全 文 :天然产物研究与开发 Nat Prod Res Dev 2012,24:610-613,676
文章编号:1001-6880(2012)05-0610-05
Received October 29,2010;Accepted March 9,2011
Foundation Item:This research project was supported by the Scientific
Foundation of Shanghai China (09DZ1972200).
* Corresponding author Tel:86-21-34205989;E-mail:kimhz@ sjtu. edu.
cn;wdzhangy@ hotmail. com
黄花木的异黄酮类成分研究
寇忠京1,常睿洁1,覃江江1,严诗楷1,金慧子1 * ,张卫东1,2*
1上海交通大学药学院,上海 200240;2 上海第二军医大学药学院,上海 200433
摘 要:黄花木(Piptanthus concolor Harrow)茎枝 85%乙醇提取物采用多种色谱技术分离纯化,从中分离到 11 个
异黄酮类化合物,经波谱分析鉴定为美迪紫檀素(1) ,山槐素(2) ,阿弗洛莫生(3) ,11b-羟基-11b,1-二氢美迪紫
檀素(4) ,多花紫藤苷(5) ,trifolirhizin(6) ,wighteone(7) ,3-甲氧基-大豆苷元(8) ,红车轴草素(9) ,毛蕊异黄酮
(10) ,erythrinin C(11)。其中,化合物 1 ~ 9 和 11 为首次从该植物中分离得到。
关键词:黄花木;异黄酮;茎枝;化学成分
中图分类号:R284. 1;Q946. 91 文献标识码:A
Isoflavonoids from Piptanthus concolor Harrow
KOU Zhong-jing1,CHANG Rui-jie1,QIN Jiang-jiang1,YAN Shi-kai1,JIN Hui-zi1 * ,ZHANG Wei-dong1,2*
1School of Pharmacy,Shanghai Jiao Tong University,Shanghai 200240,China;
2School of Pharmacy,Second Military University,Shanghai 200433,China
Abstract:Eleven compounds were isolated from the stems of Piptanthus concolor Harrow by the various column chroma-
tography methods,their structures were identified to be medicarpin (1) ,maackiain (2) ,afromosin (3) ,11b-hydroxy-
11b,1-dihydromedicarpin (4) ,wistin (5) ,trifolirhizin (6) ,wighteone (7) ,3-methoxy-daidzein (8) ,pratensein (9) ,
calycosin (10) ,and erythrinin C (11)on the basis of spectroscopic analysis. Compounds 1-9 and 11 were isolated from
this plant for the first time.
Key words:Piptanthus concolor Harrow;isoflavonoid;stems;chemical constituents
Introduction
The genus Piptanthus,belonging to the Leguminosae
family,comprises about nine species all over the world.
Six of them were found in China. Previous phytochemi-
cal studies on this genus suggested the presence of
isoflavonoids and quinolizidine-type alkaloids[1,2]. Pip-
tanthus concolor Harrow,an deciduous shrub,is an en-
demic specie,which is widely distributed in the region
from the Himalaya to the Hengduanshans[3]. The seeds
of P. concolor have been used as a Tibetan folk medi-
cine for the treatment of headache due to pathogenic
wind heat,acute conjunctivitis,hypertension and chron-
ic constipation. However,very little is known about the
chemical constituents from this plant[4]. The present
study involved isolation and identification of eleven
isoflavonoids from stems of P. concolor. Among them,
ten compounds were obtained from this plant for the
first time.
Experimental
General procedures
Column chromatography (CC)was performed using
silica gel (SiO2,200-300 mesh,Qingdao Haiyang
Chemical & Special Silica Gel Co,Ltd.,Qingdao,P.
R. China)and precoated silica GF254 plates were used
for TLC (Qingdao Haiyang Chemical Co.,Ltd.,Chi-
na). Preparative HPLC using a Shimadzu PRC-ODS
EV0233 and a C18,5 μm,300 × 10 mm column. ES-
IMS was performed using an Agilent 1100 series mass
spectrometer,whereas EIMS was measured on an Auto-
spec-UltimaETOF apparatus. NMR spectra were meas-
ured and recorded on a Bruker-DRX-500 instrument
(500 MHz for 1H NMR and 125 MHz for 13C NMR) ,
using TMS as internal standard. All melting points were
determined on an RY-1 micromelting point apparatus
DOI:10.16333/j.1001-6880.2012.05.002
(uncorrected).
Plant material
The stems of P. concolor were collected in Linzhi Coun-
ty,Tibet,P. R. China,in August 2008 and identified by
Prof. Han-Ming Zhang in the Department of Pharma-
cognosy,Second Military Medical University. A voucher
specimen was deposited at the School of Pharmacy,
Shanghai Jiao Tong University.
Extraction and isolation
Air-dried and powdered plant material (6. 4 kg)was
extracted with 85% EtOH at room temperature three
times,the extracts were combined and concentrated to
give a crude extract (500. 4 g) ,then the crude extract
was suspended in water (10. 0 L)and successively
partitioned with petroleum ether (10. 0 L × 8) ,dichlo-
romethane (10. 0 L × 8)and ethyl acetate (10. 0 L ×
8)to afford petroleum ether fraction (44. 1 g) ,dichlo-
romethane fraction (48. 2 g) ,and ethyl acetate fraction
(66. 6 g) ,respectively. Petroleum ether fraction was
subjected to a silica gel CC (100 mesh,100. 0 g)and
eluted with petroleum ether:ethyl acetate (100 ∶ 1-
0∶ 100)gradient to give 9 fractions A1-A9. Fraction A5
was separated over silica gel CC with petroleum ether:
ethyl acetate (5∶ 1)and obtained compounds 1 (35. 4
mg)and 2 (45. 3 mg). Fraction A7 was purified by re-
crystallization from methanol to give 3 (9. 7 mg). Di-
chloromethane fraction was subjected to a silica gel CC
and eluted with CH2Cl2 ∶ MeOH (100∶ 1-0∶ 100)gradi-
ent to give 9 fractions B1-B9. Fraction B4 was further
subjected to silica gel column with CH2Cl2-MeOH (50
∶ 1)to obtain 4 (23. 2 mg). Fraction B6 was separated
by silica gel CC and eluted with CH2Cl2-MeOH (20∶
1)and then submitted to preparative HPLC (MeOH-
H2O,40∶ 60 )to yield 5 (29. 6 mg,tR 59. 4 min)and
6 (16. 5 mg,tR 78. 3 min). Ethyl acetate fraction was
subjected to silica gel CC and eluted with CH2Cl2-
MeOH (100∶ 1-10∶ 1)gradient to give 7 fractions C1-
C7. Fraction C3 was further subjected by silica gel CC
and eluted with petroleum ether-acetone (10 ∶ 1-2 ∶ 1)
gradient to give 9 subfractions C3a-C3g. Subfraction
C3d was submitted to preparative HPLC (MeOH-H2O,
70∶ 30)to yield 7 (17. 6 mg,tR 37. 2 min). Compound
8 (15. 6 mg)was obtained from subfraction C3e by re-
crystallization from methanol. Compound 9 (15. 0 mg,
tR 77. 2 min)was obtained from the residue of subfrac-
tion C3e by preparative HPLC (MeOH-H2O,45∶ 55).
Compounds 10 (14. 0 mg,tR 77. 2 min)and 11 (8. 2
mg,tR 27. 2 min)were obtained from C4 by prepara-
tive HPLC (MeOH-H2O,45∶ 55 and 60∶ 40).
Identification
Medicarpin (1) C16 H14 O4,White needle crystal,
mp:106-108 ℃;ESI-MS:m/z 293. 1[M + Na]+;1H
NMR (CD3OD,500 MHz)δ:7. 28 (1H,d,J = 8. 5
Hz,H-1) ,6. 49 (1H,dd,J = 8. 5,2. 5 Hz,H-2) ,6. 30
(1H,d,J = 2. 5 Hz,H-4) ,7. 16 (1H,d,J = 8. 0 Hz,
H-7) ,6. 45 (1H,dd,J = 8. 0,2. 0 Hz,H-8) ,6. 38
(1H,d,J = 2. 0 Hz,H-10) ,5. 46 (1H,d,J = 5. 5 Hz,
H-10a) ,4. 21 (1H,dd,J = 16. 0,5. 5 Hz,H-6α) ,
3. 53 (2H,m,H-6β) ,3. 74 (3H,s,OCH3) ;
13 C NMR
(CD3OD,125 MHz)δ:133. 2 (d,C-1) ,110. 7 (d,C-
2) ,160. 1 (s,C-3) ,104. 1 (d,C-4) ,158. 0 (s,C-
4a) ,67. 6 (t,C-6) ,40. 9 (d,C-6a) ,120. 9 (s,C-
6b) ,126. 0 (d,C-7) ,107. 3 (d,C-8) ,162. 6 (s,C-
9) ,97. 6 (d,C-10) ,162. 0 (s,C-10a) ,80. 1 (d,C-
11a) ,112. 9 (s,C-11b) ,55. 9 (9-OCH3). The NMR
and MS data were in agreement with those of the litera-
ture [5],and identified 1 as medicarpin.
Maackiain (2) C16H12O5,White needle crystal,mp:
167-175 ℃;ESI-MS:m/z 307. 1[M + Na]+;1H NMR
(CD3OD,500 MHz)δ:7. 26 (1H,d,J = 8. 5 Hz,H-
1) ,6. 48 (1H,dd,J = 8. 5,2. 5 Hz,H-2) ,6. 30 (1H,
d,J = 2. 5 Hz,H-4) ,6. 80 (1H,s,H-7) ,6. 37 (1H,
s,H-10) ,5. 44 (1H,d,J = 6. 5 Hz,H-10a) ,4. 21
(1H,dd,J = 10. 5,4. 5 Hz,H-6α) ,3. 56 (1H,m,J =
10. 5 Hz,H-6β) ,3. 46 (1H,m,H-6a) ,5. 88 (2H,dd,
J = 13. 0,1. 0 Hz,OCH2O) ;
13 C NMR (CD3OD,125
MHz)δ:133. 1 (d,C-1) ,110. 7 (d,C-2) ,160. 1 (s,
C-3) ,104. 1 (d,C-4) ,158. 0 (s,C-4a) ,67. 4 (t,C-
6) ,41. 6 (d,C-6a) ,119. 8 (s,C-6b) ,106. 0 (d,C-
7) ,143. 1 (s,C-8) ,149. 4 (s,C-9) ,94. 2 (d,C-
10) ,155. 6 (s,C-10a) ,80. 0 (d,C-11a) ,112. 9 (s,
C-11b) ,102. 5 (OCH2O). The NMR and MS data
were in accordance with those reported in the litera-
ture[6],and identified 2 as maackiain.
Afromosin (3) C17 H14 O5,White powder,mp:224-
116Vol. 24 KOU Zhong-jing,et al:Isoflavonoids from Piptanthus concolor Harrow
231 ℃;ESI-MS:m/z 321. 3[M + Na]+;1H NMR
(DMSO-d6,500 MHz)δ:8. 33 (1H,s,H-2) ,7. 44
(1H,s,H-5) ,6. 96 (1H,s,H-8) ,7. 51 (2H,d,J =
9. 0 Hz,H-2,6) ,6. 99 (2H,d,J = 9. 0 Hz,H-3,
5) ;13C NMR (DMSO-d6,125 MHz)δ:152. 8 (d,C-
2) ,124. 5 (s,C-3) ,174. 2 (s,C-4) ,104. 7 (d,C-
5) ,146. 9 (s,C-6) ,152. 9 (s,C-7) ,102. 8 (d,C-
8) ,151. 7 (s,C-9) ,116. 2 (s,C-10) ,122. 6 (s,C-
1) ,130. 1 (d,C-2,6) ,113. 6 (d,C-3,5) ,158. 9
(s,C-4). The NMR and MS data were in accordance
with those of afromosin [7].
11b-Hydroxy-11b,1-dihydromedicarpin (4) C16
H16 O5,White needle crystal (CH2Cl2) ,mp:132-135
℃;ESI-MS:m/z 311. 1 [M + Na]+;1H NMR
(CD3OD,500 MHz)δ:2. 64 (1H,m,H-1β) ,2. 30
(1H,m ,H-1α) ,1. 97 (1H,m,H-2α) ,2. 76 (1H,m,
H-2β) ,5. 36 (1H,s,H-4) ,4. 22 (1H,d,J = 10. 5
Hz,H-6β) ,4. 77 (1H,m,H-6α) ,3. 87 (1H,dd,J =
10. 5,3. 5 Hz,H-6a) ,7. 14 (1H,d,J = 8. 0 Hz,H-7) ,
6. 47 (1H,dd,J = 8. 0,2. 5 Hz,H-8) ,6. 31 (H,d,J
= 2. 5 Hz,H-10) ,4. 87(1H,d,J = 10. 0 Hz,H-11a) ,
3. 72(3H,s,9-OCH3) ;
13 C NMR (CD3OD,125 MHz)
δ:33. 2 (t,C-1) ,33. 2 (t,C-2) ,202. 5 (s,C-3) ,
109. 1 (d,C-4) ,175. 9 (s,C-4a) ,69. 5 (t,C-6) ,
41. 5 (d,C-6a) ,121. 3 (s,C-6b) ,108. 6 (d,C-7) ,
126. 1 (d,C-8) ,163. 0 (s,C-9) ,96. 9 (d,C-10) ,
162. 1 (s,C-10a) ,84. 6 (d,C-11a) ,68. 4 (s,C-
11b) ,56. 3 (9-OCH3). The NMR and MS data were in
accordance with those of 11b-hydroxy-11b,1-dihydro-
medicarpin[8].
Wistin (5) C23H24 O10,Yellow powder,mp. 164-165
℃;ESI-MS m/z:483. 1 [M + Na]+;1H NMR (DM-
SO-d6,500 MHz)δ:8. 43 (1H,s,H-2) ,7. 49 (1H,s,
H-5) ,7. 34 (1H,s,H-8) ,7. 55 (2H,dd,J = 6. 7,2. 0
Hz,H-2,6) ,7. 02 (2H,dd,J = 6. 7,2. 0 Hz,H-3,
5) ,5. 18 (1H,d,J = 7. 0 Hz,glc-1) ,3. 89 (3H,s,6-
OCH3) ,3. 79 (3H,s,4-OCH3) ;
13 C NMR (DMSO-
d6,125 MHz)δ:153. 3 (d,C-2) ,122. 8 (s,C-3) ,
174. 3 (s,C-4) ,104. 7 (d,C-5) ,147. 3 (s,C-6) ,
151. 6 (s,C-7) ,103. 4 (d,C-8) ,151. 2 (s,C-9) ,
117. 8 (s,C-10) ,124. 3 (s,C-1) ,130. 0 (d,C-2,
6) ,113. 6 (d,C-3,5) ,158. 9 (s,C-4) ,99. 6 (t,
C-1) ,73. 0 (d,C-2) ,76. 7 (d,C-3) ,69. 6 (d,
C-4) ,77. 2 (d,C-5) ,60. 6 (t,C-6) ,55. 1 (6-
OCH3) ,55. 8 (4-OCH3). The NMR and MS data
were in accordance with those of wistin [9].
Trifolirhizin (6) C22 H22 O10,Colorless powder
(CH2Cl2) ,mp. 142-144 ℃;ESI-MS m/z:445. 1 [M-
H]-;1H NMR (DMSO-d6,500 MHz)δ:7. 37 (1H,d,
J = 8. 6 Hz,H-1) ,6. 99 (1H,s,H-7) ,6. 69 (1H,dd,
J = 8. 6,2. 4 Hz,H-2) ,6. 56 (1H,d,J = 2. 4 Hz ,H-
4) ,6. 52 (1H,s,H-10) ,5. 95,5. 91(each 1H,s,7,8-
OCH2O-) ,5. 58 (1H,d,J = 7. 2 Hz,H-11a) ,4. 84
(1H,d,J = 7. 5 Hz,H-1) ,4. 29 (1H,m,H-6eq) ,
3. 68 (1H,m,H-6a) ,3. 43 (1H,m,H-6ax) ;13C NMR
(DMSO2-d6,125 MHz)δ:131. 8 (d,C-1) ,110. 4 (d,
C-2) ,158. 4 (s,C-3) ,104. 0 (d,C-4) ,156. 2 (s,C-
4a) ,65. 8 (t,C-6) ,39. 5 (d,C-6a) ,118. 2 (s,C-
7a) ,105. 3 (d,C-7) ,141. 1 (s,C-8) ,147. 4(s,C-
9) ,93. 2 (d,C-10) ,153. 6 (s,C-10a) ,77. 6 (d,C-
11a) ,114. 1 (s,C-11b) ,100. 3 (t,C-1) ,73. 1 (d,
C-2) ,76. 5 (d,C-3) ,69. 6 (d,C-4) ,77. 0 (d,C-
5) ,60. 6 (t,C-6) ,101. 0 (-OCH2O-). The NMR
and MS data were in accordance with those of trifolirhi-
zin [10].
Wighteone (7) C20 H18 O5,Yellow needle crystal
(CH3OH) ,mp. 182-185 ℃;ESI-MS m/z:337. 0 [M-
H]-;1H NMR (DMSO-d6,500 MHz)δ:8. 25 (1H,s,
H-2) ,6. 40 (1H,s,H-8) ,7. 38 (2H,dd,J = 8. 6,2. 0
Hz,H-2,6) ,6. 82 (2H,dd,J = 8. 6,2. 0 Hz,H-3,
5) ,3. 24 (2H,d,J = 7. 1 Hz,H-1) ,5. 19 (1H,t,J
= 7. 1 Hz,H-2) ,1. 73 (3H,s,H-4) ,1. 62 (3H,s,
H-5) ,13. 21 (1H,s,5-OH) ;13 C NMR (DMSO-d6,
125 MHz)δ:153. 4 (d,C-2) ,122. 4 (s,C-3) ,179. 9
(s,C-4) ,155. 5 (s,C-5) ,111. 2 (s,C-6) ,158. 7 (s,
C-7) ,93. 0 (d,C-8) ,157. 3 (s,C-9) ,103. 7 (s,C-
10) ,121. 5 (s,C-1) ,130. 1 (d,C-2,6) ,115. 0
(d,C-3,5) ,158. 7 (s,C-4) ,21. 1 (t,C-1) ,
122. 4(d,C-2) ,130. 4 (s,C-3) ,25. 4 (q,C-4) ,
17. 7 (q,C-5). The NMR and MS data were in ac-
cordance with those of wighteone [11].
3-Methoxy-daidzein (8) C16 H12 O5,White yellow
crystal (CH2Cl2-CH3OH) ,mp. 211-214 ℃;ESI-MS
m/z:283. 0[M-H]-;1H NMR (DMSO-d6,500 MHz)
δ:8. 32 (1H,s,H-2) ,7. 96 (1H,d,J = 8. 5,H-5) ,
7. 16 (1H,d,J = 2. 0 Hz,H-2) ,6. 99 (1H,dd,J =
216 Nat Prod Res Dev Vol. 24
8. 0,2. 0 Hz,H-6) ,6. 93 (1H,dd,J = 8. 5,2. 0 Hz,
H-6) ,6. 86 (1H,d,J = 2. 0 Hz,H-8) ,6. 81 (1H,d,J
= 8. 0 Hz,H-5) ,3. 79 (3H,s,3-OCH3) ;
13 C NMR
(DMSO-d6,125 MHz)δ:153. 1 (d,C-2) ,123. 5 (s,
C-3) ,174. 7 (s,C-4) ,127. 3 (d,C-5) ,115. 2 (d,C-
6) ,162. 6 (s,C-7) ,102. 0 (d,C-8) ,157. 4 (s,C-
9) ,116. 7 (s,C-10) ,123. 0 (s,C-1) ,113. 3 (d,C-
2) ,147. 2 (s,C-3) ,146. 5 (s,C-4) ,115. 2 (d,C-
5) ,121. 6 (d,C-6) ,55. 7 (3-OCH3). The NMR
and MS data were in accordance with those of the liter-
ature [12],and identified 8 as 3-methoxy-daidzein.
Pratensein (9) C16H12O6,White needle crystal,mp:
265-270 ℃;ESI-MS:m/z 323. 0[M + Na]+;1H NMR
(DMSO-d6,500 MHz)δ:8. 33 (1H,s,H-2) ,6. 20
(1H,d,J = 1. 9 Hz,H-6) ,6. 35 (1H,d,J = 1. 9 Hz,
H-8) ,7. 14 (1H,d,J = 1. 8 Hz,H-2) ,6. 82 (1H,d,
J = 8. 1 Hz,H-5) ,6. 99 (1H,dd,J = 8. 1,1. 8 Hz,H-
6) ,3. 80 (3H,s,4-OCH3) ;
13 C NMR (DMSO-d6,
125 MHz)δ:154. 0 (d,C-2) ,121. 7 (s,C-3) ,180. 0
(s,C-4) ,162. 0 (s,C-5) ,99. 2 (d,C-6) ,165. 2 (s,
C-7) ,93. 8 (d,C-8) ,157. 6 (s,C-9) ,104. 1 (s,C-
10) ,122. 2 (s,C-1) ,115. 2 (d,C-2) ,146. 7 (s,C-
3) ,147. 2 (s,C-4) ,113. 3 (d,C-5) ,121. 7 (d,C-
6) ,55. 7(4-OCH3). The NMR and MS data were in
accordance with those of pratensein [13].
Calycosin (10) C16 H12 O5,Yellow needle crystal
(CH3OH) ,mp. 205-207 ℃;ESI-MS m/z:283. 1 [M-
H]-;1H NMR (DMSO-d6,500 MHz)δ:8. 28 (1H,s,
H-2) ,7. 96 (1H,d,J = 8. 7 Hz,H-5) ,7. 06 (1H,s,
H-2) ,6. 96 (2H,brs,H-5,6) ,6. 92 (1H,dd,J =
8. 7,2. 0 Hz,H-6) ,6. 84 (1H,d,J = 2. 0 Hz,H-8) ,
3. 80 (3H,s,4-OCH3) ;
13 C NMR (DMSO-d6,125
MHz)δ:152. 9 (d,C-2) ,123. 3 (s,C-3) ,174. 5 (s,
C-4) ,127. 2 (d,C-5) ,115. 4 (d,C-6) ,163. 2 (s,C-
7) ,102. 1 (d,C-8) ,157. 5 (s,C-9) ,116. 4 (s,C-
10) ,124. 8 (s,C-1) ,116. 3 (d,C-2) ,146. 0 (s,C-
3) ,147. 5 (s,C-4) ,112. 0 (d,C-5) ,119. 5 (d,C-
6) ,55. 7 (4-OCH3). The NMR and MS data were in
accordance with those of calycosin [14].
Erythrinin C (11) C20 H18 O6,Yellow powder,
mp. 217-218 ℃;ESI-MS m/z:353. 0 [M-H]-;1H
NMR (DMSO-d6,500 MHz)δ:1. 14 (3H,s,H-5″) ,
1. 16 (3H,s,H-6″) ,3. 10 (2H,m,H-3″) ,4. 76 (1H,
m,H-2″) ,6. 51 (1H,s,H-8) ,6. 82 (2H,d,J = 8. 5
Hz,H-3,5) ,7. 38 (2H,d,J = 8. 5 Hz,H-2,6) ,
8. 34 (1H,s,H-2) ,13. 74 (1H,s,5-OH) ;13 C NMR
(DMSO-d6,125 MHz)δ:153. 8 (d,C-2) ,122. 3 (s,
C-3) ,180. 3 (s,C-4) ,156. 1 (s,C-5) ,109. 2 (s,C-
6) ,166. 2 (s,C-7) ,88. 7 (d,C-8) ,157. 5 (s,C-9) ,
105. 5 (s,C-10) ,121. 1 (s,C-1) ,130. 1 (d,C-2,
6) ,115. 1 (d,C-3,5) ,157. 5 (s,C-4) ,91. 5 (d,
C-2″) ,26. 0 (t,C-3″) ,70. 0 (s,C-4″) ,24. 8 (q,C-
5″) ,25. 8 (q,C-6″). The NMR and MS data were in
accordance with those of erythrinin C [15,16].
References
1 Paris RR,Faugeras G,Dobremez JF. Isoflavones of the shoots
of Piptanthus nepalensis. Planta Med,1976,29:32-36.
2 Faugeras G,Paris RR,Bourgeois J,et al. Alkaloids of Piptan-
thus nepalensis(Hook.)D. Don,Papilionaceae. Plant Med
Phytother,1975,4:273-277.
3 Sun H. Tethys retreat and Himalayas-Hengduanshan
mountains uplift and their significance on the origin and de-
velopment of the Sino-Himalayan elements and alpine flora.
Acta Bot Yunnan ,2002,3:273-288.
4 Liu ZM,Jia ZJ. Studies on the chemical constituents of Piptan-
thus concolor Harrow. Chem J Chin Univ 1991,12:774-776.
5 Liu Y,Ma XX,Chen HB,et al. Chemical constituents of
Hedysarum gmelinii. J Chin Pharm Sci,2005,14:75-78.
6 Feng J,Liang H,Zhao YY. Flavonoids from Millettia nitida
var. hirsutissima. J Chin Pharm Sci,2006,15:178-181.
7 Herath HMTB,Dassanayake RS,Priyadarshani AMA,et al.
Isoflavonoids and a pterocarpan from Gliricidia sepium. Phy-
tochemistry,1998,47:117-119.
8 Barrero AF,Cabrera E,Garcia IR. Pterocarpans from Ononis
viscosa subsp. breviflora. Phytochemistry,1998,48:187-190.
9 Ding XY,Chen YY,Zhang WL,et al. Flavonoids from the
flowers of Pueraria lobata. J Chin Chem Soc (Taipei,Tai-
wan) ,2004,51:1425-1428.
10 Peng JB,Yang WJ,Li ZL,et al. Chemical constituents from
the whole plants of Trifolium pratense L. . J Shenyang Pharm
Univ,2008,25:875-879.
11 Yu DL,Yang XD,Guo J,et al. Studies on chemical constitu-
ents of Erythrina arborescens Roxb. Chin J Chin Mat Med ,
2000,6:353-355.
12 Lu HY,Liang JY,Yu P,et al. Isoflavones and their deriva-
tives from the root of Derris elliptica (Roxb.)Benth. Chin J
Nat Med,2008,4:265-267.
(下转第 676 页)
316Vol. 24 KOU Zhong-jing,et al:Isoflavonoids from Piptanthus concolor Harrow
(中国农业科学) ,2008,41:552-558.
2 Zhang YZ(张宇喆) ,Kong XF(孔祥峰) ,Yin YL(印遇
龙) ,et al. Comparative study on in vitro fermentation charac-
teristics of four fractions of Chinese yam polysaccharide. Nat
Prod Res Dev(天然产物研究与开发) ,2009,21:30-35.
3 Zhou XL(周笑犁) ,Fu DZ(傅德志) ,Kong XF(孔祥峰) ,
et al. Effects of soybean oligosaccharides on growth perform-
ance and nutrient metabolism in weanling Huanjiang mini-
pigs. Nat Prod Res Dev(天然产物研究与开发) ,2011,24:
98-101.
4 Wang ZY(王震宇) ,Huang SH(黄绍华). Yam functional
healthy components and applications in food processing. Food
Ind(食品工业) ,2004,4:51-52.
5 Liu JF(刘俊峰) ,Wu C(吴琛) ,Kong XF(孔祥峰) ,et al.
Effects of dietary supplemented with arginine on growth and
development of fetus in pregnant huanjiang mini-pigs. Sci Ag-
ric Sin(中国农业科学) ,2011,44:1040-1045.
6 Tang WJ(汤文杰) ,Kong XF(孔祥峰) ,Yang F(杨峰) ,et
al. Nutritional values in sixteen Chinese herbal medicines.
Nat Prod Res Dev(天然产物研究与开发) ,2010,22:867-
872.
7 NRC (National Research Council). Nutrient Requirements of
Swine (10ed). Washington. DC:Nail Acad Press. 1998.
8 Tang WJ(汤文杰) ,Kong XF(孔祥峰) ,Liu ZQ(刘志强) ,
et al. Different dietary protein levels on nutrient digestibility
and nitrogen metabolism in Ningxiang fattening pig. Chin J
Anim Nutr(动物营养学报) ,2008,20:458-462.
9 Kong XF(孔祥峰) ,Yin YL(印遇龙) ,Huang RL(黄瑞
林) ,et al. Effects of dietary additive of Chinese herbal ultra-
fine powder on growth performance and serum biochemical
parameters in early-weaned piglets. Chin J Vet Sci(中国兽医
学报) ,2008,28:184-188.
10 He QH(何庆华) ,Yin YL(印遇龙) ,Kong XF(孔祥峰) ,et
al. Effect of Chinese herbal ultra-fine powder as a dietary ad-
ditive on digestion and absorption of amino acids in weaned
piglets. Nat Prod Res Dev(天然产物研究与开发) ,2008,
20:307-311.
11 Zhao ZG(赵振国) ,Wang N(王娜). Yam on growth per-
formance and the diarrhea in weaned piglets. Anim Husb Feed
Sci(畜牧与饲料科学) ,2010,31:45-46.
12 Kong XF,Zhang YZ,Yin YL,et al. Chinese Yam polysaccha-
ride enhances growth performance and cellular immune re-
sponse in weanling rats. J Sci Food Agric,2009,89:2039-
2044.
13 Xu JH(许金华) ,Tan XW(谭翔文) ,Yin YL(印遇龙).
Effect of pectin on plasma ammonia in pigs. J Nanhua Univ.
Med Edition(南华大学学报·医学版) ,2005,33:188-191.
14 Whang KY,Hahn JD,Easter RA,et al. Blood plasma urea ni-
trogen:a useful index of feed efficiency and lean gain poten-
tial in pigs. J Anim Sci,1994,72:61.
15 Chen HY,Miller PS,Lewis AJ,et al. Changers in plasma ure-
a concentration can be used to determine protein require-
ments of two populations of pigs with different protein accre-
tion rates. J Anim Sci,1995,73:2631-2639.
16 Qian Y(钱瑛) ,Wang ZS(王之盛) ,Kong XF(孔祥峰) ,et
al. Effects of dietary supplementation of folic acid on growth
performance in sucking piglets and serum biochemical pa-
rameters in lactating sows. Nat Prod Res Dev(天然产物研究
与开发) ,2008,20:497-500.
17 Wang MQ(王墨清). Measurement and analysis of blood a-
mino acids in Przewalskii. Gansu Anim Husb Vet Med(甘肃
畜牧兽医) ,1996,26:10-11.
18 Hu Q(胡琴) ,Yin YL(印遇龙) ,Kong XF(孔祥峰) ,et al.
Effect of Chinese herbal formula as a dietary additive on ser-
um free amino acids content in early-weaned piglets,J Guan-
gxi Agric Biol Sci(广西农业生物科学) ,2008,27:55-59.
19 Boren JC,Lochmiller RL,Leslie JDM. Relation of serum and
muscle free amino acids to dietary protein in the northern
bobwhite. Oklahoma Acad Sci,1996,76:55-65.
20 Bo MJ(柏美娟) ,Kong XF(孔祥峰) ,Li TJ(李铁军) ,et
al. Comparative study on amino acid contents in serum and
muscle between Ningxiang pigs and three-way crossbred
pigs. J Jiangsu Agric Sci(江苏农业科学) ,2009,(1) :198-
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
200.
(上接第 613 页)
13 Zhang GJ,Li N,Xiong YJ,et al. Studies on chemical constit-
uents of Alhagi pseudalhagi(M. B). Chin Pharm J,2009,
12:897-899.
14 Zhang DW,Ren Y,Dai SJ,et al. Isoflavones from vines of
Pueraria lobata. Chin J Chin Mat Med,2009,24:3217-3220.
15 Satoshi T,John LI,Junya M. New coumaronochromones from
white lupin,Lupinus albus L. Agric Biol Chem,1985,6:1775-
1783.
16 Huang KF,Hsu CJ. Constituents of stem bark of Erythrina
Arborescens. J Chin,2001,1:61-67.
676 天然产物研究与开发 Vol. 24