免费文献传递   相关文献

Discovery of Arabidopsis GRAS Family Genes in Response to Osmotic and Drought Stresses

拟南芥转录因子GRAS 家族基因群响应渗透和干旱胁迫的初步探索


The GRAS family is a class of plant specific transcription factors, playing essential roles in plant development and light signal transduction pathways. 33 GRAS family genes were identified in Arabidopsis genome. In this study, we found a group of GRAS family genes in response to osmotic and/or drought stresses through Arabidopsis GeneChip data mining. Meanwhile, we conducted co-expression analysis and gene ontology (GO) analysis and predicted that SCL13 was possibly involved in the response to osmotic stress. Our study will be helpful to elucidate some GRAS family genes related in signal transduction pathways during water stress, and be beneficial to crop molecular breeding in the future.


全 文 :植物学报Chinese Bulletin of Botany 2009, 44 (3): 290-299, www.chinbullbotany.com
doi: 10.3969/j.issn.1674-3466.2009.03.005
收稿日期: 2008-11-25; 接受日期: 2009-01-22
基金项目: 国家自然科学基金(No.90817006)
†共同第一作者。
* 通讯作者。E-mail: zhensu@cau.edu.cn; guoaiguang@yahoo.com.cn
.研究报告.
拟南芥转录因子 GRAS家族基因群响应渗透和
干旱胁迫的初步探索
郭华军 1, 3†, 焦远年 2†, 邸超 2, 姚冬霞 2, 张盖华 2, 郑雪 2, 刘岚 2, 张群莲 2, 郭蔼光 1*, 苏震 2*
1西北农林科技大学生命科学学院, 杨凌 712100; 2中国农业大学生物学院, 北京 100193; 3山西农业大学农学院, 太谷 030801
摘要 GRAS家族是一类植物特有的转录调控因子, 已有报道表明该家族基因在植物生长发育和光信号转导过程中具有重要
作用。目前在拟南芥(Arabidopsis thal iana)基因组中已鉴定了33个GRAS家族基因。利用功能基因组学和生物信息学手段,
通过基因芯片数据挖掘和基因功能预测, 对拟南芥GRAS家族基因在渗透和干旱胁迫过程中的应答模式进行了初步探索, 提出
了一类响应渗透胁迫和干旱胁迫的拟南芥GRAS家族基因。以SCL13为例, 利用基因芯片相关性和GO 分析, 对其在渗透胁
迫信号转导过程中可能的调控机制进行了预测和分析。这一研究将为阐明GRAS家族基因参与水分胁迫的分子机制提供新的
思路, 同时也为植物抗逆分子育种提供候选基因。
关键词 干旱胁迫, 表达谱分析, GRAS家族基因, 渗透胁迫, SCL13
郭华军, 焦远年, 邸超, 姚冬霞, 张盖华, 郑雪, 刘岚, 张群莲, 郭蔼光, 苏震 (2009). 拟南芥转录因子GRAS家族基因群响应渗透和干
旱胁迫的初步探索. 植物学报 44, 290-299.
转录因子也称反式作用因子, 是能够与真核基因启
动子区域中顺式作用元件发生特异性相互作用的DNA
结合蛋白, 通过它们之间以及与其它相关蛋白之间的相
互作用, 激活或抑制转录。在转录水平上与DNA发生
相互作用的蛋白质分子中, 最具有多样性的便是转录因
子。植物感受外界干旱、高盐、激素、病害及体内
细胞发育等信号, 通过一系列传递(钙含量变化、第二信
使、磷酸化和脱磷酸化等)激发转录因子(即反式作用因
子), 反式作用因子与顺式作用元件结合后, 激活RNA 聚
合酶转录复合物, 从而启动基因的转录表达, 最后通过基
因产物的作用对外界信号在生理生化等方面作出适合的
调节反应 (Chen et al., 2002; Singh et al. , 2002;
Davuluri et al., 2003; Matys et al., 2003; Chen and
Zhu, 2004; Broun, 2004; Gray, 2005; Guo et al., 2005;
Kurata et al., 2005; Tsunoyama, 2005; Qu and Zhu,
2006; Nardmann and Werr, 2007; Balazadeh et al.,
2008)。转录因子与植物生长发育和形态建成、与植
物抗逆及在高等植物改良上的应用均证明其在基因的表
达调控以及高等植物的整个生命过程中都起着关键作
用。通过遗传学和分子生物学研究, 表明许多转录因子
及其基因家族在响应外界环境胁迫时起重要调控作用。
改变这些转录因子的表达可以大大提高植物的抗性, 说
明转录水平调控是保护植物免受外界环境影响的一个重
要调控机制。在转录水平调控基因表达可以影响许多
生命活动过程, 不同的基因表达常常通过不同的转录因
子来控制, 因此转录因子成为许多科学家研究的重点。
植物各类转录因子的作用主要与抗逆性和生长发育调控
有关 (Martin and Paz-Ares, 1997; Chen et al., 2002; Singh
et al., 2002; Chen and Zhu, 2004; Guo and Ecker, 2004;
Broun, 2004; Chen et al., 2005; Etheridge et al., 2005;
Gray, 2005; Kurata et al., 2005; Braam, 2005;
Tsunoyama, 2005; Maizel, 2006; Nardmann and Werr,
2007; Tran et al., 2007; Balazadeh et al., 2008)。从转
录层面上来说, 同一种胁迫可能会同时激活多条途径(多个
291郭华军等: 拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索
转录因子 ) 。例如低温、干旱可以诱导拟南芥
(Arabidopsis thaliana)的CBF1 (Stockinger et al., 1997)
和DREB1/2 (Thomashow, 1999; Vogel et al., 2005;
Novillo et al., 2007)、水稻(Oryza sativa)的OsDREB
(Dubouzet et al., 2003)、玉米(Zea mays)的DBF1/2
(Kizis and Pages, 2002; Saleh et al., 2006)、JAZ家
族基因 (Chini et al., 2007; Santner and Estelle, 2007;
Thines et al., 2007; Turner, 2007; Chico et al., 2008;
Chung et al., 2008; Katsir et al., 2008a, 2008b; Melotto
et al., 2008; Staswick, 2008)、JERF基因 (Riechmann
and Meyerowitz, 1998; Guo and Ecker, 2004; Chen et
al., 2005; Etheridge et al., 2005)、WRKY基因 (Ulker
and Somssich, 2004; Xie et al., 2005; Eulgem and
Somssich, 2007)和MYB基因 (Martin and Paz-Ares,
1997; Chen et al., 2006)。同一转录因子可能会被多种
胁迫激活。从功能基因层面上来说, 同一转录因子也可
能会同时激活多种功能基因。大量的组织和细胞类型、
发育阶段和不同的环境胁迫使我们不能通过特定的单一实
验把这些不同的种类全部结合起来, 于是, 高通量基因表
达分析已经成为一个功能强大的生物学研究工具, 大量的
基因芯片被用来鉴别基因的表达变化。目前已经有很多
基因芯片数据库, 例如: NASCArrays (Craigon et al.,
2004)、ArrayExpress at European Bioinformatics
Insti tute (Brazma et al., 2006; Parkinson et al.,
2009)、NCBI GEO of NCBI (Barrett et al., 2009)、
GENEVESTIGATOR (Zimmermann et al., 2004)和中
国水稻 cDNA芯片数据库 (RIFGP-CDMD, http: //
plantbiol.genetics.ac.cn/) 等。利用基因芯片来研究基因
的表达, 能够很好地预测并设计实验。
GRAS家族是一类植物特有的转录调控因子, 该家
族基因已被报道在植物生长发育(如赤霉素信号转导、
根的发育、分生组织的形成、光敏色素 A信号转导以
及雄配子发育等)方面具有重要作用 (Pysh et al., 1999;
Bolle et al., 2000; Day et al., 2003; Morohashi et al.,
2003; Bolle, 2004; Gao et al., 2004; Sena et al., 2004;
Tian et al., 2004; Torres-Galea et al., 2006; Heckmann
et al., 2006; Murakami et al., 2006; Sanchez et al.,
2007; Laajanen et al., 2007; Lee et al., 2008; Fode et
al., 2008; Gallagher and Benfey, 2008; Sole et al.,
2008)。其中最具代表性的与植物生长发育密切相关的
GRAS家族基因是MOC1。水稻分蘖控制基因MOC1
是水稻分蘖的关键调控因子, 这一发现是水稻分蘖分子
调控机理研究的突破性进展(Li et al., 2003)。近年来,
关于拟南芥转录因子GRAS家族基因的研究已有不少报
道。Lim研究组采用生物信息学的方法, 在拟南芥基因
组中鉴定了33个GRAS家族基因, 并利用基因芯片数
据分析、qRT-PCR、反向遗传学和蛋白 -蛋白互作等
研究手段发掘GRAS家族基因组织特异性表达以及其在
植物生长发育过程中的作用 (Lee et al., 2008)。另外,
GRAS蛋白PAT1和SCL13均被发现参与了光敏色素
信号转导途径 (Torres-Galea et al., 2006)。 关于
SCL14基因 (一个GRAS家族成员) 也有了最新研究进
展, 该GRAS家族基因与TGA基因蛋白互作, 在拟南芥
受外界有毒物质侵入时具有广谱性的解毒功能 (Fode et
al., 2008)。但对于拟南芥GRAS家族基因参与干旱和
渗透等水分胁迫的研究报道较少。
植物对渗透和干旱等水分胁迫存在两大类逆境响应
的信号通路, 即脱落酸依赖途径和脱落酸不依赖途径
(Thomashow, 1999)。水分是影响作物产量的一个关
键的环境因子, 研究植物应答水分胁迫的分子机制, 对农
业生产具有非常重要的实践意义 (Thomashow, 1999;
Xiong et al., 2002; Zhang et al., 2004; Seki et al.,
2007)。本研究利用功能基因组学手段, 通过基因芯片
数据挖掘及基因功能预测, 探索拟南芥GRAS家族基因
参与渗透和干旱等水分胁迫的作用机理, 以期为植物抗
逆的分子育种提供候选基因, 也为GRAS家族基因参与
水分胁迫的分子机制研究奠定基础。
1 材料和方法
1.1 拟南芥GRAS家族基因数据获取
拟南芥转录因子GRAS家族的信息来源于国际专业植物
转录因子数据库, 分别是中国的DATF(http://datf.cbi.
pku.edu.cn/)、德国的PlnTFDB(http://plntfdb.bio.uni-
292 植物学报 44(3) 2009
po ts da m. de / v 2 . 0/ )和美国的 At TF DB ( ht t p: / /
arabidopsis.med.ohio-state.edu/AtTFDB/)。GRAS
家族基因的最新注释信息以及其所对应的拟南芥ATH1
基因芯片探针组的信息来源于TAIR数据库(http://www.
arabidopsis.org/)的最新版本。拟南芥全基因组表达谱
数据来源于NASCArrays (Craigon et al., 2004) 和TAIR
数据库, 以上数据包括在正常条件、渗透胁迫处理和干
旱处理下不同时间点的拟南芥幼苗茎叶部和根部的表达
谱数据。每个样品设 2 个重复。
1.2 表达谱数据分析
利用GCOS软件的MAS5算法对拟南芥在正常条件、
渗透胁迫处理和干旱处理下的全基因组表达谱数据进行
归一化处理, 从中提取与GRAS家族成员相对应的表达
数据。聚类分析采用Cluster软件(http://rana.lbl.gov/)
中的分层聚类(hierarchical cluster)算法, 聚类分析结果
通过Treeview 软件(http://rana.lbl.gov/)来展现。在特
定处理条件下, 与某个GRAS家族成员共表达基因的选
取采用我们自己开发的基因芯片数据浏览器 (http: //
bi o in fo rma t ic s .c au.edu.c n/ cgi -bi n/gbr ows e/
arabidopsis/)。
1.3 Gene Ontology功能分类分析
Gene Ontology(GO)是一套标准的基因属性描述词汇,
其设计目的是为了将各个物种中细胞分子生物学研究成
果综合起来。GO独立于任何生物物种或细胞类型, 是
对基因属性的客观描述。GO词汇系统能够帮助从实验
数据中发掘生物学知识, 我们采用EasyGO (Zhou and
Su, 2007), 对与GRAS家族成员共表达基因进行了GO
功能分类分析。以ABI1(At4g26080)为例, 将与其在渗
透胁迫条件下地上部分中具有相似表达趋势的基因进行
GO功能分类分析(http://bioinformatics.cau.edu.cn/
ZhenSuLab/lw_AtSCL13.htm)。结果显示, 在这些基
因中, 应答ABA、水分胁迫和渗透胁迫的类别有明显
的富集, 而这些描述与abi1突变体的表型相吻合, 从而
证明GO功能分类分析的结果具有很高的可信度, 可以
用于对未知基因功能的挖掘。
2 结果与讨论
2.1 拟南芥GRAS家族基因在渗透胁迫和干旱胁
迫时的基因芯片表达谱分析
通过生物信息学分析发现, 在拟南芥基因组中共有33个
GRAS家族成员。我们对已发表的与渗透胁迫和干旱
胁迫相关的拟南芥ATH1芯片数据进行挖掘, 发现在芯
片中, 27个GRAS家族基因有探针组。然后利用分层
聚类算法分别分析了GRAS基因在茎叶和根部响应渗透
和干旱的芯片数据(具体的芯片表达数据见 ht t p : / /
bioinformatics.cau.edu.cn/ZhenSuLab/lw_AtSCL13.
htm), 并通过Treeview 展现分层聚类结果(图1)。
图1A是利用茎叶在渗透和干旱胁迫下的表达谱数
据的聚类结果。研究发现有一组基因在茎叶中因受渗
透或/和干旱胁迫诱导而聚集在一起, 包括10个GRAS
家族基因: SCL1、SCL3、SCL5、SCL8、SCL9、
SCL11、SCL13、SCL14、SCL31和SCL33。其
中 4个基因(SCL8、SCL11、SCL13和SCL31)在茎
叶中同时受渗透和干旱胁迫诱导。另外, 通过对根中的
渗透和干旱胁迫下不同时间的表达谱数据的聚类分析(图
1B), 发现GRAS家族基因在根部也受渗透和干旱胁迫
诱导, 它们是SCL1、SCL5、SCL6、SCL8、SCL9、
SCL13、SCL14、SCL15、SCL26和SCL33。这
些GRAS基因中的大部分主要在渗透胁迫时反应明显,
但SCL13在渗透胁迫时表达明显上调, 并且在早期的干
旱处理时明显被诱导, SCL15在根部干旱胁迫时变化尤
为明显。通过聚类分析, 我们初步确定共有13个GRAS
家族基因在茎叶和根部受不同程度的渗透和干旱胁迫诱
导, 其中 7 个基因同时在茎叶和根部受诱导, SCL3、
SCL11和SCL31只在茎叶中受诱导, 而SCL6、SCL15
和SCL26只在根部受诱导。
进一步以二倍变化为域值, 表1显示在不同时间的
渗透胁迫时, 有 5 个GRAS家族基因(SCL5、SCL7、
SCL13、SCL14和SCL26)诱导随时间呈明显上升趋
势, 尤其是SCL13 (At4g17230)和SCL14 (At1g07530)
在苗期茎叶和根部均受渗透胁迫诱导。在茎叶和根部
的干旱处理芯片实验中, 有3个GRAS家族基因受干旱
293郭华军等: 拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索
图 1 在正常、渗透胁迫处理和干旱处理条件下拟南芥GRAS家族基因在拟南芥幼苗中的表达模式
(A) 茎叶部; (B) 根部
Figure 1 The expression pattern of Arabidopsis GRAS family genes in seedling plant under normal condition, osmotic stress, and
drought stress
(A) Shoot tissues; (B) Root tissues
294 植物学报 44(3) 2009
诱导, 分别是SCL11、SCL13和SCL15, 其中SCL13
在苗期茎叶和根部的干旱处理后其表达呈明显上升,
SCL11只在茎叶中受干旱诱导, SCL15只在根部受干旱
诱导(表2)。综合以上结果, 以二倍变化为域值, 共有7
个GRAS家族基因(SCL5、SCL7、SCL11、SCL13、
SCL14、SCL15和SCL26)受渗透或干旱胁迫的诱导。
另外, SCL8在渗透胁迫时尽管变化不到二倍, 但不管在
茎叶中还是在根中均有1.6倍以上的诱导。
2 .2 利用生物信息学手段对受渗透胁迫诱导的
基因进行功能预测 (以SCL1 3为例)
在拟南芥苗期茎叶和根的渗透和干旱胁迫中, 有10个左
右GRAS家族基因受到不同程度的表达诱导, 对于其作
用的分子机制还需进一步探讨和研究。SCL13曾被发
现作为正调控因子参与了依赖于光敏色素的红光信号转
导途径, 并且对光敏色素 A的反应有调节作用。同时,
通过SCL13-promoter-5-UTR-GUS转基因植株的GUS
染色, 发现SCL13基因的表达受盐和渗透胁迫诱导, 但
SCL13的反义RNA转基因植株和野生型(WT)在盐和渗
透胁迫下未发现明显表型差异 (Torres-Galea et al.,
2006)。芯片数据挖掘结果显示, SCL13在苗期茎叶和
根部经渗透和干旱处理后其表达明显上升(表1, 表2)。
现以SCL13为例, 对GRAS家族基因在渗透和干旱胁
迫中参与调控的可能分子机制进行预测。首先, 利用我
们自己开发的基因芯片的Genome Browse 数据服务器,
搜寻SCL13在拟南芥苗期茎叶渗透胁迫时基因芯片中
的表达方式(图 2A), 发现该基因与 205个探针组存在
0.8以上的统计学相关性(图2B), 这些探针组ID和它们
相关的基因名详见 http://bioinformatics.cau.edu.cn/
ZhenSuLab/lw_AtSCL13.htm, 这些基因可能存在相似
的信号调控分子机制。我们利用EasyGO进一步对这
些基因进行Gene Ontology(GO)分类 (Zhou and Su,
表 1 受渗透胁迫诱导的拟南芥GRAS家族基因的表达模式
Table 1 The expression pattern of Arabidopsis GRAS family genes induced by osmotic stress
Probe Locus ID Gene Osmotic/CK in shoot Osmotic/CK in root
set ID name 0.5 h 3 h 6 h 12 h 24 h 0.5 h 3 h 6 h 12 h 24 h
261860_at AT1G50600 SCL5 0.98 1.10 2.04 2.33 2.36 1.15 1.53 1.67 1.93 1.54
252173_at AT3G50650 SCL7 0.57 0.83 1.30 1.77 4.18 0.89 0.71 1.14 0.86 0.95
248366_at AT5G52510 SCL8 0.85 1.42 1.46 1.59 1.66 1.02 1.61 1.82 1.62 1.80
247707_at AT5G59450 SCL11 1.40 1.45 1.14 1.18 0.97 1.09 1.02 0.74 0.65 0.61
245247_at AT4G17230 SCL13 1.43 4.81 4.44 4.06 8.41 2.27 1.26 1.87 2.12 1.81
261062_at AT1G07530 SCL14 1.36 1.21 1.77 1.78 2.02 1.18 1.30 1.73 2.14 1.56
246230_at AT4G36710 SCL15 0.93 0.90 1.18 0.84 0.72 1.35 1.14 1.33 1.41 1.73
255125_at AT4G08250 SCL26 0.95 1.09 0.90 0.78 0.83 2.40 1.38 2.32 2.12 2.15
表 2 受干旱胁迫诱导的拟南芥GRAS家族基因的表达模式
Table 2 The expression pattern of Arabidopsis GRAS family genes induced by drought stress
Probe Locus ID Gene Drought/CK in shoot Drought/CK in root
set ID name 0.5 h 3 h 6 h 12 h 24 h 0.5 h 3 h 6 h 12 h 24 h
261860_at AT1G50600 SCL5 0.89 1.17 1.74 1.19 1.01 1.70 1.18 1.32 1.06 0.84
252173_at AT3G50650 SCL7 0.97 1.00 1.59 1.01 1.02 0.67 1.09 1.83 0.95 0.85
248366_at AT5G52510 SCL8 1.64 1.10 1.11 1.07 1.19 1.37 1.10 1.27 1.00 1.00
247707_at AT5G59450 SCL11 2.73 0.86 0.97 1.44 0.86 1.17 0.98 1.00 1.08 0.78
245247_at AT4G17230 SCL13 6.69 1.34 1.36 1.35 2.43 4.02 1.26 1.32 1.01 0.98
261062_at AT1G07530 SCL14 1.22 1.24 1.32 1.06 1.07 1.12 1.17 1.15 0.99 0.88
246230_at AT4G36710 SCL15 1.16 0.96 1.18 1.00 1.18 3.94 1.42 1.04 1.23 0.91
255125_at AT4G08250 SCL26 1.51 0.65 0.63 0.80 0.94 0.91 0.76 0.92 0.88 0.82
295郭华军等: 拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索
2007)。
通过GO注释富集度(annotation enrichment)的显
著性计算分析(图2C), 发现SCL13及其密切相关基因与
以下生物学过程密切相关, 包括失水反应(16个基因,
FDR p-value为1.42e-42)、脱落酸(ABA)反应(19个基
因, FDR p-value 为3.12e-31)、渗透胁迫(14个基因,
FDR p- value 为1.36e-17)和冷胁迫(12个基因, FDR p-
value为7.00e-13)等水分胁迫, 生物胁迫如对细菌的反
应(7个基因, FDR p-value为2.72e-06)以及吲哚类似物
的合成(6个基因, FDR p-value为4.77e-21)等。19个
ABA反应相关的基因包括 RD29A、ABF3/DPBF5、
COR15A、ERD14、ERD10、HVA22D、KIN1、
KIN2和ABI1等。这些ABA和水分胁迫相关基因可能
在拟南芥受渗透和干旱胁迫时存在与SCL13类似的分
子调控机制。
我们利用生物信息学进行基因芯片数据挖掘, 通过
全基因组芯片分析, 发现了将近10个GRAS家族基因
在渗透和干旱胁迫时其表达呈现显著上升趋势。进一
步利用功能基因组平台, 以SCL13为例利用基因表达谱
的相关性和基因功能分类(GO)手段, 对GRAS基因家族
进行功能预测, 发现SCL13与干旱和渗透胁迫存在密切
的相关性。SCL13基因在应答渗透和干旱胁迫时可能
参与了依赖于ABA的信号转导途经。下一步我们将进
行反向遗传学研究, 从该基因敲除的T-DNA 插入突变体
图 2 拟南芥SCL13基因在渗透胁迫下茎叶部共表达和GO功能分类分析
(A) 拟南芥SCL13基因在渗透胁迫下茎叶部的表达模式; (B) 渗透胁迫下拟南芥的茎叶部与SCL13具有共表达趋势的基因; (C) 对(B)
中所示与SCL13具有共表达趋势基因的GO功能分类分析
Figure 2 Co-expression and GO analysis of SCL13 in shoot tissue of Arabidopsis thaliana under osmotic stress
(A) Expression pattern of SCL13 in shoot tissue under osmotic stress; (B)SCL13 co-expression genes in shoot tissue under
osmotic stress; (C) GO analysis of the SCL13 co-expression genes shown in (B)
296 植物学报 44(3) 2009
中, 筛选出纯合体, 进行表型鉴定。关于与渗透和干旱
胁迫相关的GRAS家族基因的研究, 仅见少量报道。本
文对拟南芥GRAS家族基因响应干旱和渗透胁迫进行了
初步探索, 关于这些GRAS家族基因参与抗逆性反应的
分子调控机制还需进一步研究。
致谢 衷心感谢中国科学院遗传与发育生物学研究
所徐文英老师给予悉心指导和帮助。同时感谢中国
农业大学的周少霞和刘凤霞在实验上的帮助。
参考文献
Balazadeh S, Riano-Pachon DM, Mueller-Roeber B (2008).
Transc r ipti on fac tor s r egulati ng leaf senesc enc e i n
Arabidopsis thaliana. Plant Biol (Stuttg) 10(Suppl 1), 63-75.
Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D,
Evangelista C, Kim IF, Soboleva A, Tomashevsky M,
Marshall KA, Phillippy KH, Sherman PM, Muertter RN,
Edgar R (2009). NCBI GEO: archive for high-throughput func-
tional genomic data. Nucleic Acids Res 37, D885-D890.
Bolle C (2004). The role of GRAS proteins in plant signal trans-
duction and development. Planta 218, 683-692.
Bolle C, Koncz C, Chua NH (2000). PAT1, a new member of the
GRAS family, is involved in phytochrome A signal transduction.
Genes Dev 14, 1269-1278.
Braam J (2005). In touch: plant responses to mechanical stimuli.
New Phytol 165, 373-389.
Brazma A, Kapushesky M, Par kinson H, Sarkans U,
Shojatalab M ( 2006) . Data storage and analy si s i n
ArrayExpress. Methods Enzymol 411, 370-386.
Broun P (2004). Transcription factors as tools for metabolic en-
gineering in plants. Curr Opin Plant Biol 7, 202-209.
Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS,
Eulgem T, Mauch F, Luan S, Zou G, W hitham SA,
Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA,
Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M,
Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002).
Expression profile matrix of Arabidopsis transcription factor
genes suggests their putative functions in response to envi-
ronmental stresses. Plant Cell 14, 559-574.
Chen WJ, Zhu T (2004). Networks of transcription factors with
roles in environmental stress response. Trends Plant Sci 9,
591-596.
Chen Y, Yang X, He K, Liu M, Li J, Gao Z, Lin Z, Zhang Y,
Wang X, Qiu X, Shen Y, Zhang L, Deng X, Luo J, Deng XW,
Chen Z, Gu H, Qu LJ (2006). The MYB transcription factor
superfamily of Arabidopsis: expression analysis and phylo-
genetic comparison with the rice MYB family. Plant Mol Biol
60, 107-124.
Chen YF, Etheridge N, Schaller GE (2005). Ethylene signal
transduction. Ann Bot (Lond) 95, 901-915.
Chico JM, Chini A, Fonseca S, Solano R (2008). JAZ repres-
sors set the rhythm in jasmonate signaling. Curr Opin Plant
Biol 11, 486-494.
Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo
O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce
MR, Micol JL, Solano R (2007). The JAZ family of repres-
sors is the missing link in jasmonate signaling. Nature 448,
666-671.
Chung HS, Koo AJ, Gao X, Jayanty S, Thines B, Jones AD,
Howe GA (2008). Regulation and function of Arabidopsis
JASMONATE ZIM-domain genes in response to wounding and
herbivory. Plant Physiol 146, 952-964.
Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S
(2004). NASCArrays: a repository for microarray data gener-
ated by NASC’s transcriptomics service. Nucleic Acids Res
32, D575-D577.
Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina
C, Kurtz M, Grotewold E (2003). AGRIS: Arabidopsis gene
regulatory information server, an information resource of
Arabidopsis cis-regulatory elements and transcription factors.
BMC Bioinformatics 4, 25-25.
Day RB, Shibuya N, Minami E (2003). Identification and charac-
terization of two new members of the GRAS gene family in
rice responsive to N-acetylchitooligosaccharide elicitor.
Biochim Biophys Acta 1625, 261-268.
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG,
Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K
(2003). OsDREB genes in rice, Oryza sativa L., encode tran-
scription activators that function in drought-, high-salt- and
cold-responsive gene expression. Plant J 33, 751-763.
Etheridge N, Chen YF, Schaller GE (2005). Dissecting the eth-
ylene pathway of Arabidopsis. Brief Funct Genomic Proteomic
3, 372-381.
Eulgem T, Somssich IE (2007). Networks of WRKY transcrip-
tion factors in defense signaling. Curr Opin Plant Biol 10,
297郭华军等: 拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索
366-371.
Fode B, Siemsen T, Thurow C, Weigel R, Gatz C (2008). The
Arabidopsis GRAS protein SCL14 interacts with class II TGA
transcription factors and is essential for the activation of stress-
inducible promoters. Plant Cell 20, 3122-3135.
Gallagher KL, Benfey PN (2008). Both the conserved GRAS
domain and nuclear localization are required for SHORT-ROOT
movement. Plant J 57, 785-797.
Gao MJ, Parkin I, Lydiate D, Hannoufa A (2004). An auxin-
responsive SCARECROW-like transcriptional activator inter-
acts with histone deacetylase. Plant Mol Biol 55, 417-431.
Gray J (2005). Guard cells: transcription factors regulate sto-
matal movements. Curr Biol 15, R593-R595.
Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005). DATF: a
database of Arabidopsis transcription factors. Bioinformatics
(Oxford, England) 21, 2568-2569.
Guo H, Ecker JR (2004). The ethylene signaling pathway: new
insights. Curr Opin Plant Biol 7, 40-49.
Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell
S, Parniske M, Wang TL, Downie JA (2006). Lotus japonicus
nodulation requires two GRAS domain regulators, one of which
is functionally conserved in a non-legume. Plant Physiol 142,
1739-1750.
Katsir L, Chung HS, Koo AJ, Howe GA (2008a). Jasmonate
signaling: a conserved mechanism of hormone sensing. Curr
Opin Plant Biol 11, 428-435.
Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA
(2008b). COI1 is a critical component of a receptor for
jasmonate and the bacterial virulence factor coronatine. Proc
Natl Acad Sci USA 105, 7100-7105.
Kizis D, Pages M (2002). Maize DRE-binding proteins DBF1 and
DBF2 are involved in rab17 regulation through the drought-
responsive element in an ABA-dependent pathway. Plant J
30, 679-689.
Kurata T, Okada K, Wada T (2005). Intercellular movement of
transcription factors. Curr Opin Plant Biol 8, 600-605.
Laajanen K, Vuorinen I, Salo V, Juuti J, Raudaskoski M
(2007). Cloning of Pinus sylvestris SCARECROW gene and
its expression pattern in the pine root system, mycorrhiza and
NPA-treated short roots. New Phytol 175, 230-243.
Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim
DG, Sohn SO, Lim CE, Chang KS, Lee MM, Lim J (2008).
Large-scale analysis of the GRAS gene family in Arabidopsis
thaliana. Plant Mol Biol 67, 659-670.
Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X,
Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003).
Control of tillering in rice. Nature 422, 618-621.
Maizel A (2006). Transcription factor movement in plants. J Soc
Biol 200, 221-227.
Martin C, Paz-Ares J (1997). MYB transcription factors in plants.
Trends Genet 13, 67-73.
Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl
R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV,
Kloos DU, Land S, Lewicki-Potapov B, Michael H, Munch
R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S,
Wingender E (2003). TRANSFAC: transcriptional regulation,
from patterns to profiles. Nucleic Acids Res 31, 374-378.
Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng
W, Thines B, Staswick P, Browse J, Howe G, He SY (2008).
A critical role of two positively charged amino acids in the jas
motif of Arabidopsis JAZ proteins in mediating coronatine-
and jasmonoyl isoleucine-dependent interaction with the COI1
F-box protein. Plant J 55, 979-988.
Morohashi K, Minami M, Takase H, Hotta Y, Hiratsuka K
(2003). Isolation and characterization of a novel GRAS gene
that regulates meiosis-associated gene expression. J Biol
Chem 278, 20865-20873.
Murakami Y, Miwa H, Imaizumi-Anraku H, Kouchi H, Downie
JA, Kawaguchi M, Kawasaki S (2006). Positional cloning
identifies Lotus japonicus NSP2, a putative transcription fac-
tor of the GRAS family, required for NIN and ENOD40 gene
expression in nodule initiation. DNA Res 13, 255-265.
Nardmann J, Werr W (2007). The evolution of plant regulatory
networks: what Arabidopsis cannot say for itself. Curr Opin
Plant Biol 10, 653-659.
Novillo F, Medina J, Salinas J (2007). Arabidopsis CBF1 and
CBF3 have a different function than CBF2 in cold acclimation
and define different gene classes in the CBF regulon. Proc
Natl Acad Sci USA 104, 21002-21007.
Par kinson H, Kapushesky M, Kolesnikov N, Rustici G,
Shojatalab M, Abeygunawardena N, Berube H, Dylag M,
Emam I, Farne A, Holloway E, Lukk M, Malone J, Mani R,
Pilicheva E, Rayner TF, Rezwan F, Sharma A, Williams E,
Bradley XZ, Adamusiak T, Brandizi M, Burdett T, Coulson
R, Krestyaninova M, Kurnosov P, Maguire E, Neogi SG,
Rocca-Serra P, Sansone SA, Sklyar N, Zhao M, Sarkans
U, Brazma A (2009). ArrayExpress update-from an archive
of functional genomics experiments to the atlas of gene
expression. Nucleic Acids Res 37, D868-D872.
Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey
298 植物学报 44(3) 2009
PN (1999). The GRAS gene family in Arabidopsis: sequence
characterization and basic expression analysis of the SCARE-
CROW-LIKE genes. Plant J 18, 111-119.
Qu LJ, Zhu XY (2006). Transcription factor families in Arabidopsis,
major progress and outstanding issues for future research.
Curr Opin Plant Biol 9, 544-549.
Riechmann JL, Meyerowitz EM (1998). The AP2/EREBP family
of plant transcription factors. Biol Chem 379, 633-646.
Saleh A, Lumbreras V, Lopez C, Dominguez-Puigjaner E,
Kizis D, Pages M (2006). Maize DBF1-interactor protein 1
containing an R3H domain is a potential regulator of DBF1
activity in stress responses. Plant J 46, 747-757.
Sanchez C, Vielba JM, Ferro E, Covelo G, Sole A, Abarca D,
de Mier BS, Diaz-Sala C (2007). Two SCARECROW-LIKE
genes are induced in response to exogenous auxin in rooting-
competent cuttings of distantly related forest species. Tree
Physiol 27, 1459-1470.
Santner A, Estelle M (2007). The JAZ proteins link jasmonate
perception with transcriptional changes. Plant Cell 19, 3839-
3842.
Seki M, Umezawa T, Urano K, Shinozaki K (2007). Regulatory
metabolic networks in drought stress responses. Curr Opin
Plant Biol 10, 296-302.
Sena G, Jung JW, Benfey PN (2004). A broad competence to
respond to SHORT ROOT revealed by tissue-specific ectopic
expression. Development 131, 2817-2826.
Singh K, Foley RC, Onate-Sanchez L (2002). Transcription
factors in plant defense and stress responses. Curr Opin
Plant Biol 5, 430-436.
Sole A, Sanchez C, Vielba JM, Valladares S, Abarca D, Diaz-
Sala C (2008). Characterization and expression of a Pinus
radiata putative ortholog to the Arabidopsis SHORT-ROOT
gene. Tree Physiol 28, 1629-1639.
Staswick PE (2008). JAZing up jasmonate signaling. Trends Plant
Sci 13, 66-71.
Stockinger EJ, Gilmour SJ, Thomashow MF ( 1997) .
Arabidopsis thaliana CBF1 encodes an AP2 domain-contain-
ing transcriptional activator that binds to the C-repeat/DRE, a
cis-acting DNA regulatory element that stimulates transcrip-
tion in response to low temperature and water deficit. Proc
Natl Acad Sci USA 94, 1035-1040.
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G,
Nomura K, He SY, Howe GA, Browse J (2007). JAZ re-
pressor proteins are targets of the SCF(COI1) complex during
jasmonate signaling. Nature 448, 661-665.
Thomashow MF (1999). Plant cold acclimation: freezing toler-
ance genes and regulatory mechanisms. Annu Rev Plant Physiol
Plant Mol Biol 50, 571-599.
Tian C, Wan P, Sun S, Li J, Chen M (2004). Genome-wide
analysis of the GRAS gene family in rice and Arabidopsis.
Plant Mol Biol 54, 519-532.
Torres-Galea P, Huang LF, Chua NH, Bolle C (2006). The
GRAS protein SCL13 is a positive regulator of phytochrome-
dependent red light signaling, but can also modulate phyto-
chrome A responses. Mol Genet Genomics 276, 13-30.
Tran LS, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki
K (2007). Plant gene networks in osmotic stress response:
from genes to regulatory networks. Methods Enzymol 428,
109-128.
Tsunoyama Y (2005). Environmental signal-responsive transcrip-
tion in chloroplasts: light-responsive promoter and SIG5.
Tanpakushitsu Kakusan Koso 50, 1857-1857.
Turner JG (2007). Stress responses: JAZ players deliver fusion
and rhythm. Curr Biol 17, R847-R849.
Ulker B, Somssich IE (2004). WRKY transcription factors: from
DNA binding towards biological function. Curr Opin Plant Biol
7, 491-498.
Vogel JT, Zar ka DG, van Buskir k HA, Fowler SG,
Thomashow MF (2005). Roles of the CBF2 and ZAT12 tran-
scr iption f ac tor s i n confi gur ing the low temperature
transcriptome of Arabidopsis. Plant J 41, 195-211.
Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D,
Shen QJ (2005). Annotations and functional analyses of the
rice WRKY gene superfamily reveal positive and negative regu-
lators of abscisic acid signaling in aleurone cells. Plant Physiol
137, 176-189.
Xiong L, Schumaker KS, Zhu JK (2002). Cell signaling during
cold, drought, and salt stress. Plant Cell 14 (Suppl), S165-
S183.
Zhang JZ, Creelman RA, Zhu JK (2004). From laboratory to
field. Using information from Arabidopsis to engineer salt, cold,
and drought tolerance in crops. Plant Physiol 135, 615-
621.
Zhou X, Su Z (2007). EasyGO: gene ontology-based annotation
and functi onal enrichment analysis tool for agronomical
species. BMC Genomics 8, 246-246.
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem
W (2004). GENEVESTIGATOR, Arabidopsis microarray data-
base and analysis toolbox. Plant Phys iol 136, 2621-
2632.
299郭华军等: 拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索
Discovery of Arabidopsis GRAS Family Genes in Response to
Osmotic and Drought Stresses
Huajun Guo1, 3†, Yuannian Jiao2†, Chao Di2, Dongxia Yao2, Gaihua Zhang2, Xue Zheng2, Lan Liu2,
Qunlian Zhang2, Aiguang Guo1*, Zhen Su2*
1College of Life Sciences, Northwest Agricultural and Forestry University, Yangling 712100, China
2College of Biological Sciences, China Agricultural University, Bei j ing 100193, China
3College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
Abstract The GRAS family is a class of plant specific transcription factors, playing essential roles in plant development and light
signal transduction pathways. 33 GRAS family genes were identified in Arabidopsis genome. In this study, we found a group of
GRAS family genes in response to osmotic and/or drought stresses through Arabidopsis GeneChip data mining. Meanwhile, we
conducted co-expression analysis and gene ontology (GO) analysis and predicted that SCL13 was possibly involved in the
response to osmotic stress. Our study will be helpful to elucidate some GRAS family genes related in signal transduction pathways
during water stress, and be beneficial to crop molecular breeding in the future.
Key words drought stress, expression analysis, GRAS family gene, osmotic stress, SCL13
Guo HJ, Jiao YN, Di C, Yao DX, Zhang GH, Zheng X, Liu L, Zhang QL, Guo AG, Su Z (2009). Discovery of Arabidopsis GRAS family
genes in response to osmotic and drought stresses. Chin Bull Bot 44, 290-299.
† These authors contributed equally to this work.
* Author for correspondence. E-mail: zhensu@cau.edu.cn; guoaiguang@yahoo.com.cn
(责任编辑: 白羽红)