全 文 :天然产物研究与开发 NatProdResDev2010, 22:442-444, 454
文章编号:1001-6880(2010)03-0442-04
ReceivedAugust26, 2008;AcceptedApril10, 2009
FoundationItem:ThisworkwassupportedbytheKeyFoundationof
ScienceandTechnologyHenanHygienicsBureauofChina(No.
2006038)andtheFundofHenanUniversity(No06YBZR085).
*CorrespondingauthorTel:86-378-3880680;E-mail:kangweny@hot-
mail.com
白碧桃挥发性成分的快速分析
康文艺1, 2* ,王金梅 1, 2
1河南大学中药研究所;2河南大学药学院 , 开封 475004
摘 要:首次采用顶空固相微萃取结合气质联用技术提取并分析了白碧桃花蕾和花的挥发性成分。分别从白
碧桃花蕾和花中鉴定了 19和 21个化合物。结果发现 , 油酸-2-羟基乙酯在花蕾中的含量高达 43.62%, 且仅存
在于花蕾中;油酸在花蕾中的含量仅为 2.65%, 而在花中则高达 58.69%, 这表明在白碧桃花蕾开放的过程中 ,
油酸-2-羟基乙酯被其体内的水解酶逐渐水解成油酸。
关键词:白碧桃;顶空固相微萃取;挥发油;气质联用
中图分类号:R284.1;Q946.91 文献标识码:A
RapidDeterminationofVolatileConstituentsfromtheBudsand
FlowersofPrunuspersica(L.)Batsch.f.alboplenaSchneid
KANGWen-yi1, 2* , WANGJin-mei1, 2
1InstituteofChineseMateriaMedica, HenanUniversity;2PharmaceuticalColegeofHenanUniversity, Kaifeng475004 , China
Abstract:VolatilesfromthebudsandflowersofPrunuspersica(L.)Batsch.f.alboplenaSchneidgrowninChinawere
analyzedbyGC-MScombinedwithsolid-phasemicroextraction(SPME).19compoundswereidentifiedinbudsand21
compoundswereidentifiedinflowersofP.persica(L.)Batsch.f.alboplenaSchneid.Itisinterestingtonotethat(Z)-9-
octadecenoicacid-2-hydroxyethylester(43.62%)wasthemaincomponentinbudsandoctadec-9-enoicacid(2.65%)
inbudswasobviouslyincreasedto58.69% inflowers, (Z)-9-octadecenoicacid-2-hydroxyethylesterwasnotdetected
inflowers.Itindicatedthat(Z)-9-octadecenoicacid-2-hydroxyethylestermightbeconversedtooctadec-9-enoicacid
withthebudsblooming.
Keywords:Prunuspersica(L.)Batsch.f.alboplenaSchneid;volatiles;HS-SPME;octadec-9-enoicacid;(Z)-9-octade-
cenoicacid-2-hydroxyethylester
Introduction
Prunuspersica(L.)Batsch.f.alboplenaSchneid, be-
longtothefamilyRosaceae, isbestknownforitsbeau-
tifulflowersandpleasantodour.TheflowersofP.persi-
ca(L.)Batsch.f.alboplenaSchneidarewhiteand
half-doubled[ 1] .Tothebestofourknowledge, detailed
researchofthevolatilesfromP.persica(L.)Batsch.
f.alboplenaSchneidhavenotyetbeenundertaken, al-
thoughthebudsandflowershaveastrongcharacteristic
fragrance.
Solid-phasemicro-extraction(SPME)isasolvent-free
extractiontechnique[ 2] .Itcombinesextractionand
preconcentrationinonestep, whichisrealizedbya
modifiedsyringe-likedevicethatutilizesapolymeric
extractionphase.Thistechniqueprovidessignificantly
morerapidsamplepreparationthanthemajorityoftra-
ditionalmethods[ 3] .
Wehaveestablishedastable, quickandexactmethod
toidentifythevolatilecomponentsusingHS-SPME-GC-
MSinourpreviouswork[ 4-7] .Inthisstudy, thevolatile
constituentsoftheflowersandbudsofP.persica(L.)
Batsch.f.alboplenaSchneidwerereportedforthefirst
timebyusingtheHS-SPME(headspace-solidphase
microextraction)techniqueandthenanalyzedbygas
chromatographyandmasspectrometry.
MaterialsandMethods
Plantmaterials
DOI:10.16333/j.1001-6880.2010.03.028
Thebudsandflowerswerecolectedinthecampusof
HenanUniversity, Henan, China, inApril2007, and
driedintheshadeattheroomtemperature.Itisidenti-
fiedbyDrWangjunYuan(InstituteofChineseMateria
Medica, HenanUniversity), andavoucherspecimen
wasdepositedintheInstituteofChineseMateriaMedi-
ca, HenanUniversity.
Solid-phasemicroextraction(SPME)
VolatileswereextractedbythemanualSPMEholder
togetherwith5 mLvialsandPDMS-DVBfiberspur-
chasedfromSupelcoInc.(Belefonte, USA).Priorto
extraction, thefiberwasactivatedfor10 minintheGC
6875 (AgilentUSA)withaninjectortemperatureof
250℃.Thepowderofflowersandbudsabout0.7 g
wasplacedinvials(5 mL), thentheSPMEfiberwas
exposedintheupperspaceofthesealedvialfor30
minat80℃ toadsorbtheanalytes.Afterthat, thefiber
waswithdrawnanddirectlyinsertedintotheGC-MSin-
letfordesorptionofthevolatilesfor1min.
GC-MSanalysisconditions
TheGC-MSanalyseswereperformedinaGC-MS(gas
chromatograph6890 Ncoupledtoaselectivedetector
massspectrometer5975 inert, AgilentTechnologies).
Compoundseparationwascariedoutusingacapilary
columnHP-5 MS(30 m×0.25 mm, 0.25 μmfilm
thickness).Heliumwasusedascariergas(1 mL/
min).Thefrontinletwaskeptat250 ℃ insplit-less
mode.Thetemperatureprogramasbelow:theinitial
columntemperaturewas50 ℃, heldfor1 min;and
thenprogrammedto120 ℃ atarateof3℃/minand
heldfor2min;finalyprogrammedto210 ℃ atarate
of4 ℃/min, heldat210 ℃ for10 min.
TheMSdetectorwasusedintheEImodewithanioni-
zationvoltageof70eV.Theionsourcetemperaturewas
at230 ℃.Thetransferlinewasat280℃.Thespectra
werecolectedat3scans/soverthemassrang(m/z)
30-440.
Identificationofcompounds
Thecompoundswereidentifiedbycomparisonwiththe
Rtlpest3.LandNist05.Lmassspectraldatabase.Re-
tentionindices(RI)ofthesamplecomponentswere
determinedonthebasisofC6 -C26 n-alkanes(AlfaAe-
sar)detectedunderthesameconditions.Thequantita-
tivecompositionwasobtainedbypeakareanormaliza-
tion, andtheresponsefactorforeachcomponentwas
consideredtoequalto1.Somecompoundswereidenti-
fiedbycomparingtheirretentionindicesandmass
spectrawithpublishedinliteratures.
ResultsandDiscussion
Inordertoinvestigatethevolatilesfromthebudsand
flowersofP.persica (L.) Batsch.f.alboplena
Schneid, theheadspaceSPMEwasemployed.27 com-
ponents, belongtodiferentclassesofvolatileandsemi-
volatilecompound, wereidentifiedinTable1.Thei-
dentifiedcomponentswerereportedasP.persica(L.)
Batsch.f.alboplenaSchneidvolatilesforthefirsttime.
Theidentifiedcomponentswereclassifiedintofive
groupsaccordingtotheirelutionorderontheHP-5MS
columnwithineachgroup.
Table1 ResultsoftheSPMEanalysisofbudsandflowersofP.persica(L.)Batsch.f.alboplenaSchneid
Compound RI P.persica(L.)Batsch.f.alboplenaSchneidBuds Flowers Group
Aceticacid 702 0.31 0.23 FAE
Benzaldehyde 960 3.69 1.11 PD
Octanal 1002 - 0.66 AC
Nonanal 1103 1.20 - AC
PhenylethylAlcohol 1121 0.44 - PD
2-Methoxy-4-vinylphenol 1319 - 0.23 PD
2, 6, 10-trimethyl-Dodecane 1371 - 0.05 AA
Tetradecane 1400 0.76 0.18 AA
4, 8-dimethyl-Undecane 1460 0.59 - AA
443Vol.22 KANGWen-yi, etal:RapidDeterminationofVolatileConstituentsfromtheBudsandFlowersofPrunaspersica(L.)Batsch.f.alboplenaSchneid
Pentadecane 1500 2.92 0.63 AA
2-methyl-Pentadecane 1561 0.22 0.05 AA
Hexadecane 1600 0.96 0.23 AA
2-methyl-8-propyl-Dodecane 1646 0.53 0.20 AA
Heptadecane 1700 0.43 0.12 AA
2, 6, 10, 14-tetramethyl-Pentadecane 1702 0.31 0.09 AA
6, 10, 14-trimethyl-2-Pentadecanone 1845 1.55 0.71 AC
1, 3, 12-Nonadecatriene 1901 2.95 - AA
1, 13-Tetradecadiene 1924 1.83 - AA
n-Hexadecanoicacid 1977 1.18 18.76 FAE
(c, t)-10-Heneicosene 2079 - 0.59 AA
Heneicosane 2100 - 0.17 AA
Octadec-9-enoicacid 2151 2.65 58.69 FAE
(Z, Z)-9, 12-Octadecadienoicacid 2256 - 6.38 FAE
Cyclotetracosane 2371 - 0.50 OC
2-hydroxy-1-(hydroxymethyl)ethylester 2428 - 1.64 FAE
(Z)-9-Octadecenoicacid, 2-hydroxyethylester 2480 43.62 - FAE
cis-9-Hexadecenal 2491 3.76 - AC
FAE(Fatyacidsandester) 47.76 85.7
PD(Phenylderivativesandrelatedcompounds) 4.13 1.34
AC(Alcoholsandcarbonylcompounds) 10.32 2.31
AA(Alkanesandalkenes) 7.69 1.37
OC(Othercompounds) 0.00 0.50
Total(%) 69.90 91.22
Note:* RetentionindicesonHP-5column.
19 compoundswereidentifiedinthebudsofP.persica
(L.) Batsch.f.alboplena Schneid, representing
69.90%, andwerecharacterizedbyahighcontentof
(Z)-9-Octadecenoic acid, 2-hydroxyethyl ester
(43.62%), folowedbybenzaldehyde(3.69%), cis-
9-hexadecenal(3.76%).21compoundsweredetected
inflowers, representing91.22%, andwerecharacter-
izedbyahighcontentofoctadec-9-enoicacid(58.
69%), folowedbyn-hexadecanoicacid(18.76%),
(Z, Z)-9, 12-octadecadienoicacid(6.38%).
Thecontentoffatyacidsandesterswas85.7% (P.
persica(L.)Batsch..f.alboplenaSchneid.flowers),
46.58% (P.persica(L.) Batsch..f.alboplena
Schneid.buds).Itisinterestingtonotethat(Z)-9-oc-
tadecenoicacid-2-hydroxyethylester(43.62%)was
themaincomponentonlydetectedinP.persica(L.)
Batsch.f.alboplenaSchneidbuds, whileoctadec-9-eno-
icacidwasobviouslyincreasedfrom2.65% inbudsto
58.69% inflowers.Itindicatedthat(Z)-9-octadece-
noicacid-2-hydroxyethylesterinbudsmightbeconver-
tedto(Z)-octadec-9-enoicacidwithblooming.(Z)-
octadec-9-enoicacidasakindofvolatilesmaybeemit
fragrancetoatractentomophilouspolination.Upto
now, itisnoreporttoelucidatethistransformationbe-
tween(Z)-octadec-9-enoicacidand(Z)-9-octadece-
noicacid-2-hydroxyethylester.
References
1 DingBZ, WangSY.FloraofHenan, VolⅡ.Zhengzhou:
HenanScienceandTechnologyPress, 1997.266.
2 ArthurCL, PawliszynJ.Solidphasemicroextractionwith
thermaldesorptionusingfusedsilicaopticalfibers.Anal
Chem, 1990, 62:2145-2148.
(下转第 454页)
444 NatProdResDev Vol.22
分分析 。采用柱色谱分离为 3种馏分 ,并对这 3种
馏分进行了气质联用分析。共有 73种化合物得到
鉴定 ,总鉴定比例达到 97.22%。其中非极性馏分
以含正构烷烃为主;弱极性馏分中发现含有质量分
数较高的活性化合物 ———植物甾醇 ,该部分以 22R-
3, 5-豆甾二烯质量分数最高;极性馏分中发现含有
活性物质共扼亚油酸 ,并含有质量分数很高且对人
体有益的棕榈酸及质量分数较高的不饱和脂肪酸 。
焦勇等 [ 10]曾对新疆肉苁蓉的脂溶性组分的分析共
鉴定了 24 种成分 , 以 6, 甲基吲哚 (相对含量
16.86%)含量最高 ,十七烷(相对含量 13.74%)含
量次之 ,鉴定比例 76.01%。新疆肉苁蓉的脂溶性
组分所鉴定的部分化合物种类及含量与本研究存在
较大差异 ,这可能与样品来源及提取方法等有关。
本研究对肉苁蓉脂溶性化合物进行了全面分析
并发现了多种已知活性的化合物 ,分析结果为肉苁
蓉资源的深入开发提供了科学依据。
参考文献
1 ChinesePharmacopoeiaCommission(国家药典委员会).
ChinesePharmacopoeia(中华人民共和国药典), Vol1.
Beijing:ChemicalIndustryPublishingHouse, 2005.90.
2 XueDJ(薛德钧), ZhangM(章明), WuXH(吴小红), et
al.StudiesontheactiveantisenileconstituentsinCistanche
deserticolaY.C.Ma.ChinaJChinMaterMed(中国中药杂
志), 1995, 20:687-689.
3 ZengQL(曾群力), ZhengYF(郑一凡), LuZL(吕志良).
ImmunomodulatoryefectsofpolysaccharideofCistanchede-
serticolaY.C.Ma.JZhejiangUniv, MedSci(浙江大学学
报 , 医学版), 2002, 31:284-287.
4 BrufauG, CanelaMA, RafecasM.Phytosterols:physiologic
andmetabolicaspectsrelatedtocholesterol-loweringproper-
ties.NutrRes, 2008, 28:217-225.
5 YuanYL(元艺兰), FangY(方勇), ShiJ(石俊), etal.
Efectsofn-3 fatyacidsonimmunologicfunctionandlevel
ofnutritionincriticalpatients.JMedSciYanbianUniv(延
边大学医学学报), 2006, 29:117-120.
6 HayekMC, HanSN, WuDY.DietaryCLAinfluencestheim-
muneresponseofyongandoldC578BL/6Ncbrmice.JNutr,
1999, 129:32-38.
7 GavinoVC, GavinoG, LeblancMJ, etal.Anisomericmixture
ofconjugatedlinoleicacidsbutnotpurecis-9, trans-11-octa-
decadienoicacidaffectsbodyweightgainandplasmalipids
inhamsters.JNutr, 2000, 130:27-29.
8 BeluryM.Dietaryconjugatedlinoleicacidinhealth:physio-
logicalefectsandmechanismsofaction.AnnuRevNutr,
2002, 22:505-53.
9 SchutHA, CummingsDA, SmaleMH, etal.DNAadductsof
heterocyclicamines:formation, removalandinhibitionbydi-
etarycomponents.MutatRes, 1997, 376:185-194.
10 JiaoY(焦勇), SunYJ(孙英杰).Studiesonthechemical
constituentsofCistanchedeserticolaY.C.MainXinjiang.
ChinTraditHerbDrugs(中草药), 1990, 21:36.
(上接第 444页)
3 FernandoLN, GrunIU.Head-spaceSPMEanalysisofvola-
tilesoftheridgegourd(Lufaacutangula)andbittergourd
(Momordicacharantia)flowers.FlavourFragrJ, 2001, 16:
289-293.
4 WuCX, WangQR, LuoJ, etal.JHenanUniv, MedSci,
2006, 25:17-20.
5 LiCF, LiCQ, YuanWJ, etal.Analysisoftheessentialoil
fromthealabastrumsofPitosporumtobiraAtit.byGC-MS.J
HenanUniv, MedSci, 2006, 25:13-16.
6 LiCF, FangMY, LiCQ, etal.Analysisoftheessentialoil
fromLigustrumquihouiCarr.bySPME-GC-MS.NatProdRes
Dev(天然产物研究与开发), 2007, 19:443-446.
7 WuCX, LiCF, ZhiML, etal.Theextractiontechnologyof
theessentialoilfromtheflowersofPittosporumtobiraAit.
LishizhenMedMaterMedRes, 2007, 18:1579-1582.
454 天然产物研究与开发 Vol.22