全 文 :·综述与专论·
生物技术通报
BIOTECHNOLOGY BULLETIN 2011 年第 7 期
抗逆相关 AP2 /EREBP转录因子研究进展
丰锦1,2 陈信波1
(1湖南农业大学作物基因工程湖南省重点实验室,长沙 410128;2湖南农业大学生物科学技术学院,长沙 410128)
摘 要: 干旱、低温、土地盐碱化等非生物胁迫是影响植物生长发育以及作物产量的重要因素。近年来大量研究表明,
多种转录因子参与调控植物对各种生物及非生物胁迫的应答与防御反应,与此同时人们对其作用机理的探索也日渐深入。
AP2 /ERF转录因子家族是植物所特有的一类转录因子,在拟南芥中该家族至少有 146 个成员;而在水稻中该基因家族多达
181 个,是已知水稻转录因子基因中最大的家族。这些编码含有一个保守 APETALA(AP2)结构域的蛋白质可能在植物多个发
育过程及应答外界环境信号过程中发挥重要功能。综述了 AP2 /EREBP类转录因子的结构特征及其功能特性,并重点讨论了
它们在植物抗逆中的调控作用及其在植物抗逆性分子遗传改良上的意义。
关键词: AP2 /EREBP 转录因子 非生物胁迫
Research Progress of AP2 /EREBP Transcription
Factors in Stress Tolerance
Feng Jin1,2 Chen Xinbo1
(1Crop Gene Engineering Key Laboratory of Hunan Province,Changsha 410128;
2College of Bioscience and Biotechnology,Hunan Agricultural University,Changsha 410128)
Abstract: Plant growth,development and crop yield are severely influenced by numerous abiotic stresses,such as drought,cold,
and high salinity. There are many reports suggested that plant AP2 /EREBP family transcription factors play important functions in a se-
ries of complex response and resistance during the long term interaction with these biotic and abiotic stresses. The AP2 /EREBP tran-
scription factors are known to be unique in plants. In Arabidopsis family,there are at least 146 components,and the gene family in rice
consists as many as 181,which is known as the largest transcription factor family in rice. The AP2 /EREBP proteins may play important
roles in plant development and defense response to external environmental stresses in plants. In this review,we summarized current re-
search reference of AP2 /EREBP transcription factors in structural and functional characters with emphasis on regulation and mecha-
nisms in stress tolerance. The practical value of AP2 /EREBP transcription factors in crop improvement engineering was also discussed.
Key words: AP2 /EREBP Transcription factors Abiotic stresses
收稿日期:2011-02-14
基金项目:国家自然科学基金项目(30870206) ,湖南省科技重大专项(2009FJ1004-1)
作者简介:丰锦,女,硕士研究生,研究方向:植物分子生物学;E-mail:fengjin_127@ 163. com
通讯作者:陈信波,教授,博士生导师,研究方向:植物分子生物学;E-mail:xinbochen@ live. cn
近年来由于环境的不断恶化,植物在遭遇干旱、
冷害、高盐的胁迫过程中,形成了一系列的应对机
制。植物在应对不同种类的生物因素和非生物胁
迫,如干旱或昆虫等的攻击时,需要通过表达特定基
因来适应和防御那些胁迫和攻击[1]。一批与植物
应对非生物胁迫相关的基因相继被鉴定和克隆,近
几年的研究发现,在植物防卫反应和逆境胁迫应答
过程中转录因子发挥着越来越重要的作用[2 - 4]。转
录因子基因及相关功能基因的研究表明,一个与逆
境相关的转录因子基因可以调控一系列与抗逆境相
关的功能基因的表达[5]。转录因子根据其 DNA 结
合域的特点可以分成若干个家族,如 WRKY,AP2 /
EREBP,MYB和 bZIP等。其中 AP2 /EREBP转录因
子家族是植物所特有的一类转录因子已经从拟南
芥、烟草、水稻、玉米和番茄等多种植物中分离出来。
这类转录因子在植物的生长、发育以及多种生理生
生物技术通报 Biotechnology Bulletin 2011 年第 7 期
化反应的信号转导中发挥着重要作用。
1 AP2 /EREBP家族的结构特点
自从 1987 年 Paz-Ayes 等首次报道了克隆玉米
转录因子 C1 以来,已从多种植物中克隆了数百种
与生长发育、代谢、激素应答、抗病、干旱、高盐及低
温相关的转录因子基因[6]。AP2 /ERF 转录因子家
族是植物所特有的一类转录因子,在拟南芥中该家
族至少有 146 个成员[7];而在水稻中已知该基因家
族多达 181 个,是水稻转录因子基因中最大的家
族[5]。各成员至少都含有 1 个 AP2 /EREBP 结合域
(AP2 /EREBP domain) ,并且其 DNA 结合区为高度
保守的结构域,此结构域由 57 - 70 个氨基酸残基组
成。AP2 /EREBP 结构域的氨基酸序列在其 N 端部
分存在一个含有 3 个反平行的 β-折叠碱性亲水区,
而这 3 个 β-折叠在识别顺式作用元件中具有重要
作用。每个 AP2 /EREBP 结合域有 YRG 和 RADY
保守序列块(block)。YRG 元件是极碱性的,由
19 - 22 个氨基酸残基组成,含有保守的 YRG 氨基
酸基序(motif)。蛋白质三维分析表明,该区域的 3
个 β-折叠能对识别各类顺式作用元件起关键作用,
其中位于第 2 个 β-折叠中的第 14,19 位的 2 个氨基
酸残基的差异,决定这类转录因子与不同的顺式作
用元件的特异结合。RAYD 元件含有 42 - 43 个氨
基酸,其中有一个由 18 个氨基酸残基组成的高度保
守的核心序列,这个高度保守的核心序列能够形成
两亲的 α-螺旋结构,它可能参与 AP2 /EREBP 转录
因子与其它转录因子或 DNA的相互作用[8]。
2 AP2 /EREBP家族的分类及生物学功能
AP2 /EREBP 多基因家族根据其保守域结构数
目将其分为 AP2 和 EREBP两个亚族。其中 EREBP
亚族又可以分为 3 个亚族:干旱反应元件结合蛋白
DREB (dehydration responsive element binding pro-
tein)类、乙烯反应元件结合蛋白 ERF (ethylene re-
sponsive factor)类和其他蛋白类。AP2 亚族可以细
分为两类:AP2 类和 RAV 类。其中 AP2 类含有 2
个 AP2 /ERF 结构域,RAV 类含有 1 个 AP2 /ERF 结
构域和 1 个 B3 结构域。这样 AP2 /EREBP 转录因
子就分为 5 个大的分支:DREB、ERF、AP2、RAV 和
其他[9]。EREBP(ethylene responsive element binding
protein)亚族,含有 1 个 AP2-DNA 结构域,主要调节
植物对激素(乙烯和 ABA 等)、病原和胁迫(低温、
干旱及高盐)等的应答反应。AP2 亚族,含有 2 个
AP2-DNA 结构域,主要调控花、分生组织、胚珠和种
子等的发育过程。AP2 /ERF 家族主要涉及植物生
长、花发育、组织和器官的形成,以及植物对激素
(乙烯)[10]、病原[11]、低温、干旱及高盐[12]等的分子
应答反应[13]。如 AP2、AINTEGUMENTA、TINY、
DRN及 BD1 基因都是对花的发育、器官的形成和生
长的调控起作用[14 - 18]。近年来也有大量研究报道表
明 AP2 /ERF家族基因如 DREB1A、DREB2A、WXP1、
CaPF1、Pti、CaERFLP1 和 NtERF5 对生物 /非生物胁
迫耐性相关[19 - 24]。
3 AP2 /EREBP在植物抗逆中的应用
低温、干旱及土地盐碱化等非生物胁迫是影响
植物生长发育以及作物产量的重要因素。AP2 /
ERF 家族转录因子在植物中分布广泛,在调控植物
发育和胁迫耐性方面起重要作用。近年来,AP2 /
ERF转录因子已经从多种植物,如拟南芥、烟草、水
稻、玉米和番茄中分离出来。目前研究多集中在
DREB、ERF 和 AP2 三个亚族,对于 RAV 和其他单
独亚族研究较少。AP2 亚家族含有两个保守的
AP2 /ERF结构域,一个 25 - 26 个氨基酸组成的铰
链区连接这两个 AP2 保守区,而且这个铰链区的氨
基酸序列也是高度保守的。
Zhuang等[25]对小麦的 AP2 /ERF家族的基因表
达谱进行分析表明,这类转录因子能调节植物的发
育过程。例如,种子萌发、根和茎伸长、花形成、果实
成熟[26]及组织程序性死亡等,并且也参与了机械伤
害、病原侵害[27]、低温、干旱、盐及碱等胁迫过程分
子应答反应。AP2 亚家族成员主要是在植物花和种
子的发育以及茎顶端分生组织的分化和器官形成过
程中起重要作用[28]。一些 AP2 家族转录因子,例
如,ABI4、AtERF4、ABR1 和 DDF1 也参与脱落酸、乙
烯、赤霉素和油菜素内酯响应信号[28 - 32]。Lee 等[33]
报道水稻中的一个 AP2 转录因子 SNB(SUPERNU-
MERARY BRACT) ,具有调控穗分生组织向花分生
组织转变的作用。将植株中 SNB 基因敲除后,发现
小穗分生组织向花分生组织转变时间延缓,并且在
一些小穗上,空瘪的颖片也转变为类似内、外稃结
构。EREBP亚家族主要在植物对生物和环境的胁
2
2011 年第 7 期 丰锦等:抗逆相关 AP2 /EREBP转录因子研究进展
迫中起作用,包括 DREB 类、ERF 类等。绝大多数
EREBP 亚家族转录因子参与植物对逆境的应答反
应[34,35]。其中,DREB 类蛋白主要参与 ABA、干旱
和低温等环境胁迫的应答在植物抗逆响应中起关键
作用,可激活一系列的抗逆功能基因的表达,提高植
株的抗逆性。而 ERF 类蛋白主要参与乙烯和病原
等生物胁迫的应答。
目前,已经相继从多种植物中分离出了 ERF 等
家族数百种调控干旱、高盐、低温、激素、病原反应及
发育相关基因表达的转录因子[36]。Tang 等[37]将辣椒
中的 ERF 转录因子 CaPF1 (capsicum annuum pathogen
and freezing tolerance-related protein 1)转入裸子植
物东部白松(Pinus strobus L.)中过量表达后发现植
株对干旱、低温和盐胁迫的耐性显著提高。最近,
Fukao等[38]也报道了 ERF 家族的转录因子 SUB1A
作为在水淹和干旱胁迫应答通路中的一个交汇点,
使水稻能在水淹和干旱的极端条件下也能生存。也
有研究表明,ERF 转录因子能够调控蜡质的合成,
提高植株干旱耐受能力[39]。Broun 等[40]报道在拟
南芥中过量表达 WIN1,最终可诱导外表皮蜡质的
增加,角质膜的结构改变,引起转基因植株表型变
化。Tian等[41]报道在水稻中过量表达 TERF2 转录
因子能提高水稻的抗寒能力,并且水稻的生长和农
艺性状均未受影响。Hattori 等[42]利用转基因技术
对 ERF转录因子的 SNORKEL1 和 SNORKEL2 进行
定位克隆和功能获得分析表明这两个转录因子参与
调控水稻在深水环境中的适应性。在研究中发现这
两个 ERF转录因子能够诱导赤霉素合成,进而调控
水稻对深水的适应性。过量表达 EREBP /ERF 转录
因子 Tsi[11]、HvRAF[43]和 AtERF14[44]等基因后发现
转基因植株的抗病能力有明显提高。Zhang 等[45]研
究发现,乙烯能够诱导番茄 LeERF2 表达,而 LeERF2
又能通过促进ACS和ACO表达来激活乙烯的生物合
成,从而得出 LeERF2 在乙烯生物合成起正调控
作用。
Liu等[12]利用 rd29A 基因启动子的 DRE 顺式
作用元件和酵母一元杂交方法,从拟南芥中克隆了
两类共 5 个 DREB 转录因子基因,分别命名为
DREB1A、DREB1B、DREB1C、DREB2A 和 DREB2B。
这 5个基因能与 DREB元件特异结合,在低温、干旱或
高盐胁迫下调控报告基因表达。DREB1A、DREB1B
和 DREB1C 基因受低温胁迫的诱导,在 4℃低温处
理 10 min 内快速强烈诱导,而 DREB2A 和 DREB2B
受干旱或高盐的诱导在 10 min 内快速强烈诱导[6]。
DREB1 类转录因子在应答不同非生物胁迫时的表
达情况已在很多物种中得到广泛的研究,而对于
DREB2 类转录因子的研究则仅限于少数物种中。
以前报道的 DREB2 类转录因子只受干早和高盐的
诱导[46,47],然而最近的研究报道 DREB2A 对热胁迫
也有响应[48]。目前已经从拟南芥[49]、水稻[50]、大
豆[51]、小麦[52,53]、大麦[54]、棉花[55]、玉米[56]、番
茄[57]、杨树[58,59]、花生[60]及辣椒[61]等植物中分离
出 DREB 类转录因子。Dubouzet 等[45]报道在拟南
芥中过表达 OsDREB1A 能够提高植株对干旱、高
盐、低温的耐受力。并且,在拟南芥、水稻、小麦中过
度表达 AtCBF3 /DREB1A 后植物应对非生物胁迫也
有明显改善[62]。Qin 等[56]也报道了将 CaMV35S∶ ∶
ZmDREB1A转基因和野生型拟南芥暴露于空气中
失水处理 5 h后发现,野生型植株出现萎焉、叶片卷
曲以及叶片颜色变暗等症状,而转基因植株叶片较
绿。接着通过酵母体内的反式激活试验,表明 Zm-
DREB1A转录因子还能特异地与 DRE 元结合并激
活下游报道基因的表达,从而说明 ZmDREB1A的表
达也受低温的诱导。Lim 等[63]报道 AtDREB2B 受
到热激后通过 RT-PCR 分析发现 AtDREB2B 会在
1 h后快速诱导表达,并且会一直持续 12 h,但是 At-
DREB2C受到热激后诱导表达延缓到 3 h,因此推测
它们可能在应答热激胁迫的不同时间段起作用。此
外,Wang 等[64]报道了在拟南芥和水稻中过表达水
稻 OsDREB1F基因也能增加植物对盐,干旱和低温
的耐受力。Egawa 等[53]从小麦中分离了 DREB 转
录因子基因家族的 Wdreb2 基因,对它进行低温、干
旱、高盐和 ABA处理时发现其表达也被激活。Chen
等[65]将大豆中转录因子 GmDREB2 转入拟南芥后
干旱处理 19 d后发现,野生型的拟南芥全部死亡而
35S∶ ∶ GmDREB2 转基因植株的成活率达 45. 9%,
Rd29A∶ ∶ GmDREB2 转基因植株的成活率为 21%。
2009 年 Chen[51]报道将了 CAMV35S∶ ∶ GmDREB3 转
基因拟南芥与野生型比较对干旱的耐受力时发现,4
周龄大的植株同时干旱处理 19 d再复水 8 d后发现
3
生物技术通报 Biotechnology Bulletin 2011 年第 7 期
野生型植株全部死亡,而转基因植株的存活率为
32%,说明 CAMV35S∶ ∶ GmDREB3 能明显调高其对
干旱的耐受力。Qin 等[66]报道玉米中 ZmDREB2A
转录因子应对 4℃低温、干旱、高盐和高温时,其转
录本均有响应。随后从玉米中克隆到这个转录因子
并将其转入拟南芥后进行芯片分析发现,该转录因
子过量表达能够激活下游 HSPs 和 HsfA3 等热激相
关基因的表达,而对 DREB2A-CA、ZmDREB2A转基因
拟南芥热激处理 45℃、1 h后恢复至 22℃培养 14 d发
现转基因植株的存活率明显高于野生型。Chen 等[68]
通过转基因手段,在水稻中过量表达 OsDREB1G、Os-
DREB2B和 OsDREB1E后,分析结果表明水稻在过量
表达 OsDREB1G 和 OsDREB2B 后水稻对干旱的耐
受力显著提高,而过度表达 OsDREB1E 使水稻对干
旱的耐受力有较小改善,这表明 OsDREBs可能以不
同的方式参与了逆境反应途径。
4 展望
随着环境的不断恶化,一系列的非生物胁迫如
干旱、高盐及低温是植物无法逃避的生存危机。研
究植物抗逆性,特别是粮食作物的抗逆性的作用机
制已成为研究热点。虽然已从多种植物中克隆出许
多抗逆基因,但植物对干旱和高盐等逆境胁迫的耐
性受多个基因的控制,植物的抗逆反应是一个众多
基因参与的系统调控过程,植物的抗逆性往往是由
多基因调控的数量性状。一个关键的转录因子可以
调控许多功能基因的表达。因此研究转录因子在植
物抗逆性中的作用,与传统的导入或改良个别基因
功能来提高抗性相比更有效、便捷。大量研究表明,
许多转录因子参与调控植物对各种生物及非生物胁
迫的应答与防御反应,人们对其作用机理的探索也
日渐深入。
近年来,许多 AP2 /EREBP 转录因子的功能已
经进行了深入的研究,特别是关于 DREB 转录因子
的研究已经引起国内外的广泛关注。由于这类转录
因子在植物中广泛分布,调控植物多种基因的表达
从而调节植物对病原、低温、干旱及高盐等的分子应
答反应,能有效提高作物对逆境胁迫的耐受力,对提
高植物特别是粮食作物的耐逆性有重要意义。虽然
目前许多 AP2 /EREBP 转录因子的功能已经被阐
明,然而我们对于 AP2 /EREBP 介导的基因调节和
信号转导分子机制还不是非常清楚,例如,如何调控
其他基因的表达,以及在不同植物中相似作用元件
是否具有同样的生物学功能,都有待于进一步研究。
参 考 文 献
[1] Yamaguchi SK,Shinozaki K. Transcriptional regulatory networks in
cellular responses and tolerance to dehydration and cold stresses.
Annual Review of Plant Biology,2006,57:781-803.
[2]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通
报,2000,45 (14) :1465-1474.
[3]Chen W,Provart NJ,Glazebrook J,et al. Expression profile matrix of
Arabidopsis transcription factor genes suggests their putative func-
tions in response to environmental stresses. The Plant Cell,2002,14
(3) :559-574.
[4]Kobayashi F,Maeta E,Terashima A,et al. Development of abiotic
stress tolerance via bZIP-type transcription factor LIP19 in common
wheat. Journal of Experimental Botany,2008,59(4) :891-905.
[5]Magnani E,Sjolander K,Hake S. From endonucleases to transcription
factors:evolution of the AP2 DNA binding domain in plants. The
Plant Cell,2004,16(9) :2265-2277.
[6]刘强,赵南明,Yamaguch-Shinozaki K,Shinozaki K. DREB 转录因
子在提高植物抗逆性中的作用.科学通报,2000,45 (1) :11-15.
[7] Guo A,He K,Liu D,et al. DATF:a database of Arabidopsis tran-
scription factors. Bioinformatics,2005,21(10) :2568-2569.
[8] Liu Q,Zhang GY,Chen SY. Structure and regulatory function of
plant transcription factors. Chinese Science Bulletin,2001,46 (4) :
271-278.
[9]Sakuma Y,Liu Q,Dubouzet JG,et al. DNA-binding specificity of the
ERF /AP2domain of Arabidopsis DREBs,transcription factors in-
volved in dehydration-and-cold-inducible gene expression. Biochemi-
cal and Biophysical Research Communications,2002,290 (3) :
998-1009.
[10]Leubnermetzger G,Petruzzelli L,Waldvogel R,et al. Ethylene- re-
sponsive element binding protein (EREBP)expression and the
transcriptional regulation of class I β-1,3-glucanase during tobacco
seed germination. Plant Molecular Biology,1998,38(5) :785-795.
[11]Park JM,Park CJ,Lee SB,et al. Overexpression of the tobaco Tsil
gene encoding an EREBP /AP2-Type transcription factor enhances
resistance against pathogen attack and osmotic stress in tobacco.
The Plant Cell,2001,13(5) :1035-1046.
[12] Liu Q,Kasuga M,Sakuma Y,et al. Two transcription factors,
DREB1 and DREB2,with an EREBP /AP2 DNA -binding domain
separate two cellular signal transduction pathways in drought-and
low- temperature-responsive gene expression in Arabidopsis. The
Plant Cell,1998,10 (8) :1391-1406.
[13]Saleh A,Pagés M. Plant AP2 /ERF transcription factors. Genetika,
2003,35(1) :37-50.
4
2011 年第 7 期 丰锦等:抗逆相关 AP2 /EREBP转录因子研究进展
[14]Kunst L,Klenz JE,Martinez-Zapater J,et al. AP2 gene determines
the identity of perianth organs in flowers of Arabidopsis thaliana.
The Plant Cell,1989,1(12) :1195-1208.
[15]Klucher KM,Chow H,Reiser L,et al. The AINTEGUMENTA gene
of Arabidopsis required for ovule and female gametophyte develop-
ment is related to the floral homeotic gene APETALA2. The Plant
Cell,1996,8(2) :137-153.
[16]Wilson K,Long D,Swinburne J,et al. A Dissociation insertion cau-
ses a semidominant mutation that increases expression of TINY,an
Arabidopsis gene related to APETALA2. The Plant Cell,1996,8
(4) :659-671.
[17]Chuck G,Meeley RB,Hake S. The control of maize spikelet meri-
stem fate by the APETALA2-like gene indeterminate spikelet.
Genes Development,1998,12:1145-1154.
[18]Kirch T,Simon R,Grünewald M,et al. The DORNRSCHEN /EN-
HANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts
in the control of meristem cell fate and lateral organ development.
The Plant Cell,2003,15(3) :694-705.
[19] Liu Q,Kasuga M,Sakuma Y,et al. Two transcription factors,
DREB1 and DREB2,with an EREBP /AP2 DNA binding domain
separate two cellular signal transduction pathways in drought-and
low-temperature responsive gene expression,respectively,in Arabi-
dopsis. The Plant Cell,1998,10(8) :1391-1406.
[20]Gu YQ,Wildermuth MC,Chakravarthy S,et al. Tomato transcription
factors Pti4,Pti5,and Pti6 activate defence responses when ex-
pressed in Arabidopsis. The Plant Cell,2002,14:817-831.
[21] Yi SY,Kim JH,Joung YH,et al. The pepper transcription factor
CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant
Physiology,2004,136:2862-2874.
[22]Lee JH,Hong JP,Oh SK,et al. The ethylene-responsive factor like
protein 1 (CaERFLP1)of hot pepper(Capsicum annuum L.)inter-
acts in vitro with both GCC and DRE /CRT sequences with different
binding affinities:possible biological roles of CaERFLP1 in re-
sponse to pathogen infection and high salinity conditions in trans-
genic tobacco plants. Plant Molecular Biology,2005,55 (1) :
61-81.
[23]Fischer U,Drge-Laser W. Overexpression of NtERF5,a new mem-
ber of the tobacco ethylene response transcription factor family en-
hances resistance to tobacco mosaic virus. Molecular Plant-Microbe
Interactions,2004,17(10) :1162-1171.
[24]Zhang JY,Broeckling CD,Sumner LW,et al. Heterologous expres-
sion of two Medicago truncatula putative ERF transcription factor
genes,WXP1 and WXP2,in Arabidopsis led to increased leaf wax
accumulation and improved drought tolerance,but differential re-
sponse in freezing tolerance. Plant Molecular Biology,2007,64
(3) :265-278.
[25]Zhuang J,Chen JM,Yao QH,et al. Discovery and expression profile
analysis of AP2 /ERF family genes from Triticum aestivum. Molecu-
lar Biology Report,2010,38(2) :745-753.
[26]Yin XR,Allan AC,Chen KS,et al. Kiwifruit EIL and ERF genes
involved in regulating fruit ripening. Plant Physiology,2010,153
(3) :1280-1292.
[27]Raffaele S,Vailleau F,Léger A,et al. A MYB transcription factor
regulates very-long-chain fatty acid biosynthesis for activation of the
hypersensitive cell death response in Arabidopsis. The Plant Cell,
2008,20(3) :752-767.
[28]Finkelstein RR,Wang ML,Lynch TJ,et al. The Arabidopsis abscisic
acid response locus ABI4 encodes an APETALA 2 domain protein.
The Plant Cell,1998,10(6) :1043-1054.
[29]Hu YX,Wang YX,Liu XF,Li JY. Arabidopsis RAVI is down-regu-
lated by brassinosteroid and may act as a negative regulator during
plant development. Cell Research,2004,14:8-15.
[30]Magome H,Yamaguchi S,Hanada A,et al. Dwarf and delayed-flow-
ering 1,a novel Arabidopsis mutant deficient in gibberellin biosyn-
thesis because of overexpression of a putative AP2 transcription fac-
tor. Plant Journal,2004,37(5) :720-729.
[31] Yang Z,Tian L,Latoszek-Green M,et al. Arabidopsis ERF4 is a
transcriptional repressor capable of modulating ethylene and ab-
scisic acid responses. Plant Molecular Biology,2005,58 (4) :
585-596.
[32]Pandey GK,Grant JJ,Cheong YH,et al. ABR1,an APETALA2-do-
main transcription factor that functions as a repressor of ABA Re-
sponse in Arabidopsis. Plant Physiology,2005,139(3) :1185-1193.
[33]Lee DY,Lee J,Moon S,et al. The rice heterochronic gene SUPER-
NUMERARY BRACT regulates the transition from spikelet meristem
to floral meristem. Plant Journal,2007,49(1) :64-78.
[34]Nakano T,Suzuki K,Fujimura T,et al. Genome wide analysis of the
ERF gene family in Arabidopsis and rice. Plant Physiology,2006,
140(2) :411-432.
[35]Wurschum T,Gross-Hardt R,Laux T. APETALA2 regulates the stem
cell niche in the Arabidopsis shoot meristem. The Plant Cell,2006,
18(2) :295-307.
[36]Shin R,Park JM,An JM,et al. Ectopic expression of Tsi1 in trans-
genic hot pepper plants enhances host resistance to viral,bacterial,
and oomycete pathogens. Molecluar Plant-Microbe Interactions,
2002,15(10) :983-989.
[37]Tang W,Newton RJ,Li C,et al. Enhanced stress tolerance in trans-
genic pine expressing the pepper CaPF1 gene is associated with the
polyamine biosynthesis. Plant Cell Reports,2007,26(1) :115-124.
[38]Fukao T,Yeung E,Bailey-Serres J. The submergence tolerance reg-
ulator SUB1A mediates crosstalk between submergence and drought
tolerance in rice. Plant Cell Advance Online Publication,2011,23
(1) :412-27.
[39]Maeo K,Tokuda T,Ayame A,et al. An AP2-type transcription fac-
5
生物技术通报 Biotechnology Bulletin 2011 年第 7 期
tor,WRINKLED1,of Arabidopsis thaliana binds to the AW-box se-
quence conserved among proximal upstream regions of genes in-
volved in fatty acid synthesis. Plant Journal,2009,60 (3) :
476-487.
[40]Broun P,Poindexter P,Osborne E,et al. WIN1,a transcriptional ac-
tivator of epidermal wax accumulation in Arabidopsis. Proc Nat Acad
Sci USA,2004,101 (13) :4706-4711.
[41]Tian Y,Zhang HW,Pan XY,et al. Overexpression of ethylene re-
sponse factor TERF2 confers cold tolerance in rice seedlings. Trans-
genic Research,2010,DOI:10. 1007 /s11248-010-9463-9.
[42]Hattori Y,Nagai K,Furukawa S,et al. The ethylene response factors
SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Na-
ture,2009,460:1026-1030.
[43]Onate-Sanehez L,Anderson JP,Young J,et al. ATERF14,a mem-
ber of the ERF family of transcription factors,plays a non-redun-
dant role in plant defense. Plant Physiology,2007,143(1) :400-
409.
[44] Jung JW,Won SY,Suh SC,et al. The barley ERF-type transcription
factor HvRAF confers enhance pathogen resistance and salt toler-
ance in Arabidopsis. Planta,2007,225(3) :575-588.
[45]Zhang Z,Zhang H,Quan R,et al. Transcriptional regulation of the
ethylene response factor LeERF2 in the expression of ethylene bio-
synthesis genes controls ethylene production in tomato and tobacco.
Plant Physiology,2009,150(1) :365-377.
[46]Nakashima K,Shinwari ZK,Sakuma Y,et al. Organization and ex-
pression of two Arabidopsis DREB2 genes encoding DRE-binding
proteins involved in dehydration- and high-salinity responsive gene
expression. Plant Molecular Biology,2000,42(4) :657-665.
[47]Sakuma Y,Maruyama K,Osakabe Y,et al. Functional analysis of an
Arabidopsis transcription factor,DREB2A,involved in drought re-
sponsive gene expression. The Plant Cell,2006,18(5) :1292-
1309.
[48]Sakuma Y,Maruyama K,Qin F,et al. Dual function of an Arabidop-
sis transcription factor DREB2A in water-stress-responsive and heat
stress-responsive gene expression. Proc Nat Acad Sci USA,2006,
103(49) :18822-18827.
[49]Shinozaki K,Dennis ES. Cell signaling and gene regulation global
analyses of signal transduction and gene expression profiles. Current
Opinion in Plant Biology,2003,6:405-409.
[50]Matsukura S,Mizoi J,Yoshida D,et al. Comprehensive analysis of
rice DREB2-type genes that encode transcription factors involved in
the expression of abiotic stress-responsive genes. Molecular Genetics
and Genomics,2010,283(2) :185-196.
[51]Chen M,Xu Z,Xia L,et al. Cold-induced modulation and functional
analyses of the DRE-binding transcription factor gene,GmDREB3,
in soybean (Glycine max L.). Journal of Experimental Botany,
2009,60(1) :121-135.
[52]Shen YG,Zhang WK,He SJ,et al. An EREBP /AP2-type protein in
Triticum aestivum was a DRE-binding transcription factor induced
by cold,dehydration and ABA stress. Theor Appl Genet,2003,106
(5) :923-930.
[53]Egawa C,Kobayashi F,Ishibashi M,et al. Differential regulation of
transcript accumulation and alternative splicing of a DREB2 homo-
log under abiotic stress conditions in common wheat. Genes and Ge-
netic Systems (Japan) ,2006,81(2) :77-91.
[54]Oh SJ,Kwon CW,Choi DW,et al. Expression of barley HvCBF4 en-
hances tolerance to abiotic stress in transgenic rice. Plant Biotech-
nology Journal,2007,5(5) :646-656.
[55]Shan DP,Huang JG,Yang YT,et al. Cotton GhDREB1 increases
plant tolerance to low temperature and is negatively regulated by
gibberellic acid. New Phytologist,2007,176(1) :70-81.
[56]Qin F,Sakuma Y,Li J,et al. Cloning and functional analysis of a
novel DREB1 /CBF transcription factor involved in cold-responsive
gene expression in Zea mays L. Plant and Cell Physiology,2004,45
(8) :1042-1052.
[57]Islam MS,Wang MH. Expression of dehydration responsive element-
binding protein-3 (DREB3)under different abiotic stresses in to-
mato. BMB Reports,2009,42(9) :611-616.
[58] Chen JH,Xia XL,Yin WL. Expression profiling and functional
characterization of a DREB2-type gene from Populus euphratica.
Biochem Biophys Res Commun,2009,378 (3) :483-487.
[59] Benedict C,Skinner JS,Meng R,et al. The CBF1-dependent low
temperature signalling pathway,regulon and increase in freeze toler-
ance are conserved in Populus spp. . Plant Cell and Environment,
2006,29(7) :1259-1272.
[60]张梅,刘炜,毕玉平.植物中 DREBs 类转录因子及其在非生物
胁迫中的作用.遗传,2009,31(3) :236-244.
[61]Hong JP,Kim WT. Isolation and functional characterization of the
Ca-DREBLP1 gene encoding a dehydration-responsive element
binding-factor-like protein 1 in hot pepper (Capsicum annuum L.
cv. Pukang). Planta,2005,220(6) :875-888.
[62] Ito Y,Katsura K,Maruyama K,et al. Functional analysis of rice
DREB1 /CBF-type transcription factors involved in cold-responsive
gene expression in transgenic rice. Plant Cell Physiology,2006,47
(1) :141-153.
[63]Lim CJ,Hwang JE,Chen H,et al. Over-expression of the Arabidop-
sis DRE /CRT-binding transcription factor DREB2C enhances ther-
motolerance. Biochem Biophys Res Commun,2007,362 (2) :
431-436.
[64]Wang Q,Guan Y,Wu Y,et al. Overexpression of a rice OsDREB1F
gene increases salt,drought,and low temperature tolerance in both
Arabidopsis and rice. Plant Molecular Biology,2008,67 (6) :
589-602.
(下转第 11 页)
6
2011 年第 7 期 牙库甫江·阿西木等:植物基因表达转录分析中内参基因的选择与应用
time RT-PCR gene expression measurements in Arabidopsis thali-
ana exposed to increased metal concentrations. Planta,2008,227
(6) :1343-1349.
[24] Singh K,Raizada J,Bhardwaj P,et al. 26S rRNA-based internal
control gene primer pair for reverse transcription-polymerase chain
reaction-based quantitative expression studies in diverse plant spe-
cies. Analytical Biochemistry,2004,335(2) :330-333.
[25] Jian B,Liu B,Bi YR,et al. Validation of internal control for gene
expression study in soybean by quantitative real-time PCR. BMC
Molecular Biology,2008,9:59-72.
[26]Gutierrez L,Mauriat M,Guénin S,et al. The lack of a systematic
validation of reference genes:a serious pitfall undervalued in re-
verse transcription-polymerase chain reaction(RT-PCR)analysis in
plants. Plant Biotechnology Journal,2008,6(6) :609-618.
[27]Czechowski T,Stitt M,Altmann T,et al. Genome-wide identification
and testing of superior reference genes for transcript normalization
in Arabidopsis. Plant Physiology,2005,139(1) :5-17.
[28]Vandesompele J,De Preter K,Pattyn F,et al. Accurate normaliza-
tion of real-time quantitative RT-PCR data by geometric averaging
of multiple internal control genes. Genome Biol,2002,3(7) :1-11.
[29] Pfaffl MW,Tichopad A,Prgomet C,et al. Determination of stable
housekeeping genes,differentially regulated target genes and sam-
ple integrity:BestKeeper-Excel-based tool using pair-wise correla-
tions. Biotechnology Letters,2004,26(6) :509-515.
(责任编辑 狄艳红
櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧櫧
)
(上接第 6 页)
[65]Chen M,Wang QY,Cheng XG,et al. GmDREB2,a soybean DRE-
binding transcription factor,conferred drought and high-salt toler-
ance in transgenic plants. Biochem Biophys Res Commun,2007,
353(2) :299-305.
[66]Qin F,Kakimoto M,Sakuma Y,et al. Regulation and functional a-
nalysis of ZmDREB2A in response to drought and heat stresses in
Zea mays L. Plant Journal,2007,50(1) :54-69.
[68]Chen J,Meng X,Zhang Y,et al. Over-expression of OsDREB genes
lead to enhanced drought tolerance in rice. Biotechnol Letters,
2008,30(12) :2191-2198.
(责任编辑 李楠)
11