*">
Previously, we used heterologous expressed sequence tag (EST) mapping to generate a profile of 4 935 pathogen-response genes of Arabidopsis thaliana. In this work, we performed a computer analysis of this profile, revealing 1 594 non-homologous clustered genes distributed among all A. thaliana chromosomes, whose co-regulation may be related to host responses to pathogens. To supplement computer data, we arbitrarily selected two clusters and analyzed their expression levels in A. thaliana ecotypes Col-0 and C24 during infection with the yellow strain of Cucumber mosaic virus CMV(Y). Ecotype Col-0 is susceptible to CMV(Y), whereas C24 contains the dominant resistance gene RCY1. Upon infection with CMV(Y), all clustered genes were significantly activated in the resistant ecotype C24. In addition, we demonstrated that posttranslational histone modifications associated with trimethylation of histone H3 lysine 27 are most likely involved in regulation of several cluster genes described in this study. Overall, our experiments indicated that pathogen-response genes in the genome of A. thaliana may be clustered and co-regulated.
Keywords: CMV; H3K27me3; heterologous EST mapping; clustering of defense-related genes.
Postnikova OA, Minakova NY, Boutanaev AM, Nemchinov LG (2011) Clustering of pathogen-response genes in the genome of Arabidopsis thaliana. J. Integr. Plant Biol. 53(10), 824-834.