免费文献传递   相关文献

巨柏茎叶的萜类成分(英文)



全 文 :
Chinese Journal of Natural Medicines 2010, 8(6): 0405−0410
doi: 10.3724/SP.J.1009.2010.00405
Chinese
Journal of
Natural
Medicines







Terpenoids from Stems and Leaves of Cupressus gigantea
LIU Chun-Mei, ZHOU Hui-Bin, ZHANG Wei-Dong*
Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
Available online 20 Nov. 2010
[ABSTRACT] AIM: To study the chemical constituents of Cupressus gigantea. METHODS: The chemical constituents were isolated
by various chromatographic methods, and the chemical structures were elucidated on the basis of spectral analysis (NMR, MS).
RESULTS: A new labdane-type diterpenoid, fourteen known diterpenoids, and two known sesquiterpenoids were isolated from the
stems and leaves of Cupressus gigantea. The structure of the new compound (1) was elucidated on the basis of the analysis of spectro-
scopic data. CONCLUSIONS: Compound 1 is a new sesquiterpenoid, compounds 1-17 were isolated from this plant for the first time.
[KEY WORDS] Cupressus gigantea; Cupressaceae; Labdane-type diterpenoids; Sesquiterpenoids
[CLC Number] R284.1 [Document code] A [Article ID] 1672-3651(2010)06-0405-06

1 Introduction
The genus Cupressus (Cupressaceae) contains more than
20 species distributed in the Mediterranean region, tropical
Asia, and North America, and five of these are endemic to
China. Cupressus gigantea, a rare conifer, grows in the nar-
row dry valleys of Yarlung Zangbo River in Tibet at altitudes
ranging between 3 000 and 3 400 m [1]. No evidence has been
found for the use of C. gigantea in traditional medicine.
However, the wide range of biological activities reported for
other species of this genus as well as for their constituents
[2-3] stimulated our interest to study the chemical constituents
of C. gigantea. The constituents of the volatile oil of its foli-
age have previously been studied [4]. We report herein on the
isolation and structure elucidation of a new labdane-type
diterpenoid and sixteen known terpenoids from the ethanolic
extract of C. gigantea.
2 Experimental
2.1 General experimental procedures
Optical rotations were acquired with Perkin-Elmer 341

The air-dried stems and leaves of C. gigantea (9.3 kg)
were powdered and extracted three times with 80% ethanol at
room temperature. Evaporation of the solvent under reduced
pressure afforded a brown residue (510.0 g), which was sus-
pended in H[Received on] 10-Aug.-2010
[Research Funding] The project was supported by China Postdoc-
toral Science Foundation (No. 20070410711), Shanghai Leading
Academic Discipline Project (B906) and in part by the Scientific
Foundation of Shanghai China (Nos. 07DZ19728, 06DZ19717,
06DZ19005).
[*Corresponding author] ZHANG Wei-Dong: Prof., Tel:
86-21-81871244, E-mail: wdzhangY@hotmail.com
These authors have no any conflict of interest to declare.
polarimeter. NMR spectra were recorded on a Bruker Avance
600 NMR spectrometer. HR-ESI-MS was determined on a
Q-TOF micro mass spectrometer. Materials for column
chromatography were silica gel (100–200, 300–400 mesh,
and 10–40 μm; Huiyou Silica Gel Development Co. Ltd.,
Yantai, China) and Sephadex LH-20 (40–70 μm, GE Health-
care Biosciences AB, Uppsala, Sweden). Spots were visual-
ized under UV light (254 nm) or by spraying 5% H2SO4 in
95% EtOH followed by heating.
2.2 Plant material
The stems and leaves of C. gigantea were collected in
Linzhi Tibet in August 2008, and the specimens were identi-
fied by Prof. Zhang Han-Ming in the Department of Phar-
macognosy, Second Military Medical University. A voucher
specimen (20080824) was deposited at the Herbarium of
School of Pharmacy, Second Military Medical University,
China.
2.3 Extraction and Isolation
2O, and then partitioned successively with petro-
leum ether, EtOAc, and n-BuOH.
The EtOAc fraction (280.0 g) was separated over a silica
gel column, and eluted with a gradient of petroleum
ether-EtOAc (50∶1, 25∶1, 10∶1, 2∶1, and 0∶1) to offer
five crude fractions (A-E). Fraction B (18.3 g) was subjected
to silica gel column chromatography using petroleum
ether-acetone (50∶1→4∶1) as eluant to yield five fractions
2010 年 11 月 第 8 卷 第 6 期 Chin J Nat Med Nov. 2010 Vol. 8 No. 6 405

LIU Chun-Mei, et al. /Chinese Journal of Natural Medicines 2010, 8(6): 405−410
406 Chin J Nat Med Nov. 2010 Vol. 8 No. 6
on the basis of TLC analysis (Fractions B1-B5). Fraction B3
(5.7 g) was purified by repeated silica gel column (petroleum
ether- EtOAc) and Sephadex LH-20 column (CH2Cl2-MeOH,
1∶1; MeOH) to give 15 (20.0 mg), 7 (200.0 mg), 11 (170.0
mg), and 16 (108.0 mg). Compounds 1 (19.0 mg), 2 (40.0
mg), 8 (23.0 mg), and 14 (11.4 mg) were obtained from frac-
tion B1 (2.1 g) separated over Sephadex LH-20 column,
eluted with CH2Cl2-MeOH (1∶1). Fraction C (3.7 g) was
subjected repeatedly to Sephadex LH-20 column (petroleum
ether-CH2Cl2-MeOH, 5∶5∶1) leading to the isolation of
compounds 3 (36.7 mg), 9 (70.0 mg), 17 (22.0 mg), and 5
(12.0 mg). Fraction D (29.4 g) was submitted to MPLC (sil-
ica gel, gradient petroleum ether-EtOAc, 90:10→0:100),
yielding 9 subfractions (Fraction D1 - Fraction D9). Fraction
D5 (2.6 g) was subjected to passage over a Sephadex LH-20
column, eluted with petroleum ether-CH2Cl2-MeOH
(5∶5∶1) to afford compounds 12 (46.0 mg) and 4 (23.0
mg). Fraction E (3.9 g) was purified by high-speed
counter-current chromatography [HSCCC, n-hexane-ethyl
acetate-methanol-water (5∶5∶5∶5, V/V, lower phase as
the mobile phase), and then further purified repeatedly over
Sephadex LH-20 column (CH2Cl2-MeOH, 1∶1; MeOH) to
gain 13 (15.6 mg), 6 (30.0 mg), and 10 (20.7 mg).
3 Results and Discussion
Compound 1 was obtained as a white gum. The molecu-
lar formula of 1 was assigned as C21H36O2 by the ion peak at
m/z: 343.141 2 [M + Na]+ in the HR-ESI-MS (calcd. for
C17H24O7Na, 343.142 0) and NMR data. The 1H NMR spec-
trum (Table 1) indicated the existence of three singlet methyl
groups (δH 0.65, 0.97, 1.67), an exocyclic double bond [δH
4.52 (br s), 4.82 (br s)], a trisubstituted olefinic proton [δH
5.32 (t, J = 6.4 Hz)], a methoxy group (δH 3.32), and four
oxymethylene protons [δH 3.93 (2H, d, J = 6.4 Hz), 3.74 (1H,
d, J = 10.8 Hz), 3.37 (1H, d, J = 10.8 Hz)]. The 13C NMR
(DEPT) spectra showed 21 carbon signals attributed to three
methyls, one methoxy group, ten methylenes (two oxygen-
ated methyllenes), three methines, and four quaternary car-
bons (two olefinic carbons). All signals in the above spectra
showed that compound 1 had a bicyclic-labdane diterpenoid
skeleton with two double bonds. The HMBC correlations of
H-17 (δH 4.52, 4.82) to C-7 (δC 38.8), C-8 (δC 148.0), and
C-9 (δC 57.7) suggested that one double bond at C-8 and
C-17. Another double bond was located at C-13/C-14 by the
HMBC correlations of H-16 (δH 1.67) with C-12, C-13, and
C-14. The methyl protons (δH 0.97) and two oxymethylene
protons at δH 3.74/3.37 (1H each, a pair of doublets, J = 10.8
Hz) correlated with C-4 (δC 38.8) in HMBC, indicating that
CH2OH (C-18 or C-19) was linked at C-4. The ROESY cor-
relation between H-19 and H-20 unambiguously established
that this CH2OH was C-18. In addition, in the ROESY spec-
trum, H-20 was found to show correction with H-11. From
the above-mentioned evidence and the comparison of the
NMR data of 1 with those of villenol[5], compound 1 was
Table 1 NMR data of 1 in CDCl3 (1H:600 MHz; 13C:150
MHz; δ, J in Hz)
Position δH δC
01 1.05 (1H, m) 039.5
1.81 (1H, overlapped)
02 1.45 (1H, m) 018.9
1.54 (1H, overlapped)
03 0.95 (1H, m) 1.80 (1H, overlapped)
035.4

04 − 038.6
05 1.24 (1H, overlapped) 056.2
06 1.54 (1H, overlapped) 024.4
1.63 (1H, m)
07 1.94 (1H, td, J = 12.7, 3.8 Hz) 038.8
2.38 (1H, ddd, J = 12.7, 3.8, 2.5 Hz )
08 − 148.0
09 1.60 (1H, overlapped) 056.3
10 − 038.6
11 1.44 (1H, m) 1.82 (1H, overlapped)
021.8

12 1.84 (1H, overlapped) 2.15 (1H, J = 12.2, 3.6 Hz) 038.8
13 − 141.0
14 5.32 (1H, t, J = 6.4 Hz) 120.3
15 3.93 (2H, d, J = 6.4 Hz) 068.9
16 1.67 (3H, s) 016.5
17 4.52 (1H, brs) 106.5
4.82 (1H, brs)
18 3.74 (1H, d, J = 10.8 Hz) 064.9
3.37 (1H, d, J = 10.8 Hz)
19 0.97 (3H, s) 027.0
20 0.65 (3H, s) 015.2
OCH3 3.32 (3H, s) 057.7

identified as 15-methoxy-18-hydroxylabda-8(17),13-diene.
The known compounds were identified as
13-epitoruolsol (2) [6], labd-8(17),14-dien-13-ol (3) [12],
13-epicupressic acid (4) [7], cis-communic acid (5) [7],
trans-communic acid (6) [8], labd-15-aceoxy-8(17),13E-dien
(7) [9], labd-8(17),13E-dien-15-ol (8) [10], isocupressic acid (9)
[7], acetylisocupressic acid (10) [13], isoabienol (11) [11],
13-oxo-14,15-dinor-labd-8(17)-en-19-oic acid (12) [14], pi-
marenic acid (13) [15], sandaracopimaric acid (14) [16], pimarol
(15) [13], ent-oplopanone (16) [17], and (+)-T-cadinol (17) [18],
respectively, by comparison of their physical and spectro-
scopic data with the published data.
Compound 1 White gum, [α]D22 +18.5° (c = 0.55,
CHCl3). ESI-MS (positive) m/z: 343 [M + Na]+, HR-ESI-MS
2010 年 11 月 第 8 卷 第 6 期

LIU Chun-Mei, et al. /Chinese Journal of Natural Medicines 2010, 8(6): 405−410
(positive) m/z: 343.1412 [M + Na]+ (calcd for C17H24O7Na,
343.142 0). 1H NMR (CDCl3, 600 MHz) and 13C NMR
(CDCl3, 150 MHz) data see Table 1.
Compound 5 Colorless gum, ESI-MS m/z 301 [M –
H]-. 1H NMR (CDCl3, 600 MHz) δ: 6.70 (1H, dd, J = 17.4,
10.8 Hz, H-14), 5.20 (1H, t, J = 6.4 Hz, H-12), 5.10 (1H, d, J
= 17.4 Hz, H-15a), 5.00 (1H, d, J = 10.8 Hz, H-15b), 4.80
(1H, s, H-17), 4.40 (1H, s, H-17), 1.80 (3H, s, H-16), 1.16
(3H, s, H-20), 0.50 (3H, s, H-19). 13C NMR data see Table 2.
Compound 2 Colorless gum, ESI-MS (positive) m/z
329 [M + Na]+, ESI-MS (negative) m/z 341 [M − H]−. 1H
NMR (CDCl3, 600 MHz) δ: 5.90 (1H, dd, J = 18.1, 10.2 Hz,
H-14), 5.21 (1H, dd, J = 18.1 Hz, H-15a), 5.05 (1H, dd, J =
10.2 Hz, H-15b), 4.80 (H, s, H-17), 4.48 (H, s, H-17), 3.75
(1H, dd, J = 10.8 Hz, H-19), 3.38 (1H, dd, J = 10.8 Hz, H-19),
0.96 (3H, s, H-18), 1.23 (3H, s, H-16), 0.59 (3H, s, H-20).
13C NMR data see Table 2.
Compound 6 Colorless gum, ESI-MS m/z 301 [M –
H]-. 1H NMR (CDCl3, 600 MHz) δ: 6.26 (1H, dd, J = 17.4,
10.8 Hz, H-14), 5.33 (1H, t, J = 6.4 Hz, H-12), 5.00 (1H, d, J
= 17.4 Hz, H-15a), 4.79 (1H, d, J = 10.8 Hz, H-15b), 4.77
(1H, s, H-17), 4.39 (1H, s, H-17), 1.76 (3H, s, H-16), 1.16
(3H, s, H-20), 0.58 (3H, s, H-19). 13C NMR data see Table 2. Compound 3 Amorphous powder, ESI-MS (positive)
m/z 313 [M + Na]+. 1H NMR (CD3OD, 300 MHz) δ: 5.92
(1H, dd, J = 8.1, 5.2 Hz, H-14), 5.21 (1H, dd, J = 8.7, 0.6 Hz,
H-15a), 5.05 (1H, dd, J = 7.1,0.6 Hz, H-15b), 4.81 (1H, d, J =
0.9 Hz, H-17a), 4.51 (1H, d, J = 0.9 Hz, H-17b), 0.69 (3H, s,
H-16), 0.80 (3H, s, H-18), 0.87 (3H, s, H-19), 1.19 (3H, s,
H-20). 13C NMR data see Table 3.
Compound 7 Colorless gum, ESI-MS (positive) m/z
385 [M + Na]+. 1H NMR (CDCl3, 600 MHz) δ: 5.32 (1H, t, J
= 6.4 Hz, H-14), 4.59 (2H, d, J = 7.2 Hz, H-15), 4.86 (1H, s,
H-17), 4.53 (1H, s, H-17), 2.01 (3H, s, OAc), 1.68 (3H, s,
H-16), 0.68 (3H, s, H-20), 0.89 (3H, s, H-19), 0.80 (3H, s,
H-18). 13C NMR data see Table 2.
Compound 4 Colorless gum, ESI-MS (positive) m/z
343 [M + Na]+, ESI-MS (negative) m/z 319 [M − H]−. 1H
NMR (CDCl3, 600 MHz) δ: 5.87 (1H, dd, J = 18.1, 10.2 Hz,
H-14), 5.19 (1H, dd, J = 18.1 Hz, H-15a), 5.03 (1H, dd, J =
10.2 Hz, H-15b), 4.80 (H, s, H-17), 4.46 (H, s, H-17), 1.24
(3H, s, H-19), 1.20 (3H, s, H-16), 0.56 (3H, s, H-20). 13C
NMR data see Table 4.
Compound 8 Colorless gum, ESI-MS (positive) m/z
343 [M + Na]+, ESI-MS (negative) m/z 301 [M − H]−. 1H
NMR (CDCl3, 600 MHz) δ: 5.30 (1H, t, J = 6.4 Hz, H-14),
4.08 (2H, d, J = 7.2 Hz, H-15), 4.79 (1H, s, H-17), 4.47 (1H,
s, H-17), 1.60 (3H, s, H-16), 0.55 (3H, s, H-20), 1.17 (3H, s,
H-19), 0.80 (3H, s, H-18). 13C NMR data see Table 2.
Compound 9 Colorless gum, ESI-MS (positive) m/z

Table 2 13C NMR (DEPT, 150 MHz) data of 2-8 in CDCl3
Position 2 3 4 5 6 7 8
1 039.3 t 039.1 t 039.2 t 039.3 t 039.3 t 039.6 t 039.6 t
2 020.1 t 019.4 t 020.1 t 020.1 t 020.1 t 019.4 t 019.4 t
3 037.9 t 042.2 t 037.9 t 037.9 t 037.9 t 042.2 d 042.2 d
4 044.2 s 029.7 s 044.2 s 044.2 s 044.2 s 033.6 s 033.6 s
5 056.4 d 055.6 d 056.4 d 056.4 d 056.4 d 056.3 d 056.3 d
6 025.8 t 024.5 t 025.8 t 025.8 t 025.8 t 024.5 t 024.5 t
7 038.5 t 038.4 t 038.5 t 038.5 t 038.5 t 038.4 t 038.4 t
8 147.9 s 148.7s 148.0 s 147.9 s 146.1 s 148.6 s 148.6 s
9 056.3 s 057.4 d 056.4 s 056.3 s 056.4 s 056.3 s 056.3 s
10 040.3 s 039.9 s 040.7 s 040.3 s 040.3 s 039.1 s 039.1 s
11 038.0 t 017.7 t 038.0 t 023.3 t 022.3 t 021.8 t 021.8 t
12 040.6 t 041.5 t 040.6 t 133.9 d 133.9 d 039.7 t 039.7 t
13 073.8 s 073.6 s 073.7 s 133.4 s 132.4 s 142.9 s 140.6 s
14 144.8 d 145.4 d 145.1 d 141.6 d 139.6 d 118.1 d 123.0 d
15 111.7 t 111.5 t 111.0 t 109.9 t 110.9 t 061.4 t 059.4 t
16 011.8 q 027.7 q 011.8 q 011.8 q 011.8 q 016.5 q 016.3 q
17 0106.6 t 106.5 t 107.6 t 107.6 t 107.6 t 106.5 t 106.2 t
18 027.1 t 033.6 q 183.5 s 184.2 s 184.2 s 033.6 q 033.6 q
19 065.0 q 021.7 q 030.1 q 030.1 q 012.8 q 014.5 q 014.5 q
20 015.3 q 014.4 q 012.8 q 012.8 q 021.8 q 012.8 q 021.8 q
OAc − 171.3, 21.8

2010 年 11 月 第 8 卷 第 6 期 Chin J Nat Med Nov. 2010 Vol. 8 No. 6 407


LIU Chun-Mei, et al. /Chinese Journal of Natural Medicines 2010, 8(6): 405−410
408 Chin J Nat Med Nov. 2010 Vol. 8 No. 6
Table 3 13C NMR (DEPT, 150 MHz) data of 9-14 in CDCl3
Position 9 10 11 12 13 14
01 039.1 t 039.1 t 040.4 t 039.3 t 038.3 t 038.3 t
02 019.9 t 020.0 t 019.8 t 020.1 t 018.5 t 018.6 t
03 037.9 t 038.0 t 041.2 d 037.9 t 037.7 d 038.3 d
04 044.2 s 044.2 s 040.4 s 044.2 s 047.3 s 047.3 s
05 056.4 d 056.4 d 056.3 d 056.9 d 048.8 d 048.8 d
06 026.0 t 026.0 t 026.0 t 025.8 t 024.9 t 024.9 t
07 038.7 t 038.5 t 038.6 t 038.5 t 026.0 t 026.0 t
08 147.9 s 147.9 s 073.8 s 149.1 s 136.6 s 136.5 s
09 055.5 s 055.5 s 056.3 s 057.6 s 050.5 s 050.1 s
10 040.3 s 040.3 s 040.4 s 040.4 s 037.4 s 037.7 s
11 021.8 t 021.8 t 027.6 t 027.5 t 018.5 t 018.6 t
12 039.1 t 039.1 t 041.2 t 041.9 t 035.4 t 035.5 t
13 142.9 s 142.9 s 147.9 s 210.9 s 037.0 s 037.4 s
14 118.1 d 118.1 d 144.7 d 027.5 q 129.1 d 129.1 d
15 061.4 t 061.4 t 111.7 s − 148.8 d 148.8 d
16 016.5 q 016.5 q 106.5 t − 110.2 t 110.2 t
17 106.5 t 106.5 t 024.3 q 108.0 t 026.0 q 026.0 q
18 033.6 q 183.7 s 033.6 q 185.3 s 028.5 q 028.5 q
19 014.5 q 029.0 q 014.5 q 030.8 q 185.9 s 185.9 s
20 012.9 q 012.8 q 021.8 q 014.1 q 015.2 q 015.2 q
OAc 171.2, 20.8 171.3, 21.8

Table 4 13C NMR (150 MHz) data of 15-17 in CDCl3
Position 15 16 17
01 038.3 t 042.2 t 046.7 d
02 018.5 t 028.7 t 022.6 t
03 035.5 t 057.3 d 042.1 t
04 037.9 s 055.9 d 134.9 s
05 047.5 d 049.0 d 122.3 d
06 022.5 t 025.6 t 039.8 d
07 035.5 t 023.1 t 049.9 d
08 138.1 s 073.0 s 021.9 t
09 051.5 s 029.6 d 030.9 t
10 038.8 s 015.7 q 072.4 s
11 019.3 t 022.0 q 023.8 q
12 036.0 t 211.2 s 025.9 d
13 039.0 s 029.5 q 015.1 q
14 128.1 d 020.4 q 020.7 q
15 147.0 d − 021.5 q
16 113.1 q − −
17 029.8 q
18 018.3 q
19 071.7 q
20 015.6 q

343 [M + Na]+, ESI-MS (negative) m/z 319 [M − H]−. 1H
NMR (CDCl3, 600 MHz) δ 5.38 (1H, t, J = 6.4 Hz, H-14),
4.15 (2H, d, J = 7.2 Hz, H-15), 4.85 (1H, s, H-17), 4.52 (1H,
s, H-17), 1.67 (3H, s, H-16), 0.58 (3H, s, H-20), 1.25 (3H, s,
H-19). 13C NMR data see Table 3.
Compound 10 Colorless oil, ESI-MS (positive) m/z
385 [M + Na]+, ESI-MS (negative) m/z 361 [M − H]−. 1H
NMR (CDCl3, 600 MHz) δ: 5.31 (1H, t, J = 6.4 Hz, H-14),
4.59 (2H, d, J = 7.2 Hz, H-15), 4.86 (1H, s, H-17), 4.52 (1H,
s, H-17), 1.69 (3H, s, H-16), 0.58 (3H, s, H-20), 1.25 (3H, s,
H-19), 2.17 (3H, s, OAc). 13C NMR data see Table 3.
Compound 11 Colorless oil, ESI-MS (positive) m/z
343 [M + Na]+, ESI-MS (negative) m/z 301 [M − H]−. 1H
NMR (CDCl3, 600 MHz) δ: 6.37 (1H, dd, J = 18.1, 10.2 Hz,
H-14), 5.31 (1H, dd, J = 18.1 Hz, H-15a), 5.05 (1H, dd, J =
10.2 Hz, H-15b), 5.02 (2H, s, H-16), 1.19 (3H, s, H-17), 0.80
(6H, s, H-19, 20), 0.88 (3H, s, H-18). 13C NMR data see
Table 2.
Compound 12 Colorless oil, ESI-MS (positive) m/z
385 [M + Na]+, ESI-MS (negative) m/z 361 [M − H]−. 1H
NMR (CDCl3, 600 MHz) δ: 4.84 (1H, s, H-17), 4.44 (1H, s,
H-17), 2.13 (3H, s, H-14), 0.58 (3H, s, H-20), 1.25 (3H, s,
H-19). 13C NMR data see Table 3.
Compound 13 Colorless gum, EI-MS m/z 272 [M]+.
1H NMR (CDCl3, 600 MHz) δ: 5.76 (1H, dd, J = 16.8, 10.8
Hz H-14), 5.17 (1H, t, J = 6.4 Hz, H-12), 4.88 (2H, m, H-15),
2010 年 11 月 第 8 卷 第 6 期

LIU Chun-Mei, et al. /Chinese Journal of Natural Medicines 2010, 8(6): 405−410


Fig. 1 Compounds 1-17 isolated from Cupressus gigantean


Fig. 2 Key HMBC and ROESY correlations of compound 1

1.31 (3H, s, H-16), 0.98 (3H, s, H-20), 0.75 (3H, s, H-19).
13C NMR data see Table 3.
Compound 14 Colorless gum, EI-MS m/z 272 [M]+.
1H NMR (CDCl3, 600 MHz) δ: 5.76 (1H, dd, J = 16.8, 10.8
Hz, H-14), 5.17 (1H, t, J = 6.4 Hz, H-12), 4.88 (2H, m, H-15),
1.31 (3H, s, H-16), 0.98 (3H, s, H-20), 0.75 (3H, s, H-19).
13C NMR data see Table 3.
Compound 15 Amorphous powder, ESI-MS (positive)
m/z 311 [M + Na]+. 1H NMR (CDCl3, 600 MHz) δ: 6.04 (1H,
dd, J = 16.8, 10.8 Hz, H-14), 5.71 (1H, t, J = 6.4 Hz, H-12),
4.88 (2H, m, H-15), 3.75 (1H, dd, J = 10.8 Hz, H-19), 3.38
(1H, dd, J = 10.8 Hz, H-19), 1.42 (3H, s, H-16), 1.21 (3H, s,
H-16), 0.98 (6H, s, H-20). 13C NMR (125 MHz, CDCl3) data
see Table 4.
Compound 16 Colorless gum, ESI-MS (positive) m/z
261 [M + Na]+. 1H NMR (CDCl3, 600 MHz) δ: 2.61 (1H, m,
H-4), 2.15 (3H, s, H-14), 1.17 (3H, s, H-15), 084 (3H, d, J =
7.2 Hz, H-11), 0.65 (3H, d, J = 7.2 Hz, H-12). 13C NMR (125
MHz, CDCl3) data see Table 4.
Compound 17 Amorphous powder, ESI-MS (positive)
m/z 245 [M + Na]+. 1H NMR (CDCl3, 600 MHz) δ: 5.49 (1H,
brs, H-5), 1.66 (3H, s, H-11), 1.09 (3H, s, H-15), 0.91 (3H, d,
J = 7.2 Hz, H-13), 0.76 (3H, d, J = 7.2 Hz, H-13). 13C NMR
(125 MHz, CDCl3) data see Table 4.
References
[1] Chinese Academy of Sciences Editorial Board of Flora of
China. Flora of China (Volume 17) [M]. Beijing: Science
Press, 1990: 334.
[2] Kuiate JR, Bessière JM, Amvam Zollo PH, et al. Chemical
composition and antidermatophytic properties of volatile
fractions of hexanic extract from leaves of Cupressus lusi-
tanica Mill. from Cameroon [J]. J Ethnopharmacol, 2006,
103 (2): 160-165.

[3] Lopéz L, Villavicencio MA, Albores A, et al. Cupressus
lusitanica (Cupressaceae) leaf extract induces apoptosis in
cancer cells [J]. J Ethnopharmacol, 2002, 80 (1): 115-120.
[4] Cool LG, Hu ZL, Zavarin E. Foliage terpenoids of Chinese
Cupressus species [J]. Biochem Syst Ecol, 1998, 26 (8):
899-913.
[5] Rodriguez B. New labdane diterpenoids from Sideritis
chamaedryfolia [J]. Phytochemistry, 1978, 17 (2): 281-286.
[6] Wenkert E, Buckwalter BL [J]. J Am Chem Soc, 1972, 94
(12): 4367-4369.
[7] Fang JM, Sou YC, Chiu YH, et al. Diterpenes from the bark
of Juniperus chinensis [J]. Phytochemistry, 1993, 34 (6):
1581-1584.
[8] Iwamoto M, Ohtsu H, Matsunaga S, et al. Labdane-type
diterpenes and a nordrimane-type sesquiterpene from the
stem bark of Thuja standishii [J]. J Nat Prod, 2000, 63 (10):
1381-1383.
[9] Ferdinand B, Jasmin J. New labdan-derivate and andere
inhaltsstoffe aus Relhania acerosa [J]. Phytochemistry, 1979,
18 (4): 631-635.
[10] Kuo YH, Chou CF, Lin HC, Lupane triterpene glycosides
from leave of Acanthopanax koreanum and their cytotoxic
activity [J]. Chem Pharm Bull, 2003, 51: 986-989.
[11] Toyota M, Nagashima F, Asakawa Y. Clerodane, kaurane
and labdane diterpenoids from the liverwort Jungermannia
infusca [J]. Phytochemistry, 1989, 28 (12): 3415-3419
[12] Barrero AF, Quilez del Moral JF, Mar Herrador M, et al.
Abietane diterpenes from the cones of Cedrus atlantica [J].
Phytochemistry, 2005, 66 (1): 105-111.
[13] Su WC, Fang JM, Cheng YS. Labdanes from Cryptomeria
japonica [J]. Phytochemistry, 1994, 37 (4): 1109-1114.
[14] Masanori I, Shinichi H, Yoshiyuki H. Terpenoids from the
seed of platycladus orientalis [J]. Phytochemistry, 1985, 24
(7): 1602-1604.
[15] Bohlmann F, Adler A, King RM, Robinson H. Ent-labdanes
from Mikania alvimii [J]. Phytochemistry, 1982, 21 (1):
173-176.
[16] Caputo R, Mangoni L, Monaco P, Previtera L. New labdane
diterpenes from Araucaria cooki [J]. Phytochemistry, 1974,
13 (2): 471-474.
[17] Bohimann F, Zdero C Neue furanoeremophilane und andere
sesquiterpene aus vertretern der gattung Euryops [J]. Phyto-
chemistry, 1978, 17 (7): 1135-1153.
[18] Ashley BW, William AH, William NS. Essential oil compo-
sitions of three Lantana species from Monteverde, Costa
Rica [J]. Nat Prod Commun, 2009, 4 (1): 105-107.
2010 年 11 月 第 8 卷 第 6 期 Chin J Nat Med Nov. 2010 Vol. 8 No. 6 409

LIU Chun-Mei, et al. /Chinese Journal of Natural Medicines 2010, 8(6): 405−410
410 Chin J Nat Med Nov. 2010 Vol. 8 No. 6

巨柏茎叶的萜类成分
柳春梅, 周慧斌, 张卫东*
上海第二军医大学药学院, 上海 200433
【摘 要】 目的:对巨柏(Cupressus gigantea)茎叶的化学成分进行研究。方法:采用硅胶和 Sephadex LH-20 柱色谱的方法
分离和纯化化合物, 通过 NMR, MS 及理化性质鉴定化合物结构。结果:从巨柏茎叶分离得到 15 个 labdane-type 二萜, 其中一个
为新化合物, 分别为:15-methoxy-18-hydroxylabda-8(17),13-diene (1), 13-epitoruolsol (2), labd-8(17),14-dien-13-ol (3), 13-epi-
cupressic acid (4), cis-communic acid (5), trans-communic acid (6), labd-15-aceoxy-8(17),13E-dien (7), labd-8(17),13E-dien-15-ol (8),
isocupressic acid (9), acetylisocupressic acid (10), isoabienol (11), 13-oxo-14,15-dinor-labd-8(17)-en-19-oic acid (12), pimarenic acid
(13), sandaracopimaric acid (14), and pimarol (15) 此外还有两个已知倍半萜 ent-oplopanone (16) 和 (+)-T-Cadinol (17)。结论:化合
物(1)为新的倍半萜, 所有化合物均为首次从该植物中分得。
【关键词】 巨柏; 柏科; labdane-type 二萜; 倍半萜

【基金项目】 中国博士后基金(No. 20070410711), 上海市重点学科建设项目 (B906) 和上海市科学基金 (Nos. 07DZ19728,
06DZ19717, 06DZ19005)




·征订启事·
欢迎订阅 2011 年《中国天然药物》

《中国天然药物》是 2003 年创刊、由中国药科大学与中国药学会共同主办、科学出版社出版的国家级药学学术期刊,
刊物以报道来自天然产物活性化合物的发现与改造, 以及其药效与药理作用机制为重点, 是具有我国独特优势的中药、
草药、海洋药物、微生物药物、生化药物、民族药物进行国际交流的重要窗口。
《中国天然药物》2009 年已被评为“中国科协精品期刊”; 被国内权威《中文核心期刊要目总览》、 中国科技论文
统计源数据库等收录为核心期刊, 在《中国学术期刊评价报告》排行榜中居药学核心期刊第 1 位; 已被国际 16 个权威数
据库收录为来源期刊:BIOSIS Previews, BIOSIS Toxicology, CABA, EMBASE, EMBASE Alert, Global Health, IPA, IPA
Toxicology, SCOPUS, SciFinder Scholar, CSA ; BA, CA, Excerpta Medica Index Copernicus; 2008 年起, Elsevier 出版集团基
于全球 2 000 万 ScienceDirect 用户, 同步出版发行全文英文网络版(http://www.sciencedirect.com/science/journal/18755364),
在药学界享有较高学术声誉。
《中国天然药物》以学术质量为生命线, 国内外学术影响不断扩大, 据 2009 年《中国科技期刊引证报告(扩刊版)》
CSTJCR 统计, 本刊影响因子为 1.152, 五年影响因子 1.289, 基金论文比 74.5%, 即年指标 0.147, 被引率 58%, 各项指标
均居 65 种药学期刊第 2 位, 中国药学会期刊第 1 位, “思路与方法”栏目下载、浏览量逾 20 万篇次, 有极高的权威性与
学术影响力, 在高校、科研机构、制药企业拥有广泛的读者群。
本刊在线投稿、审稿(http://cjnm.alljournal.net.cn), 发表周期短。为双月刊, 单月 20 日出版, 2011 年国内定价为 30 元/
期, 180 元/年。国内邮发代号 28-306。
编辑部地址:南京童家巷 24 号 邮编:210009 电话:025-83271565, 83271568
传真:025-83271229, E-MAIL:cjnm@yahoo.cn, 欢迎投稿, 欢迎订阅!



2010 年 11 月 第 8 卷 第 6 期