免费文献传递   相关文献

海洋红树林植物黄槿内生真菌Aspergillus sydowii EN-198化学成分研究



全 文 : 6 海洋科学 / 2012年 / 第 36卷 / 第 12期
海洋红树林植物黄槿内生真菌 Aspergillus sydowii EN-198
化学成分研究
杜丰玉1,2, 李晓明1, 李春顺1, 王斌贵1
(1.中国科学院 海洋研究所 实验海洋生物学重点实验室, 山东 青岛 266071; 2.中国科学院研究生院,北京
100049)
摘要 : 对采自海南东寨港的海洋红树林植物黄瑾 (Hibiscus tiliaceus)叶中分离到的一株内生真菌
Aspergillus sydowii EN-198 的次生代谢产物进行了研究。利用正相与反相硅胶柱层析、葡聚糖凝胶
Sephadex LH-20 柱层析以及制备薄层层析(PTLC)等分离手段从其发酵液中分离得到 14 个化合物, 通
过一维、二维核磁共振技术、质谱技术等鉴定了所有化合物的结构, 分别为: 环-(S-脯氨酸-S-苯丙氨
酸)(1), 环-(S-脯氨酸-S-亮氨酸)(2), 环-(S-苯丙氨酸-S-色氨酸)(3), (1S)-1-(4′-间羟基苯甲酸)-1,1,5,5-二
甲基己二醇(4), 曲酸(5), N-[2-(4-吲哚)乙基]乙酰胺(6), N-[2-(4-对羟基苯酚)乙基]乙酰胺(7), 胸腺嘧啶
脱 氧 核 苷 (8), 尿 嘧 啶 脱 氧 核 苷 (9), 尿 嘧 啶 核 苷 (10), 过 氧 化 麦 角 甾 醇 (11), 麦 角 甾 醇 (12),
(2S,2′R,3R,3′E,4E,8E)-N-(2′-羟基-3′-十六烯酰基)-9-甲基-4,8-二十碳二烯-1,3-二醇(13)以及 1-O-β-D-葡
萄糖基-(2S,2′R,3R,3′E,4E,8E)-N-(2′-羟基-3′-十六烯酰基)-9-甲基-4,8-二十碳二烯-1,3-二醇(14); 其中化
合物 1 和 2 为首次从 Aspergillus sydowii 中分离得到。对所有化合物测试其抑菌活性, 发现化合物 5 与
7 对金黄色葡萄球菌有较好抑制活性。
关键词: 红树林; 黄槿; 内生真菌; 化学成分; 结构鉴定
中图分类号:O629 文献标识码: A 文章编号: 1000-3096(2012)12-0006-06
红树植物一般分布于热带、亚热带潮间带或河
口边缘, 生长环境特殊, 具有水陆两栖特性, 蕴藏着
丰富并极具特色的微生物资源[1]。红树林内生真菌是
指那些在其生活史中的全部或某一段时期生活在宿
主体内, 但不引起宿主明显病害症状的真菌。因为红
树植物独特的两栖特性, 这些内生真菌具有海洋微
生物的特点, 拥有独特的代谢途径和遗传背景, 其代
谢产物化学多样性也因而比较丰富。近年来红树林内
生真菌代谢产物研究已经受到越来越多的关注[2-4]。
对于红树植物及其内生真菌次级代谢产物的研
究本研究组曾有报道[5-9]。本文报道从采自海南东寨
港的海洋红树林植物黄槿(Hibiscus tiliaceus)叶中分
离到一株内生真菌 Aspergillus sydowii EN-198, 并从
其发酵培养物中分离鉴定了 14 个化合物, 其中化合
物 1和 2为首次从 Aspergillus sydowii中分离得到。
1 材料与方法
1.1 仪器与试剂
Bruker Avance 500 MHz核磁共振仪, TMS内标;
薄层色谱硅胶 GF254和柱色谱硅胶(200~300 目)为青
岛海洋化工厂分厂产品; Lobar LiChroprep RP-18硅
胶 (40~63 μm, Merck); 显色剂为茴香醛硫酸溶液和
碘; 所用有机溶剂为重蒸的工业级溶剂。
1.2 菌株发酵
(1) 菌株: 菌株 EN-198 是分离自海南东寨港采
集的海洋红树林植物黄槿(Hibiscus tiliaceus)叶中的
内生真菌。
(2) 菌株发酵: 菌种以琼脂–麦芽膏培养基, 4℃
保存。发酵培养基组成为: 酵母膏 3 g/L, 麦芽糖 20
g/L, 山梨醇 20 g/L, 味精 10 g/L, 色氨酸 0.5 g/L,
KH2PO4 0.5 g/L, MgSO4•7H2O 0.3 g/L, pH 6.5。250
mL三角烧瓶, 每瓶装液体培养基 150 mL, 115 ℃灭

收稿日期:2012-03-23;修回日期:2012-05-20
基金项目: 国家自然科学基金(30910103914)和科技部“973计划”项目
(2010CB833802)
作者简介: 杜丰玉(1981-), 男, 博士, 山东淄博人, 主要从事天然产
物化学研究; 王斌贵, 通信作者, 电话: 0532-82898553, E-mail:
wangbg@ms.qdio.ac.cn
Marine Sciences / Vol. 36, No. 12 / 2012 7
菌 20 min后接种。共接种液体培养基 15 L, 28 ℃, 160 r/min摇床培养 7 d, 过滤, 分别收集菌丝体和发酵液。

图 1 化合物 1–14的结构
Fig. 1 Structures of compounds 1–14

1.3 提取分离
收集发酵液约 15 L, 用乙酸乙酯萃取。菌丝体凉
干、粉碎后用丙酮︰水(4︰1)浸泡。将丙酮蒸出, 水
相用乙酸乙酯萃取, 萃取物经薄层层析检测发现与
发酵液萃取物基本一致, 合并得到粗提物 10g。
将上述粗提物进行硅胶VLC柱层析, 以石油醚-
乙酸乙酯、氯仿-甲醇体系梯度洗脱, 经 TLC检测合
并为 10个组分(Fr.1-10), 其中组分 Fr.4-5经正相硅胶
柱层析, Sephadex LH-20 (氯仿: 甲醇=1: 1)凝胶柱层
析与反相硅胶柱层析分离得到化合物 11 (10.5 mg),
12 (29.5 mg)与 13 (24.1 mg); 组分 Fr.7经正相硅胶柱
层析, Sephadex LH-20 (甲醇)凝胶柱层析和反相硅胶
柱层析得到化合物 1 (3.2 mg), 2 (4.1 mg), 3 (2.7 mg),
4 (14.9 mg), 5 (41.2 mg), 6 (4.8 mg)与 7 (6.7 mg); 组
分 Fr.8-10经正相硅胶柱层析, Sephadex LH-20 (甲醇)
凝胶柱层析和制备薄层层析得到化合物 8 (3.3 mg), 9
(4.1 mg), 10 (5.2 mg)与 14 (21.2 mg)。
1.4 抑菌活性筛选
(1) 病 原 指 示 菌 : 金 黄 色 葡 萄 球 菌
(Staphyloccocus aureus) 与 大 肠 杆 菌 (Escherichia
coli)。
(2) 指示菌菌悬液制备: 指示菌接种于 LB 培养
基表面, 于 37 ℃培养 24 h后, 吸取 2 mL无菌 0.85%
NaCl 溶液洗涤培养物, 并用玻璃刮刀将菌刮下。采
用平板菌落计数法测定指示菌液所含活菌数, 并将
其稀释成密度为 1×105 CFU/mL的菌液, 备用。
(3) 抑菌活性筛选: 采用滤纸片扩散法[6], 测定
化合物的抑菌活性。以氯霉素为阳性对照, 每张滤纸
片加样量 20 μg。待测化合物以 DMSO溶解, 配制为
20 g/L溶液, 每张滤纸片加样量 100 μg。将加样滤纸
片贴于带菌平板表面, 并以加 DMSO 溶剂的滤纸片
为阴性对照, 将平板置于 37 ℃ 培养箱培养 24h后观
察结果, 测量并记录抑菌圈直径。
2 化合物结构鉴定与抑菌活性
化合物 1: 无色粉末, 1H-NMR (CDCl3) δH: 3.48
(1H, m, Ha-3); 3.52 (1H, m, Hb-3); 1.80 (1H, m, Ha-4);
2.01 (1H, m, Hb-4); 2.01 (1H, m, Ha-5); 2.60 (1H, m,
Hb-5); 4.07 (1H, t, J = 7.7 Hz, H-6); 5.70 (1H, br s,
NH-8); 4.28 (1H, dd, J = 10.6, 2.6 Hz, H-9); 2.79 (1H,
dd, J = 14.5, 10.6 Hz, Ha-10); 3.50 (1H, m, Hb-10);
7.23 (2H, d, J = 7.2 Hz, H-2′/6′); 7.35 (2H, m, H-3′/5′);
8 海洋科学 / 2012年 / 第 36卷 / 第 12期
7.29 (1H, m, H-4′); 13C-NMR (CDCl3) δC: 165.1 (C-1,
C); 45.5 (C-3, CH2); 22.5 (C-4, CH2); 28.4 (C-5, CH2);
59.1 (C-6, CH); 169.4 (C-7, C); 56.2 (C-9, CH); 36.8
(C-10, CH2); 136.0 (C-1′, C); 129.3 (C-2′/6′, CH);
129.5 (C3′/5′, CH); 127.5 (C4′, CH)。其波谱数据与环
-(S-脯氨酸-S-苯丙氨酸)的文献报道一致[10]。化合物 1
的比旋光度值为 [α]20D = –57.1 (c 0.28, EtOH), 与文
献报道值 [α]20D = –64 (c 0.05, EtOH)接近, 表明其 C-6
与 C-9 位绝对构型均为 S [10-11]。该化合物为首次从
Aspergillus sydowii中分离得到。
化合物 2: 无色粉末, 1H-NMR (CDCl3) δH: 3.53
(1H, m, Ha-3); 3.59 (1H, m, Hb-3); 1.90 (1H, m, Ha-4);
2.02 (1H, m, Hb-4); 2.13 (1H, m, Ha-5); 2.34 (1H, m,
Hb-5); 4.11(1H, t, J = 8.2 Hz, H-6); 5.98 (1H, br s,
NH-8); 4.01 (1H, dd, J = 9.6, 3.4 Hz, H-9); 1.52 (1H,
ddd, J = 14.5, 9.6, 5.0 Hz, Ha-10); 2.06 (1H, m, Hb-10);
1.75 (1H, m , H-11); 0.95 (3H, d, J = 6.6 Hz, H-12);
1.00 (3H, d, J = 6.6 Hz, H-13); 13C-NMR (CDCl3) δC:
166.2 (C-1, C); 45.5 (C-3, CH2); 22.7 (C-4, CH2); 28.1
(C-5, CH2); 59.0 (C-6, CH); 170.1 (C-7, C); 53.4 (C-9,
CH); 38.7 (C-10, CH2); 24.7 (C-11, CH); 21.2 (C-12,
CH3); 23.3 (C-13, CH3)。其波谱数据与环-(S-脯氨酸
-S-亮氨酸)的文献报道一致[10]。化合物 2的比旋光度
值为[α]20D = –98.0 (c 0.51, EtOH), 与文献报道值 [α]20D
= –108 (c 0.10, EtOH)接近, 表明其 C-6与 C-9位绝
对构型均为 S [10-11]。该化合物为首次从 Aspergillus
sydowii中分离得到。
化合物 3: 无色粉末, 1H-NMR (DMSO-d6) δH:
7.91 (1H, br s, NH-2); 3.97 (1H, br s, H-3); 7.71 (1H,
br s, NH-5); 3.85 (1H, br s, H-6); 2.80 (1H, m, Ha-7);
2.45 (1H, dd, J = 13.5, 4.5 Hz, Hb-7); 2.53 (1H, m,
Ha-8); 1.85 (1H, dd, J = 13.5, 4.6 Hz, Hb-8); 10.89 (1H,
br s, NH-1′); 6.96 (1H, d, J = 2.3 Hz, H-2′); 7.48 (1H, d,
J = 8.0 Hz, H-4′); 6.98 (1H, m, H-5′); 7.07 (1H, m,
H-6′); 7.32 (1H, d, J = 8.1 Hz, H-7′); 7.17 (2H, d, J =
7.5 Hz, H-2′′/6′′); 6.70 (2H, m, H-3′′/5′′); 7.15 (1H, m,
H-4′′); 13C-NMR (DMSO-d6) δC: 166.7 (C-1, C); 55.6
(C-3, CH); 166.1 (C-4, C); 55.2 (C-6, CH); 39.5 (C-7,
CH2); 29.6 (C-8, CH2); 124.3 (C-2′, CH); 108.8 (C-3′,
C); 118.7 (C-4′, CH); 118.3 (C-5′, CH); 120.8 (C-6′,
CH); 111.2 (C-7′, CH); 136.0 (C-8′, C); 127.5 (C-9′, C);
136.5 (C-1′′, C); 128.0 (C-2′′/6′′, CH); 129.6 (C-3′′/5′′,
CH); 126.3 (C-4′′, CH)。其波谱数据与环-(S-苯丙氨酸
-S-色氨酸)的文献报道值[12]一致。化合物 3的比旋光
度值为[α]20D = –156.3 (c 0.16, MeOH), 与文献报道值
[α]20D = –174.4 (c 0.30, MeOH)接近, 表明其 C-6与 C-9
位绝对构型均为 S [12]。
化合物 4: 无色粉末, 1H-NMR (DMSO-d6) δH:
1.66 (1H, m, Ha-2); 1.90 (1H, m, Hb-2); 1.08 (1H, m,
Ha-3); 1.30 (1H, m, Hb-3); 1.24 (2H, dd, J = 10.7, 4.4
Hz, H-4); 1.50 (3H, s, H-6); 0.98 (3H, s, Me-1); 0.98
(3H, s, Me-5); 7.29 (1H, s, H-2′); 7.30 (1H, d, J = 8.0
Hz, H-5′); 7.30 (1H, d, J = 8.0 Hz, H-6′); 13C-NMR
(DMSO-d6) δC: 75.0 (C-1, C); 42.1 (C-2, CH2); 18.5
(C-3, CH2); 44.0 (C-4, CH2); 68.7 (C-5, C); 28.2 (C-6,
CH3); 29.2 (Me-1); 29.2 (Me-8); 133.1 (C-1′, C); 116.8
(C-2′, CH); 154.5 (C-3′, C); 136.2 (C-4′, C); 119.5
(C-5′, CH); 126.3 (C-6′, CH); 168.0 (C-7′, C)。其波谱
数据与(1S)-1-(4′-间羟基苯甲酸)-1,1,5,5-二甲基己二
醇的文献报道值[13]一致。
化合物 5: 无色粉末, 1H-NMR (DMSO-d6) δH:
8.01 (1H, s, H-1); 6.33 (1H, s, H-4); 4.29 (2H, s, H-6);
9.04 (1H, s, OH-2); 5.66 (1H, s, OH-6); 13C-NMR
(DMSO-d6) δC: 139.3 (C-1, CH); 145.7 (C-2, C); 174.0
(C-3, C); 110.0 (C-4, CH); 168.1 (C-5, C); 59.5 (C-6,
CH2)。其波谱数据与曲酸文献报道值[14]一致。化合
物 5 对金黄色葡萄球菌有较好抑制活性, 加样量为
100 μg/碟时, 抑菌圈直径为 10 mm, 阳性对照抑菌
圈直径为 22 mm。该结果与文献报道的曲酸对金黄
色葡萄球菌抑制活性一致 [15-16]。
化合物 6: 无色粉末, 1H-NMR (CDCl3) δH: 1.93
(3H, s, H-1); 5.55 (1H, br s, NH-2); 3.61 (2H, t, J = 6.3
Hz, H-3); 2.98 (2H, t, J = 6.3 Hz, H-4); 8.10 (1H, br s,
NH-1′); 7.05 (1H, s, H-2′); 7.61 (1H, d, J = 7.9 Hz,
H-4′); 7.13 (1H, m, H-5′); 7.21 (1H, m, H-6′); 7.39 (1H, d,
J = 7.9 Hz, H-7′); 13C-NMR (CDCl3) δC: 23.4 (C-1,
CH3); 170.1 (C-2, C); 39.9 (C-3, CH2); 25.3 (C-4, CH2);
122.3 (C-2′, CH); 113.2 (C-3′, C); 118.7 (C-4′, CH);
119.6 (C-5′, CH); 122.3 (C-6′, CH); 111.3 (C-7′, CH);
136.5 (C-8′, C); 127.4 (C-9′, C)。其波谱数据与
N-[2-(4-吲哚)乙基]乙酰胺文献报道值[17]一致。
化合物 7: 无色粉末, 1H-NMR (DMSO-d6) δH:
1.77 (3H, s, H-1); 3.17 (2H, dt, J = 7.8, 6.1Hz, H-3);
2.57 (2H, m, H-4); 6.98 (1H, d, J = 8.5 Hz, H-2′); 6.68
(1H, d, J = 8.5 Hz, H-3′); 6.66 (1H, d, J = 8.5 Hz, H-5′);
6.96 (1H, d, J = 8.5 Hz, H-6′); 13C-NMR (DMSO-d6)
δC: 22.6 (C-1, CH3); 169.0 (C-2, C); 40.6 (C-3, CH2);
34.4 (C-4, CH2); 129.5 (C-1′, C); 129.4 (C-2′, CH);
115.1 (C-3′, CH); 155.6 (C-4′, C); 115.1 (C-5′, CH);
129.4 (C-6′, CH)。其波谱数据与 N-[2-(4-对羟基苯酚)
乙基]乙酰胺的文献报道值[18]一致。化合物 7对金黄
色葡萄球菌有一定抑制活性, 抑菌圈直径为 9 mm。
其抑菌活性为首次报道。
化合物 8: 无色粉末, 1H-NMR (DMSO-d6) δH:
7.70 (1H, s, H-6); 1.77 (3H, s, Me-5); 6.16 (1H, m,
H-1′); 2.06 (2H, m, H-2′); 4.23 (1H, m, H-3′); 3.75 (1H,
m, H-4′); 3.57 (1H, m, Ha-5′); 3.54 (1H, m, Hb-5′);
13C-NMR (DMSO-d6) δC: 150.4 (C-2, C); 163.7 (C-4,
C); 109.2 (C-5, C); 136.0 (C-6, CH); 12.1 (Me-5, CH3);
Marine Sciences / Vol. 36, No. 12 / 2012 9
87.2 (C-1′, CH); 39.1 (C-2′, CH2); 70.4 (C-3′, CH);
83.7 (C-4′, CH); 61.3 (C-5′, CH2)。其波谱数据与胸腺
嘧啶脱氧核苷的文献报道值[19]一致。
化合物 9: 无色粉末, 1H-NMR (DMSO-d6) δH:
5.69 (1H, d, J = 8.1 Hz, H-5); 7.98 (1H, d, J = 8.1 Hz,
H-6); 6.27 (1H, m, H-1′); 2.25 (2H, m, H-2′); 4.39 (1H,
m, H-3′); 3.92 (1H, m, H-4′); 3.78 (1H, m, Ha-5′); 3.72
(1H, m, Hb-5′); 13C-NMR (DMSO-d6) δC: 150.9 (C-2,
C); 152.5 (C-4, C); 102.7 (C-5, CH); 142.4 (C-6, CH);
89.0 (C-1′, CH); 41.4 (C-2′, CH2); 72.3 (C-3′, CH);
86.7 (C-4′, CH); 62.9 (C-5′, CH2)。其波谱数据与尿嘧
啶脱氧核苷的文献报道值一致[20]。
化合物 10: 无色粉末, 1H-NMR (DMSO-d6) δH:
5.58 (1H, d, J = 8.0 Hz, H-5); 7.83 (1H, d, J = 8.0 Hz,
H-6); 5.76 (1H, d, J = 5.3 Hz, H-1′); 3.96 (1H, t, J =
4.6 Hz, H-2′); 4.01 (1H, t, J = 4.6 Hz, H-3′); 3.82 (1H,
q, J = 3.1 Hz, H-4′); 3.61 (1H, dd, J = 12.0, 3.1 Hz,
Ha-5′); 3.54 (1H, dd, J = 12.0, 3.1 Hz, Hb-5′); 13C-NMR
(DMSO-d6) δC: 151.6 (C-2, C); 164.5 (C-4, C); 101.7
(C-5, CH); 140.3 (C-6, CH); 88.0 (C-1′, CH); 69.8
(C-2′, CH); 73.5 (C-3′, CH); 84.7 (C-4′, CH); 60.8
(C-5′, CH2)。其波谱数据与尿嘧啶核苷的文献报道值
[20]一致。
化合物 11: 无色粉末; 1H-NMR (CDCl3) δH: 3.96
(1H, m, H-3); 6.50 (1H, d, J = 8.5 Hz, H-6); 6.24 (1H,
d, J = 8.5 Hz, H-7); 0.81 (3H, s, H-18); 0.88 (3H, s,
H-19); 0.99 (3H, d, J = 6.6 Hz, H-21); 5.14 (1H, dd, J
= 15.3, 8.3 Hz, H-22); 5.22 (1H, dd, J = 15.3, 7.6 Hz,
H-23); 0.81 (3H, d, J = 6.9 Hz, H-26); 0.83 (3H, d, J =
7.1 Hz, H-27); 0.90 (3H, d, J = 6.9 Hz, H-28);
13C-NMR (CDCl3) δC: 34.7 (C-1, CH2); 30.1 (C-2,
CH2); 66.4 (C-3, CH); 39.4 (C-4, CH2); 82.1 (C-5, C);
135.2 (C-6, CH); 130.7 (C-7, CH); 79.4 (C-8, C); 51.1
(C-9, CH); 37.0 (C-10, C); 20.6 (C-11, CH2); 36.9
(C-12, CH2); 44.6 (C-13, C); 51.7 (C-14, CH); 23.4
(C-15, CH2); 28.6 (C-16, CH2); 56.2 (C-17, CH); 12.9
(C-18, CH3); 18.1 (C-19, CH3); 39.7 (C-20, CH); 20.9
(C-21, CH3); 135.4 (C-22, CH); 132.3 (C-23, CH); 42.8
(C-24, CH); 33.1 (C-25, CH); 19.6 (C-26, CH3); 19.9
(C-27, CH3); 17.5 (C-28, CH3)。其波谱数据与过氧化
麦角甾醇的文献报道值[21]一致。
化合物 12: 无色粉末, 1H-NMR (CDCl3) δH: 3.64
(1H, m, H-3); 2.47 (1H, m, Ha-4); 2.28 (1H, m, Hb-4);
5.57 (1H, dd, J = 5.6, 2.4 Hz, H-6); 5.38 (1H, m, H-7);
0.95 (3H, s, H-18); 0.63 (3H, s, H-19); 1.03 (3H, d, J =
6.7 Hz, H-21); 5.23 (1H, dd, J = 15.2, 7.1 Hz, H-22);
5.17 (1H, dd, J = 15.3, 7.7 Hz, H-23); 0.82 (3H, d, J =
7.2 Hz, H-26); 0.84 (3H, d, J = 7.2 Hz, H-27); 0.92 (3H,
d, J = 6.9 Hz, H-28); 13C-NMR (CDCl3) δC: 38.4 (C-1,
CH2); 32.0 (C-2, CH2); 70.5 (C-3, CH); 40.8 (C-4,
CH2); 139.8 (C-5, C); 119.6 (C-6, CH); 116.3 (C-7,
CH); 141.3 (C-8, C); 46.3 (C-9, CH); 37.1 (C-10, C);
21.1 (C-11, CH2); 39.1 (C-12, CH2); 42.8 (C-13, C);
54.6 (C-14, CH); 23.0 (C-15, CH2); 28.3 (C-16, CH2);
55.8 (C-17, CH); 12.1 (C-18, CH3); 16.3 (C-19, CH3);
40.4 (C-20, CH); 21.1 (C-21, CH3); 135.6 (C-22, CH);
132.0 (C-23, CH); 42.8 (C-24, CH); 33.1 (C-25, CH);
19.9 (C-26, CH3); 19.6 (C-27, CH3); 17.6 (C-28, CH3)。
其波谱数据与麦角甾醇的文献报道值[20]一致。
化合物 13: 无色粉末; 1H-NMR (CDCl3) δH: 3.73
(1H, m, Ha-1); 3.88 (1H, m, Hb-1); 3.87 (1H, m, H-2);
4.26 (1H, br s, H-3); 5.50 (1H, dd, J = 15.7, 6.3 Hz,
H-4); 5.78 (1H, m, H-5); 2.07 (2H, m, H-6); 2.06 (2H,
m, H-7); 5.09 (1H, t, J = 6.1 Hz, H-8); 1.94 (2H, t, J =
7.6 Hz, H-10); 1.36 (2H, m, H-11); 1.31-1.25 (16H, br
s, H12-H19); 0.87 (3H, t, J = 6.9 Hz, H-20); 1.58 (3H,
s, H-21); 4.54 (1H, d, J = 6.5 Hz, H-2′); 5.53 (1H, dd,
J = 15.2, 6.7 Hz, H-3′); 5.88 (1H, dt, J = 15.2, 6.7 Hz,
H-4′); 2.04 (2H, m, H-5′); 1.36 (2H, m, H-6′); 1.31-1.25
(18H, br s, H7′-H15′); 0.87 (3H, t, J = 6.9 Hz, H-16′);
13C-NMR (CDCl3) δC: 61.9 (C-1, CH2); 54.7 (C-2, CH);
74.0 (C-3, CH); 128.7 (C-4, CH); 134.0 (C-5, CH);
32.5 (C-6, CH2); 27.6 (C-7, CH2); 123.1 (C-8, CH);
136.2 (C-9, C); 39.7 (C-10, CH2); 28.0 (C-11, CH2);
29.7-29.2 (C12-C17, CH2); 31.9 (C-18, CH2); 22.7
(C-19, CH2); 14.1 (C-20, CH3); 16.0 (C-21, CH3);
173.6 (C-1′, C); 73.2 (C-2′, CH); 127.0 (C-3′, CH);
135.9 (C-4′, CH); 32.3 (C-5′, CH2); 29.0 (C-6′, CH2);
29.7-29.2 (C7′-C13′, CH2); 31.9 (C-14′, CH2); 22.7
(C-15′, CH2); 14.1 (C-16′, CH3)。其波谱数据与
(2S,2′R,3R,3′E,4E,8E)-N-(2′-羟基 -3′-十六烯酰基 )-9-
甲基-4,8-二十碳二烯-1,3-二醇[22]一致。
化合物 14: 无色粉末 ; 1H-NMR (CD3OH) δH:
4.14 (1H, dd, J = 9.3, 5.4 Hz, Ha-1); 3.72 (1H, dd, J =
10.2, 3.2 Hz, Hb-1); 3.89 (1H, m, H-2); 4.13 (1H, dd,
J = 7.1, 5.5 Hz, H-3); 5.48 (1H, dd, J = 16.0, 7.4 Hz,
H-4); 5.73 (1H, dt, J = 15.3, 6.6 Hz, H-5); 2.08 (2H, m,
H-6); 2.05 (2H, m, H-7); 5.16 (1H, t, J = 5.7 Hz, H-8);
1.98 (2H, t, J = 7.3 Hz, H-10); 1.41 (2H, m, H-11);
1.36-1.31 (16H, br s, H12-H19); 0.91 (3H, t, J = 7.0 Hz,
H-20); 1.60 (3H, s, H-21); 4.43 (1H, d, J = 5.8 Hz,
H-2′); 5.48 (1H, dd, J = 16.3, 6.0 Hz, H-3′); 5.85 (1H,
dd, J = 15.3, 7.7 Hz, H-4′); 2.03 (2H, m, H-5′); 1.42
(2H, m, H-6′); 1.36-1.31 (18H, br s, H7′-H15′); 0.93
(3H, t, J = 7.0 Hz, H-16′); 4.28 (1H, d, J = 7.7 Hz,
H-1″); 3.20 (1H, t, J = 8.1 Hz, H-2″); 3.36 (1H, t, J =
8.8 Hz, H-3″); 3.31 (1H, m, H-4″); 3.30 (1H, m, H-5″);
3.89 (1H, br d, J = 11.7 Hz, Ha-6″); 3.71 (1H, dd, J =
11.7, 4.3 Hz, Hb-6″); 13C-NMR (CD3OH) δC: 69.7 (C-1,
CH2); 54.7 (C-2, CH); 72.9 (C-3, CH); 131.0 (C-4, CH);
134.5 (C-5, CH); 33.0 (C-6, CH2); 28.8(C-7, CH2);
124.9 (C-8, CH); 136.8 (C-9, C); 40.8 (C-10, CH2);
29.1 (C-11, CH2); 30.2-30.8 (C12-C17, CH2); 33.1
(C-18, CH2); 23.7 (C-19, CH2); 14.4 (C-20, CH3); 16.2
(C-21, CH3); 175.5 (C-1′, C); 74.1(C-2′, CH); 129.1
10 海洋科学 / 2012年 / 第 36卷 / 第 12期
(C-3′, CH); 134.8 (C-4′, CH); 33.4 (C-5′, CH2);
30.2-30.8 (C6′-C13′, CH2); 33.1 (C-14′, CH2); 23.7
(C-15′, CH2); 14.5 (C-16′, CH3); 104.7 (C-1″, CH);
75.0 (C-2″, CH); 78.0 (C-3″, CH); 71.6 (C-4″, CH);
78.0 (C-5″, CH); 62.7 (C-6″, CH2)。其波谱数据与
1-O-β-D-葡萄糖基-(2S,2′R,3R,3′E,4E,8E)-N-(2′-羟基
-3′-十六烯酰基)-9-甲基-4,8-二十碳二烯-1,3-二醇的
文献报道值[22]一致。
参考文献:
[1] 刘爱荣, 吴晓鹏, 徐同. 红树林内生真菌研究进展[J].
应用生态学报, 2007, 18(4): 912-918.
[2] 黄忠京, 邵长伦, 陈意光, 等. 南海红树林内生真菌
ZZF79 中吡喃酮类代谢产物的研究[J]. 中山大学学
报(自然科学版版), 2007, 46(4): 113-115.
[3] 林永成, 周世宁. 海洋微生物及其代谢产物[M]. 北
京: 化学工业出版社, 2002.
[4] Lin Y C, Wu X Y, Feng S, et al. Five unique com-
pounds: xyloketals from mangrove fungus Xylaria sp.
from the South China Sea coast [J]. J Org Chem, 2001,
66(19): 6252-6256.
[5] Li D L, Li X M, Wang B G. Natural anthraquinone
derivatives from a marine mangrove plant-derived
endophytic fungus Eurotium rubrum: structural eluci-
dation and DPPH radical scavenging activity [J]. J
Microbiol Biotechnol, 2009, 19(7): 675-680.
[6] Yan H J, Li X M, Li C S, et al. Alkaloid and an-
thraquinone derivatives produced by the marine-de-
rived endophytic fungus Eurotium rubrum [J]. Helv
Chim Acta, 2012, 95(1): 163-168.
[7] Li D L, Li X M, Li T G, et al. Dioxopiperazine
alkaloids produced by the marine mangrove derived
endophytic fungus Eurotium rubrum [J]. Helv Chim
Acta, 2008, 91(10): 1888-1893.
[8] Li D L, Li X M, Li T G, et al. Benzaldehyde derivatives
from Eurotium rubrum, an endophytic fungus derived
from the mangrove plant Hibiscus tiliaceus [J]. Chem
Pharm Bull, 2008, 56(9): 1282-1285.
[9] Liu D, Li X M, Li C S, et al. Nigerapyrones A–H,
α-pyrone derivatives from the marine mangrove-deri-
ved endophytic fungus Aspergillus niger MA-132 [J]. J
Nat Prod, 2011, 74(8): 1787-1791.
[10] Li Z Y, Peng C S, Shen Y, et al. L, L-Diketopiperazines
from Alcaligenes faecalis A72 associated with South
China Sea sponge Stelletta tenuis [J]. Biochem Syst
Ecol, 2008, 36(3): 230-234.
[11] Madeline A, Andrea R R, Phillip C. New and known
diketopiperazines from the Caribbean sponge, Calyx cf.
podatypa [J]. J Nat Prod, 1995, 58(2): 201-208.
[12] Tullberg M, Grotli M, Luthman K. Efficient synthesis
of 2, 5-diketopiperazines using microwave assisted
heating [J]. Tetrahedron, 2006, 62(31): 7484-7491.
[13] Hamasaki T, Nagayama K, Hatsuda Y. Two new
metabolites, sydonic acid and hydroxysydonic acid,
from Aspergillus sydowii [J]. Agric Biol Chem, 1978,
42(1): 37-40.
[14] Domnin I N, Remizova L A, Misharev A D, et al.
Fragmentation of some 4 H -pyran-4-one and pyri-
din-4-one derivatives under electron impact [J]. Russ J
Org Chem (Engl. Transl.), 2008, 44(9): 1369-1373.
[15] 李凤梅 . 曲酸对大肠杆菌和金黄色葡萄球菌的抑制
作用研究 [J]. 食品研究与开发 , 2008, 29(6):
190-192.
[16] 苏国成, 汤凤霞, 杨秋明, 等. 曲酸对常见食品污染
菌的抑制作用 [J]. 食品与发酵工业 , 2005, 31(3):
47-51.
[17] Li Y, Li X F, Kim D S, et al. Indolyl alkaloid deriva-
tives, Nb-acetyltryptamine and oxaline from a ma-
rine-derived fungus [J]. Arch Pharm Res, 2003, 26(1):
21-23.
[18] Zhao P J, Wang H Y, Li G H, et al. Secondary metabo-
lites from endophytic Streptomyces sp. Lz531 [J]. Chem
Biodiversity, 2007, 4(5): 899-904.
[19] Jones A J, Grant D M, Winkley M W, et al. Carbon-13
magnetic resonance. XVII. Pyrimidine and purine nu-
cleosides [J]. JACS, 1970, 92(13): 4079-4087.
[20] Pretsch E, Bühlmann P. 波谱数据表—有机化合物的
结构解析[M]. 荣国斌译. 上海: 华东理工大学出版
社, 2002, 154, 237.
[21] Yue J M, Chen S N, Lin Z W, et al. Sterol from the
fungus Lactarium volemus [J]. Phytochemistry, 2001,
56(8): 801-806.
[22] Zhang Y, Wang S, Li X M, et al. Sphingolipids with
previously unreported 9-methyl-C20-sphingosine moi-
ety from algous endophytic fungus Aspergillus niger [J].
Lipids, 2007, 42(8): 759-764.
Marine Sciences / Vol. 36, No. 12 / 2012 11
Chemical constituents of Aspergillus sydowii EN-198, an
endophytic fungus derived from the marine-mangrove plant
Hibiscus tiliaceus
DU Feng-yu1,2, LI Xiao-ming1, LI Chun-shun1, WANG Bin-gui1
(1. Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences,
Qingdao 266071, China; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China)
Received: Mar., 23, 2012
Key words: Hibiscus tiliaceus; Endophytic fungus; Aspergillus sydowii EN-198; chemical constituents; structure elucidation

Abstract: Cultivation of the fungal strain Aspergillus sydowii EN-198, an endophytic fungus which was isolated
from the healthy fresh leaf of marine-mangrove plant Hibiscus tiliaceus, resulted in the identification of fourteen
compounds. These compounds were isolated by a combination of silica gel, Sephadex LH-20, and Lobar LiChro-
prep RP-18 column chromatography as well as the preparative thin layer chromatography (PTLC). The structures
were elucidated by analysis of their spectroscopic data including MS, 1D and 2D NMR to be
L,L-cyclo(phenylalanyl-prolyl) (1), L,L-cyclo(leucyl-prolyl) (2), L,L-cyclo(phenylalanyl-tryptophyl) (3), Hydroxy-
sydonic acid (4), Kojic acid (5), N-Acetyltryptamine (6), N-[2-(4-Hydroxyphenyl)ethyl]acetamide (7), Thymidine
(8), 2′-Deoxyuridine (9), Uridine (10), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (11),
(22E,24R)-ergosta-5,7,22-trien-3β-ol (12), Asperamide A (13) and B (14). Compounds 1 and 2 were firstly reported
to be isolated from Aspergillus sydowii, while 5 and 7 exhibited moderate antibacterial activity against S. aureus.

(本文编辑:张培新)