来观测树种
对土壤碳氮库的影响[25-26] .本研究下一步将分析树
种对土壤易变性有机碳和有机氮的影响.
由于周转速率的巨大差异,树种对矿质土壤层
碳氮储量的影响,首先通过枯枝落叶层表现出
来[27] .本研究中,阔叶人工林与杉木人工林之间枯
枝落叶层的现存量、碳和氮储量均具有显著差异
(表 2),且枯枝落叶层碳氮比值与土壤碳、氮储量均
呈显著负相关(图 1). Vesterdal 等[28]通过分析 6 个
单一树种枯枝落叶层和矿质土壤层碳、氮储量的差
异,发现树种对枯枝落叶层碳氮储量的影响要显著
于矿质土壤层,而枯落叶的碳氮比值能够很好地指
示枯枝落叶层的碳氮储量.本研究中,阔叶人工林枯
枝落叶层大部分的碳和氮储存在枯落叶中,且枯落
叶碳氮比值较低(表 2),因此,两个林分之间枯枝落
叶层碳氮储量的差异主要归因于枯落叶的碳氮含量
和分解速率的差异. 细根的周转对森林生态系统碳
及养分循环具有重要调控作用[29] . 廖利平等[30]报
道,火力楠纯林及火力楠鄄杉木混交林的细根生物
量、年生产量及年周转速率均高于杉木纯林.本研究
中,阔叶人工林表土层(0 ~ 10 cm)细根生物量较
大,而该土层细根碳储量与土壤碳储量之间具有显
著正相关性(图 2). 根系的垂直分布直接影响输送
到土壤各层次的碳及养分含量[31-32] .杉木连栽主要
减少了土壤表层(0 ~ 10 cm)细根的生长[33] . 因此,
土壤表层细根的生长、死亡及周转对土壤碳氮循环
及其动态变化具有重要的生态意义.
参考文献
[1]摇 Richter DD, Markewitz D, Trumbore SE, et al. Rapid
accumulation and turnover of soil carbon in a re鄄establis鄄
hing forest. Nature, 1999, 400: 56-58
[2]摇 Birdsey RA, Plantinga AJ, Heath LS. Past and prospec鄄
tive carbon storage in United States forests. Forest Ecol鄄
ogy and Management, 1993, 58: 33-40
[3]摇 Binkley D, Giardina C. Why do tree species affect
soils? The warp and woof of tree鄄soil interactions. Bio鄄
geochemistry, 1998, 42: 89-106
[4]摇 Raich JW, Tufekciogul A. Vegetation and soil respirat鄄
tion: Correlations and controls. Biogeochemistry, 2000,
48:71-90
[5]摇 Oostra S, Majdi H, Olsson M. Impact of tree species on
soil carbon stocks and soil acidity in southern Sweden.
Scandinavian Journal of Forest Research, 2006, 21:
364-371
[6]摇 Laganiere J, Angers DA, Pare D. Carbon accumulation
in agricultural soils after afforestation: A meta鄄analysis.
Global Change Biology, 2010, 16: 439-453
[7]摇 Br佴chet L, Ponton S, Roy J, et al. Do tree species
characteristics influence soil respiration in tropical
forests? A test based on 16 tree species planted in mono鄄
specific plots. Plant and Soil, 2009, 319: 235-246
[8]摇 Jandl R, Lindner M, Vesterdal L, et al. How strongly
can forest management influence soil carbon sequestra鄄
tion? Geoderma, 2007, 137: 253-268
[9] 摇 D侏az鄄Pin佴s E, Rubio A, Van Miegroet H, et al. Does
tree species composition control soil organic carbon pools
in Mediterranean mountain forests? Forest Ecology and
Management, 2011, 262: 1895-1904
[10]摇 Hobbie SE, Ogdahl M, Chorover J, et al. Tree species
effects on soil organic matter dynamics: The role of soil
cation composition. Ecosystems, 2007, 10: 999-1018
[11]摇 Ma XQ, Heal KV, Liu AQ, et al. Nutrient cycling and
distribution in different鄄aged plantations of Chinese fir in
southern China. Forest Ecology and Management,
2007, 243: 61-74
[12] 摇 Yu X鄄T (俞新妥). Thinkings of the problems of tree
species structure adjustment in Fujian Province. Journal
of Fujian Forestry science and Technology (福建林业科
技), 2002, 29(2): 1-3 (in Chinese)
[13]摇 Yu X鄄T (俞新妥). A summary of the studies on the
plantation productivity and nutrient cycling in Chinese fir
plantation ecosystem. Journal of Fujian College of For鄄
estry (福建林学院学报), 1992, 12(3): 264-276 (in
Chinese)
[14]摇 Yang Y鄄S (杨玉盛), He Z鄄M (何宗明), Chen G鄄S
(陈光水), et al. PCA of soil fertility under different
gaps of continuously planting Chinese fir. Soil and Envi鄄
ronmental Sciences (土壤与环境), 2001, 10(1): 33-
38 (in Chinese)
9432 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 万晓华等: 阔叶和杉木人工林对土壤碳氮库的影响比较摇 摇 摇 摇 摇 摇
[15]摇 Fang Q (方 摇 奇). Effects of continued planting Chi鄄
nese fir on the fertility of soil and the growth of stands.
Scientia Silvae Sinicae (林业科学), 1987, 23 (4):
389-397 (in Chinese)
[16]摇 Feng Z鄄W (冯宗炜), Chen C鄄Y (陈楚莹), Zhang J鄄
W (张家武), et al. A coniferous broad鄄leaved mixed
forest with higher productivity and ecological harmony in
subtropics-Study on mixed forest of Cunninghamia lan鄄
ceolata and Michelia macclurei. Acta Phytoecologica et
Geobotanica Sinica (植物生态学与地植物学学报),
1988, 12(3): 165-180 (in Chinese)
[17]摇 Deng S鄄J (邓仕坚), Zhang J鄄W (张家武), Chen C鄄Y
(陈楚莹), et al. Effect of pure and mixed stands on
soil physical and chemical properties. Chinese Journal of
Applied Ecology (应用生态学报), 1994, 5(2): 126-
132 (in Chinese)
[18]摇 Chen C鄄Y (陈楚莹), Zhang J鄄W (张家武), Zhou C鄄L
(周崇莲), et al. Researches of improving the quality of
forest land and the productivity of artificial Cunning鄄
hamia lanceolata stands. Chinese Journal of Applied
Ecology (应用生态学报), 1990, 1(2): 97-106 ( in
Chinese)
[19]摇 Luo Y鄄J (罗云建), Zhang X鄄Q (张小全). The as鄄
sessment of soil degradation in successive rotations of
Chinese fir plantation and the soil amelioration of mixed
plantation of Chinese fir and broad鄄leaved species. Acta
Ecologica Sinica (生态学报), 2007, 27(2): 715-724
(in Chinese)
[20]摇 Burton J, Chen CR, Xu ZH, et al. Soluble organic ni鄄
trogen pools in adjacent native and plantation forests of
subtropical Australia. Soil Biology and Biochemistry,
2007, 39: 2723-2734
[21]摇 Chen CR, Xu ZH. Analysis and behavior of soluble
organic nitrogen in forest soils. Journal of Soils and Sed鄄
iments, 2008, 8: 363-378
[22]摇 Huang ZQ, Davis MR, Condron LM, et al. Soil carbon
pools, plant biomarkers and mean carbon residence time
after afforestation of grassland with three tree species.
Soil Biology and Biochemistry, 2011, 43: 1341-1349
[23]摇 Huang Y (黄摇 宇), Feng Z鄄W (冯宗炜), Wang S鄄L
(汪思龙), et al. C and N stocks under three plantation
forest systems of Chiense鄄fir, Michelia macclurei and
their mixture. Acta Ecologica Sinica (生态学报 ),
2005, 25(12): 3146-3154 (in Chinese)
[24]摇 Yang Y鄄S (杨玉盛), Chen G鄄S (陈光水), Wang Y鄄X
(王义祥), et al. Carbon storage and allocation in Cas鄄
ta nopsis kawakamii and Cunninghamia lanceolata plan鄄
tations in subtropical China. Scientia Silvae Sinicae (林
业科学), 2006, 42(10): 43-47 (in Chinese)
[25]摇 Burton J, Chen CR, Xu ZH, et al. Soil microbial bio鄄
mass, activity and community composition in adjacent
native and plantation forests of subtropical Australia.
Journal of Soils and Sediments, 2010, 10: 1267-1277
[26]摇 Rovira P, Jorba M, Romany伽 J. Active and passive
organic matter fractions in Mediterranean forest soils.
Biology and Fertility of Soils, 2010, 46: 355-369
[27]摇 Vesterdal L, Ritter E, Gundersen P. Change in soil
organic carbon following afforestation of former arable
land. Forest Ecology and Management, 2002, 169:
137-147
[28]摇 Vesterdal L, Schmidt IK, Callesen I, et al. Carbon and
nitrogen in forest floor and mineral soil under six
common European tree species. Forest Ecology and
Management, 2008, 255: 35-48
[29]摇 Fukuzawa K, Shibata H, Takagi K, et al. Vertical dis鄄
tribution and seasonal pattern of fine鄄root dynamics in a
cool鄄temperate forest in northern Japan: Implication of
the understory vegetation, Sasa dwarf bamboo. Ecologi鄄
cal Research, 2006, 22: 485-495
[30]摇 Liao L鄄P (廖利平), Chen C鄄Y (陈楚莹), Zhang J鄄W
(张家武), et al. Turnover of fine roots in pure and
mixed Cunninghamia lanceolata and Michelia macclurei
forests. Chinese Journal of Applied Ecology (应用生态
学报), 1995, 6(1): 7-10 (in Chinese)
[31]摇 Zhou L (周摇 莉), Li B鄄G (李保国), Zhou G鄄S (周
广胜). Advances in controlling factors of soil organic
carbon. Advances in Earth Science (地球科学进展),
2005, 20(1): 99-105 (in Chinese)
[32]摇 Chang Z鄄Q (常宗强), Feng Q (冯摇 起), Si J鄄H (司
建华), et al. Soil carbon storage and CO2 flux under
different vegetation types in Qilian Mountains. Chinese
Journal of Ecology (生态学杂志), 2008, 27 (5):
681-688 (in Chinese)
[33]摇 Liao L鄄P (廖利平), Deng S鄄J (邓仕坚), Yu X鄄J (余
小军), et al. Growth, distribution and exudation of
Chinese fir trees grown in continously cropped planta鄄
tions. Acta Ecologica Sinica (生态学报), 2001, 21
(4): 569-573 (in Chinese)
作者简介摇 万晓华,女,1986 年生,硕士研究生.主要从事森
林土壤碳循环研究. E鄄mail: wanxiaohua7@ 163. com
责任编辑摇 李凤琴
053 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 24 卷