免费文献传递   相关文献

贴梗海棠挥发性成分研究(英文)



全 文 :天然产物研究与开发 NatProdResDev2010, 22:248-252
文章编号:1001-6880(2010)02-0248-05
 
 
 ReceivedAugust18, 2008;AcceptedFebruary26, 2009
 FoundationItem:ThisworkwassupportedbyBasicProjectofHenan
ProvincialOficeofEducation(2008A360002).
*CorespondingauthorTel:86-378-3880680;E-mail:kangweny@hot-
mail.com
贴梗海棠挥发性成分研究
王金梅 ,康文艺*
河南大学中药研究所 , 开封 475004
摘 要:首次采用顶空固相微萃取结合气质联用技术提取并分析了贴梗海棠花蕾和花的挥发油成分。 结果发
现 , 邻苯二甲酸二(2-乙基己基)酯在花蕾开放的过程中 , 含量从 24.67%下降到 1.77%, 而己二酸二(2-乙基己
基)酯的含量则从 0%增加到 47.23%, 表明在贴梗海棠花蕾开放的过程中 ,在植物体内多种酶的共同作用下 ,二
者存在着生物转化 , 依据此结果 , 我们提出邻苯二甲酸二(2-乙基己基)酯与二酸二(2-乙基己基)酯在贴梗海棠
开放过程中生物转化假说。
关键词:贴梗海棠;顶空固相微萃取;挥发油;气质联用
中图分类号:R284.1;Q946.91 文献标识码:A
TheVolatileConstituentsofChaenomelesspeciosa
WANGJin-mei, KANGWen-yi*
InstituteofChineseMateriaMedica, HenanUniversity, Kaifeng475004 , China
Abstract:ThevolatilesinthebudsandflowersofChaenomelesspeciosawereobtainedbyhead-spacemicro-extraction
andanalyzedbyGC-MSforthefirsttime.Itisinterestingtonotethatbis(2-ethylhexyl)phthalate(24.67%), thehigh
contentcompoundinbuds, wasdecreasedto1.77% inflowers.Ontheotherhand, hexanedioicacid, bis(2-ethylhexyl)
ester(0%)inbudswasincreasedto47.23% inflowers.Itindicatedthatthereisaplausiblebiogenetictransformation
betweenbis(2-ethylhexyl)phthalateandhexanedioicacid, bis(2-ethylhexyl)esterwiththebudsblooming.
Keywords:Chaenomelesspeciosa;volatiles;headspacemicro-extraction;GC-MS
Introduction
Chaenomelesspeciosa(Sweet)Nakai(Rosaceae)isan
ornamentalshrubnativetosouthwestofChina.The
flowersbloominlateMarchorearlyAprilwithscarlet,
pinkorwhitecolor[ 1] , anditsdriedfruitisoneofthe
valuabletraditionalmedicalherbsusedforhealing
rheumatoidarthritisandgastrointestinaldisorders, such
asgastroenteritisandarthritiswithalonghistoryintra-
ditionalChinesemedicine[ 2] .Pharmacologicstudies
andclinicalpracticehavedemonstratedthatalsohas
anti-inflammatory, analgesic, anti-cancer, immunomodu-
latory, antibacterialactivities[ 3] .Aninvestigationinto
theefectiveconstituentsofC.speciosahasshownthat
itcontainsflavonoids, triterpenes, sitosterol, glucosides,
aminoacids, proteins, tannins, fatyacids, organicacids
andsoon.Amongthesecompounds, organicacidsare
themainanti-tumorconstituents, glucosidesofC.spe-
ciosa(GCS)possessanti-inflammatoryandanalgesic
propertiesandtriterpenesarethemainliver-protective
constituents[ 4-7] .
ThevolatilesofthefruitsofC.speciosainChinahave
beenwelstudied.Themaincomponentsbyhydrodistil-
lation(HD)werefoundtobeoxygenatedmonoterpe-
nesandsesquiterpenessuchasα-terpineol, terpinen-4-
ol, 1, 8-cineole, β -caryophyleneandsoon[ 8] .Howev-
er, tothebestofourknowledge, theliteraturesearch
showednoevidenceofthevolatilesisolatedfromthe
budsandflowersofC.speciosa.
Inordertoidentifythechemicalconstituentsofthevol-
atilesinthebudsandflowersofC.speciosa, andtoilu-
minatethediferencebetweenthem, wereportedthe
volatilesofC.speciosausingtheHS-SPMEtechnique
subsequentlyanalyzedbyGC-MSforthefirsttime.
DOI :10.16333/j.1001-6880.2010.02.031
MaterialsandMethods
PlantMaterials
Thesamplesofair-driedbudsandflowersofC.speciosa
werecolectedinKaifengregion, Henan, China, inear-
lyApril, 2007.TheywereidentifiedbyDrWangjun
Yuan(InstituteofNaturalProducts, HenanUniversi-
ty), andavoucherspecimenwasdepositedintheInsti-
tuteofNaturalProducts, HenanUniversity.
Extractionofoilsconstituents
ThevolatileswereextractedbythemanualSPMEhold-
ertogetherwith5mLvialsandPDMS-DVBfiberspur-
chasedfromSupelcoInc.(Belefonte, USA).Thepow-
derofflowersandbudsabout0.7gwasplacedinvials
(5mL), thentheSPMEfiberwasexposedintheupper
spaceofthesealedvialfor30 minat80 ℃ toadsorb
theanalytes.Afterthat, thefiberwaswithdrawnanddi-
rectlyinsertedintotheGC-MSinletfordesorptionof
thevolatilesfor1 min.
GC-MSanalyses
TheGCanalysiswascariedoutusinganAgilent6890
Ngaschromatographequippedwithacapilarycolumn
HP-5 MS(5% phenylmethylsiloxane, 30 m×0.25
mm, filmthickness0.25 μm, AgilentTechnologies,
USA)andcoupledwitha5975Bmassselectivedetec-
torspectrometerfromthesamecompany.Thefrontinlet
waskeptat250℃.Asacariergasheliumat1.0 mL
min-1 wasused.Thetemperatureprogramforvolatile
wasasbelow:theinitialcolumntemperaturewas50
℃, heldfor1min;andthenprogrammedto120℃ata
rateof3 ℃ min-1 andheldfor2 min;finalypro-
grammedto210 ℃ atarateof4 ℃/min, heldat210
℃ for10min.
TheMSdetectorwasusedintheEImodewithanioni-
zationvoltageof70eV.Theionsourcetemperaturewas
at230 ℃.Thetransferlinewasat280℃.Thespectra
werecolectedat3scans/soverthemassrang(m/z)
30-440.
Identificationofcompounds
Thecompoundswereidentifiedbycomparisonwiththe
Rtlpest3.LandNist05.Lmassspectraldatabase.Re-
tentionindices(RI)ofthesamplecomponentswere
determinedonthebasisofC6 -C26 n-alkanes(AlfaAe-
sar)detectedunderthesameconditions.Thequantita-
tivecompositionwasobtainedbypeakareanormaliza-
tion, andtheresponsefactorforeachcomponentwas
consideredtoequalto1.Somecompoundswereidenti-
fiedbycomparingtheirretentionindicesandmass
spectrawithpublishedinliteratures.
ResultsandDiscusion
Thechemicalcompositionoftheoilsinthebudsand
flowersarepresentedinTable1.Thrity-ninecom-
poundswereidentifiedinthebudsofC.speciosa, repre-
senting96.40%, andwerecharacterizedbyahighcon-
tentofbis(2-ethylhexyl)phthalate(24.67%), fol-
lowed by pentadecane (6.92%), hexadecane
(6.49%)andheptadecane(5%).Thirty-fourconstit-
uentswereidentifiedinflowers, representing93.94%,
andwerecharacterizedbyahighcontentofhexanedio-
icacid, bis(2-ethylhexyl)ester(47.23%), andalow
contentofdiethylphthalate(6.04%), hexadecane
(3.45%)andtetradecane(2.99%).
Table1 ThechemicalcompositionofthebudsandflowersofC.speciosavolatiles
Constituents RI* Buds(%) Flowers(%) Ref.
Benzaldehyde 913 3.36(96) 1.09(96)
Octanal 1001 1.67(95) 0.46(90)
1-methyl-4-(1-methylethyl)-1, 3-Cyclohexadiene 1003 – 0.08(92)
Eucalyptol 1005 0.98(93) 0.22(90) 1026 [ 9]
1-methyl-4-(1-methylethyl)-1, 4-Cyclohexadiene 1010 0.37(95) 0.17(96) 1054 [ 9]
Nonanal 1101 1.87(86) 0.85(91) 1102 [ 9]
PhenylethylAlcohol 1103 0.41(92) – 1120 [ 9]
(R)-4-methyl-1-(1-methylethyl)-3-Cyclohexen-1-ol 1111 0.58(96) – 1176 [ 9]
.alpha., .alpha.4-trimethyl-3-Cyclohexene-1-methanol 1113 0.45(96) –
249Vol.22       WANGJin-mei, etal:TheVolatileConstituentsofChaenomelesspeciosa 
Decanal 1201 0.74(96) – 1203 [ 9]
Benzenecarboxylicacid 1203 2.29(96) –
decyl-Oxirane 1301 1.61(91) –
2-Methoxy-4-vinylphenol 1302 1.21(90) 0.14(86) 1318 [ 9]
2-methyl-Tridecane 1305 0.17(94) –
2, 6, 10-trimethyl-Dodecane 1307 0.54(90) –
Tetradecane 1400 2.48(98) 2.99(96)
Caryophyllene 1401 1.14(96) – 1414 [ 9]
(Z)-6, 10-dimethyl-5, 9-Undecadien-2-one 1404 3.15(86) – 1452 [ 9]
Diethylphthalate 1404 – 6.04(91)
3-methyl-Tetradecane 1405 1.45(96) –
(E)-4-(2, 6, 6-trimethyl-1-cyclohexen-1-yl)-3-Buten-2-one 1406 0.99(96) 2.23(95)
Pentadecane 1500 6.92(96) 2.01(97)
16-Octadecenal 1501 1.46(93) 0.31(83)
2, 6-bis(1, 1-dimethylethyl)-4-(1-methylpropyl)-Phenol 1502 2.66(72) 2.35(94)
2-methyl-Pentadecane 1503 4.80(97) 2.74(93) 1559 [ 9]
Dodecanoicacid 1505 2.21(78) –
Hexadecane 1600 6.49(98) 3.45(98)
2-Propenoicacid, pentadecylester 1601 – 2.17(91)
5-propyl-Tridecane 1602 4.49(90) 1.53(86)
2-methyl-Hexadecane 1603 2.41(98) 0.97(95)
2-Methyl-Z-4-tetradecene 1604 – 0.32(87)
2, 2′, 5, 5′-tetramethyl-1, 1′-Biphenyl 1604 0.85(90) –
Heptadecane 1700 5.05(97) 2.36(97)
2, 6, 10, 14-tetramethyl-Pentadecane 1702 0.88(91) 1.05(78) 1705 [ 10]
IsopropylMyristate 1704 – 1.12(97)
Tetradecanoicacid 1704 1.18(96) –
2, 6, 10, 14-tetramethyl-Hexadecane 1803 0.66(98) 0.34(94) 1804 [ 9]
6, 10, 14-trimethyl-2-Pentadecanone 1843 1.04(97) – 1848 [ 10]
Disobutylphthalate 1870 1.17(91) 2.69(79) 1875 [ 10]
N, N-dimethyl-1-Hexadecanamine 1809 – 1.75(90)
Nonadecane 1900 – 0.22(95)
Hexadecanoicacid, methylester 1901 0.90(97) 0.30(96) 1923 [ 9]
Di-n-butylphthalate 1902 0.64(96) 0.23(95)
n-Hexadecanoicacid 1976 1.33(95) 2.22(98) 1983 [ 11]
Bis(2-ethylhexyl)phthalate 2001 24.67(90) 1.77(72)
(Z)-9, 17-Octadecadienal 2102 – 0.74(97)
Octadecanoicacid 2102 – 0.85(93)
Docosane 2200 1.13(97) 0.95(97)
Hexanedioicacid, bis(2-ethylhexyl)ester 2301 – 47.23(91)
Total(%) 96.40 93.94
  Note:* RetentionindicesonHP-5column.
250 NatProdResDev                      Vol.22
Itisinterestingtonotethatbis(2-ethylhexyl)phthalate
(24.67%), themaincomponentdetectedinC.spe-
ciosabuds, wasobviouslydecreasedto1.77% inflow-
ers, andhexanedioicacid, bis(2-ethylhexyl)ester
(47.23%)wasthemaincomponentonlydetectedin
flowers.Itiluminatedthatbis(2-ethylhexyl)phthalate
mightbetransformedtohexanedioicacid, bis(2-ethyl-
hexyl)esterwithbudsblooming.
Bis(2-ethylhexyl)phthalate(DEPH)isacolorles,
oilyliquidwithaslightodor, andisprimarilyusedas
oneoftheseveralplasticizersinpolyvinylchloride
(PVC)resinsforfabricatingflexiblevinylproducts.It
isoneofthemostrecalcitrantphthalateesters, hasxe-
no-estrogenic, carcinogenic, andmutagenicefects, and
itislistedasaprioritypolutantbytheUnitedStates
EnvironmentalProtectionAgencyandbyChinaNation-
alEnvironmentalMonitoring[ 12] .Metabolicbreakdown
ofphthalateestersbymicro-organismsisconsideredto
beoneofthemajorwaysofenvironmentaldegradation
ofthiswidespreadpolutant.Anumberofstudieshave
reportedonthebiodegradationofphthalatesinnatural
water, wastewater, andsoil.Manybacteriahavebeeni-
solatedfromrivers, soil, andevenmarineregionsfor
theirabilitytodegradephthalateaerobicalyoranaero-
bicaly.PhthalatecatabolicpathwayinArthrobacter
keyseri12B(Fig.1)wasthetypicalbreakdownof
DEPHinnature[ 13] .
Fig.1 PhthalatecatabolicpathwayinArthrobacterkeyseri12B
Bis(2-ethylhexyl)phthalatewasdecreasedobviouslyin
budsduringbloomingandhexanedioicacid, bis(2-eth-
ylhexyl)esterwasincreasedfrom0% to47.23%.It
indicatedthatmanyenzymesmighttakepartinthe
transformationbetweenBis(2-ethylhexyl)phthalateand
hexanedioicacid, bis(2-ethylhexyl)ester.Theplausi-
blebiogenetictransformation(Fig.2)indicatedBis(2-
ethylhexyl)phthalate(1)mightbehydrolyzedinto2-
ethylhexyl-olandbenzoicacid(2).Benzoicacidwas
detectedinbuds, anditwasusefultoiluminatethe
plausiblebiogenetictransformationvia3, 4-dihydroxy-
benzonicacidintohexanetrioicacidandhexanedioic
acid, bis(2-ethylhexyl)ester(3)[ 14] .Theresult
showedthatthehydrolyzationenzymeofbis(2-ethyl-
hexyl)phthalatemaybeoneofenzymesintheplausi-
blebiogenetictransformationbetweenbis(2-ethylhex-
yl)phthalateandhexanedioicacid, bis(2-ethylhexyl)
ester.ItmightbeusefultobreakdownofDEPHafter
beingisolated.
Acknowledgements Thisworkwassupportedbythe
foundationofbasicprojectofHenanProvincialOfice
ofEducation(2008A360002).
251Vol.22       WANGJin-mei, etal:TheVolatileConstituentsofChaenomelesspeciosa 
Fig.2 Theplausiblebiogenetictransformationbetweenbis(2-ethylhexyl)phthalateandhexanedioicacid, bis(2-ethylhex-
yl)ester
References
1 DingBZ, WangSY.FloraofHenan, VolⅡ.Zhengzhou:
HenanScienceandTechnologyPress, 1997.266.
2 ChenJC, ChangYS, WuSL, etal.InhibitionofEscherichia
coliheat-labileenterotoxin-induceddiarrheabyChaenomeles
speciosa.JEthnopharma, 2007, 113:233-239.
3 SunLN, HongYF.Studiesonchemicalconstituent, pharma-
ceuticalandclinicalpracticesonChaenomelesspeciosa.J
PharmaPractice, 1999, 17:281-284.
4 YamaharaJ, YamadaT, KitaniT, etal.Antianoxiaactionand
activeconstituentsofevodiaefructus.ChemPharm Bull,
1989, 37:1820-1822.
5 DaiM, WeiW, ShenYX, etal.GlucosidesofChaenomeles
speciosaremitratadjuvantarthritisbyinhibitingsynoviocyte
activities.ActaPharmacolSin, 2003, 24:1161-1166.
6 ChenQ, WeiW.Efectsandmechanismsofglucosidesof
Chaenomelesspeciosaoncollagen-inducedarthritisinrats.
InternationalImmunopharmacolog, 2003, 3:593-608.
7 WuH, WeiW, WuCY.Studiesonchemicalconstituentand
pharmaceuticalpracticesonChaenomelesspeciosa.JAnhui
TCMColl, 2004, 23:62-64.
8 XieXF, CaiXQ, ZhuSY, etal.Chemicalcompositionand
antimicrobialactivityofessentialoilsofChaenomelesspeciosa
fromChina.FoodChem, 2007, 100:1312-1315.
9 JiZQ, WuXH, KangWY, etal.Studiesonthevolatilecon-
stituentsofthebudsandflowersofEdgeworthiachrysantha
Lindl.inHenanprovinece.JournalofHenanUniversity, Med-
icalScience, 2008, 27:23-27.
10 JiZQ, WangJM, SunL.Studiesonthevolatileconstituentsof
thebudsandflowersofSorbariasorbifolia(L.)A.Br,
Henan.JournalofHenanUniversity, MedSci, 2008, 27:18-
20.
11 KangWY, JiZQ, WangJM.Studiesonthevolatileconstitu-
entsoftherootsofPyrrosialinguaandPyrrosiasubfurfura-
cea.ChinTraditPatentMed, 2008, 30:1236-1238.
12 QuanCS, LiuQ, TianWJ, etal.Biogegradationofanen-
docrne-disruptingchemical, di-2-ethylhexylphthalate, byBa-
cilussubtilis.ApplMicrobiolBiotechnol, 2005, 66:702-710.
13 EatonRW.Plasmid-encodedphthalatecatabolicpathwayin
Arthrobacerkeyseri12B.JournalofBacteriology, 2001, 183:
3689-3703.
14 DewickPM.MedicinalNaturalProducts:ABiosyntheticAp-
proach.England:JohnWiley& SonsLtd., BaddinsLane,
Chichester, 2002.78.
252 NatProdResDev                      Vol.22