全 文 :植物学通报Chinese Bulletin of Botany 2007, 24 (4): 444-451, www.chinbullbotany.com
收稿日期: 2007-04-28; 接受日期: 2007-05-30
基金项目: 国家自然科学基金(No. 30470895)、河南省高校新世纪优秀人才支持计划(No. 2005HANCET-06)和河南省青年骨干教师资
助计划
* 通讯作者。E-mail: songcp@henu.edu.cn
.实验简报.
SB202190调节蚕豆保卫细胞中 SA诱导 H2O2产生
江静, 韩栓, 宋纯鹏 *
河南大学植物逆境生物学重点实验室和生命科学学院, 开封 475001
摘要 运用激光共聚焦扫描技术, 在p38 MAP激酶专一抑制剂SB202190处理下, 探索植物促分裂原活化蛋白激酶(mitogen-
activated protein kinase, MAP激酶)介导蚕豆(Vicia faba)保卫细胞中H2O2为代表的活性氧(reactive oxygen species, ROS)
信号机制, 发现: p38 MAP激酶专一抑制剂SB202190处理没有导致蚕豆保卫细胞中H2O2和Ca2+探针荧光强度增强, 与水杨
酸 (salicylic acid, SA) 或脱落酸 (abscisic acid, ABA) 迅速加强2种探针荧光强度形成鲜明对比; 而该抑制剂分别与SA和ABA
共同处理, 前者H2O2探针荧光强度没有增加, 而后者荧光强度仍然能够增加; 而进一步使用Ca2+螯合剂BAPTA和SB202190
+SA共同处理, H2O2探针荧光强度没有增加。这些结果初步表明: 无论胞质Ca2+浓度高低, SB202190调节蚕豆保卫细胞中
SA诱导H2O2产生, 但是不调节植物逆境信使分子ABA 此类的反应。因此推测, 植物细胞中可能有类似动物和酵母细胞中的p38
MAP激酶类, 并可能专一调节植物保卫细胞中H2O2信号通路。据我们所知, 这是首次报道SB202190和SA共同调节植物保卫
细胞中ROS信号过程。
关键词 ABA, H2O2, p38 MAP 激酶, SA, SB202190, 保卫细胞
江静, 韩栓, 宋纯鹏 (2007). SB202190调节蚕豆保卫细胞中 SA诱导 H2O2产生. 植物学通报 24, 444-451.
已有研究证明活性氧(reactive oxygen species,
ROS)是植物应答胁迫刺激信号过程中的第二信使, 其机
制倍受关注(Neill et al., 2002; Desikan et al., 2004)。
植物激素脱落酸(abscisic acid, ABA)依赖NADPH氧化
酶诱导 ROS产生、胞质 Ca2+浓度升高以及蛋白磷酸
化 / 去磷酸化等过程应答胁迫(Nei l l e t a l . , 2002;
Desikan et al., 2004)。而植物激素水杨酸(salicylic
acid, SA)则通过提高超氧化物歧化酶(CuZn-superoxide
dismutase, SOD)同时降低过氧化氢酶(catalase, CAT)
活性、并和 H2O2相互促进、形成信号自我放大反馈
环(self-amplifying feedback loop), 放大氧化信号, 提
高植物抗胁迫能力(Shirasu et al., 1997; Mori et al.,
2001; Kawano, 2003; Suhita et al., 2004)。研究证
明蚕豆(Vicia faba)保卫细胞中, 依赖NADPH氧化酶活
性的超氧阴离子(O2-. ) 产生反应在SOD催化O2-. 歧化为
H2O2的反应之后, 同时, SA诱导的O2-. 浓度升高反应
在胞内 Ca2+浓度升高之前(Mori et al., 2001)。可见,
认识保卫细胞ROS产生和代谢反应机制专一性还需要
更深入的研究。
酵母和动物细胞中MAP激酶类包括三亚族: ERK
类、p38 MAP激酶类和 JNK类, 特点是: 序列高度保
守、成员众多、存在广泛, 经过“M A P K K 激酶、
MAPK激酶和MAP激酶”三级磷酸化(cascade)形式
应答多种刺激信号(Morris, 2001), 其中一些成员与ROS
共同调节植物细胞各种胁迫信号转导受到广泛关注
(Pitzschke and Hirt, 2006; Zhang et al., 2006)。p38
MAP激酶最初是在酵母细胞应答环境渗透刺激反应中
被发现的, 以 STE11 / SSK2 (MAPKK激酶)、PBS2
(MAPK激酶)和 p38/HOG1 (high osmotic glycerol 1)
(MAP激酶)级联 (cascade) 途径调节胞内渗透物质浓度,
445江静等: SB202190调节蚕豆保卫细胞中SA诱导H2O2产生
最后被蛋白酪氨酸磷酸酶 ( p r o t e i n t y r o s i n e
phosphatase, PTP) 2/3 去磷酸化而灭活(Morris,
2001)。令人感兴趣的是, p38 MAP激酶和 H2O2共同
调节酵母和动物细胞中各种胁迫信号过程 (Czubryt et
al., 2000; Niwa et al., 2001; Kuruganti et al., 2002;
Sheikn-Hamad and Gustin, 2004; Kim and Lee 2005;
K i m e t a l . , 2 00 6) , 而 NAD PH 氧化酶和 Ca 2+
(Kreideweiss et al., 1999; Ramachandiran et al., 2002;
Hu et al., 2005; Rodríguez-Gabriel and Russell, 2005;
Hsieh and Papaconstantinou, 2006)是其中关键成分。
虽然一些研究结果表明植物细胞中可能存在类似的p38
MAP激酶通路信号成分, 比如植物细胞中存在酵母p38
MAP激酶的同源基因 (Pöpping et al., 1996; Urao et
al., 1999) 及其激酶活性 (Li et al., 1998; Munnik et
al., 1999; Hoyos and Zhang, 2000; Komis et al., 2004)
, 但是迄今未见植物细胞中有关这些激酶活性与ROS关
系的报道。
已有研究发现, MEK1/2 调节ABA诱导的H2O2产
生和代谢, 而不调节SA诱导的ROS代谢反应(Grant et
al., 2000; Yuasa et al., 2001; Jiang et al., 2003;
Ichimura et al., 2006; Zhang et al., 2006), 而SA激活
的 MAP激酶却对 ABA不敏感(Hoyos and Zhang,
2000)。据此推测 SA和 ABA诱导的 ROS信号转导通
路可能被不同MAP激酶成员调节, 但其机制尚需探索。
本文研究p38 MAP激酶专一性抑制剂SB202190调节
SA和ABA诱导H2O2产生机制发现, 无论Ca2+浓度高
低, SB202190可以调节蚕豆保卫细胞中SA诱导H2O2
产生过程, 却没有调节 ABA类似反应。
1 材料与方法
1.1 实验材料
蚕豆(Vicia faba)种子用 75%乙醇消毒, 在生化培养箱
中催芽, 待胚根长约0.5 cm时, 播种于培养土 (培养土:
蛭石= 2:1)中。每天光照 10小时, 光照强度为 0.20-
0.30 mmol.m-2.s-1, 昼夜温度分别为(25 ± 2)°C和(19
± 2)°C。
1.2 实验方法
1.2.1 试剂配制
H2DCFDA、SB202190和Fluo-3 AM分别溶解于dim-
ethyl sulfoxide (DMSO), 制成母液, 避光操作, 分装,
-30 °C冷冻保存。
SB202190为Calbiochem (La Jolla, CA, USA)公
司产品, ABA、SA、MES、Fluo-3 AM、BAPTA、
Eserine及DMSO均为 Sigma (St. Louis,USA)公司
产品。H 2DCFDA 为 Molecular Probe (Eugene
Oregon, USA)公司产品。其余试剂均为国产分析纯
级别的产品。
1.2.2 荧光探针孵育
H2O2探针的导入: 将新鲜表皮条放入H2O2探针导入缓
冲液(50 mmol.L-1 KCl + 10 mmol.L-1 Tris, pH7.18),
加入H2DCF-DA母液, 其最终浓度为50 mmol.L-1, 混合
均匀, 25°C, 避光孵育10-15分钟。H2DCF-DA容易进
入细胞, 胞内 H2O2将其氧化为具有荧光活性的化合物
DCF, 适合于激光共聚焦扫描 (laser scanning confocal
microscope, LSCM) 分析。
Ca2+探针的导入: 将新鲜的表皮条放入Ca2+探针导
入缓冲液(50 mmol.L-1 KCl + 10 mmol.L-1 Tris + 5
mmol.L-1 CaCl2 + 0.5 mmol.L-1 Eserine, pH7.18), 加
入Fluo-3 AM母液, 使其最终浓度达到30 mmol.L-1, 混
合均匀, 30°C, 避光孵育 30-45分钟。
1.2.3 激光共聚焦扫描及数据分析方法
参照Zhang等(2001)的方法, 稍加改动。取出已导入探
针的表皮条, 洗去表面多余探针, 然后将其固定在合适
的小培养皿底部, 加入适量缓冲液, 放在显微镜(Bio-Rad
MicroRadiance)下。根据需要分别加入 ABA、SA、
SB202190和BAPTA等试剂刺激保卫细胞。以Time-
course软件采集数据。为保证数据可比性, 所有实验
中的LSCM工作条件手工设定为:Ex=488 nm, Em=525
± 15 nm, Power=10%, Zoom=4, Frame=512×512, 中
速扫描。
记录结果分析: 图片采用photoshop软件处理。随
446 植物学通报 24(4) 2007
机选出5个Time-course记录的保卫细胞探针荧光强度
数据分析。
2 结果与分析
2.1 SB202190抑制保卫细胞中SA诱导H2O2产生
植物气孔保卫细胞是研究逆境信号转导模式系统。P38
MAP激酶广泛参与动物细胞 H2O2信号过程 (Sheikh-
Hamad and Gustin, 2004)。气孔保卫细胞中 H2O2
和 SA相互作用, 放大胁迫信号(Mori et al., 2001;
Suhita et al., 2004)。为了探索 p38 MAP激酶类是
否参与SA诱导H2O2产生过程, 我们用特异性抑制剂
SB202190处理, 观察SA诱导H2O2产生的情况变化。
对照处理 , 缓冲液、S B 2 0 2 1 9 0 及其类似物
SB202474都不能促进H2O2荧光探针DCF荧光强度升
高(图 1A1-A3, D)。在缓冲液中单独加 SA, 保卫细胞
DCF 荧光强度迅速增强(图 1B1-B3)。但是, SA 和
SB202190共同处理, 保卫细胞DCF荧光强度却没有上
升 (图 1C1-C3), 图 1D显示了其对比值。这些结果表
明 SB202190阻断了 SA诱导 H2O2的产生。
2.2 SB202190不能抑制保卫细胞中ABA诱导
H2O2产生
H2O2是植物细胞中胁迫反应的第二信使 (Neill et al.,
2002; Desikan et al., 2004)。为了探测 SB202190
在不同上游信号分子诱导产生H2O2过程中的作用, 我
们继续观察此抑制剂是否影响胁迫信使 A B A 诱导
H2O2产生。
无ABA时, H2O2荧光探针H2DCF-DA荧光强度不
升高(图 2); 而用 ABA处理时其荧光强度迅速增强(图
2)。与 SA处理情形 (图 1)类似。但是 , SB202190
存在时 , ABA 诱导 DCF 荧光强度仍然增强 (图 2) ,
与ABA单独处理DCF荧光强度增强的结果一样, 说
明 SB202190 不影响 ABA 诱导 H 2O 2的产生。这
与该抑制剂阻断 SA诱导H 2O 2产生结果(图 1)形成
鲜明对比。
2.3 SB202190不依赖胞质Ca2+抑制SA诱导H2O2
产生
Ca2+不仅可以和 p38 MAP激酶共同调控动物细胞中
H2O2信号转导(Blanc et al., 2004), 而且是植物细胞H2O2
产生过程的重要影响因子(Pei et al., 2000; Mori et al.,
2001; Jiang and Zhang, 2003)。所以有必要调查Ca2+
在 SB202190阻断 SA诱导产生H2O2过程中的功能。
如表1所示, 单独的SB202190处理和空白对照处
理一样, 保卫细胞内Ca2+探针 Fluo-3荧光强度均未升
高, 这表明抑制剂本身并不影响Ca2+浓度变化; SA能
使Fluo-3荧光强度增加, 验证Ca2+参与保卫细胞SA
信号过程; 而SA+SB202190处理不影响Fluo-3荧光
强度增加(表1), 说明Ca2+存在情况下, SB202190能
够发挥作用。
Ca2+络合剂 BAPTA处理不影响 DCF荧光强度
(表 1)。使用 BAPTA和 SA+SB202190联合处理孵育
了H2O2探针H2DCF-DA的表皮条, 扫描过程中没有发
现保卫细胞DCF荧光强度变化(表1)。此结果表明Ca2+
不存在情况下, SB202190依然调节保卫细胞中 SA诱
导产生 H2O2过程。
3 讨论
ROS产生和代谢是植物应答逆境反应的关键步骤, 并与
Ca2+信使、MAP激酶交叉调节 ABA和 SA刺激的生
表 1 不同处理下 2种探针荧光强度
Table 1 The fluorescent intensity of two probes by various
treatments
Treatments DCF Fluo-3
SA 112.3±20.8 101.94±21.36
SB202190 20.28±17 32.36±22.32
SA+SB202190 33.68±18 103.77±19.33
SA+SB202474 118.3±19.32 102.1±17.87
BAPTA 32.07±19.15
SA+SB202190+BAPTA 19.76±15.19
表中荧光强度数据是实施处理 10分钟时的 LSCM记录数据
DCF and Fluo-3 fluorescent intensity are monitored by the vari-
ous treatments for 10 min. Results are the averages ± SE from
at least 3 independent experiments
447江静等: SB202190调节蚕豆保卫细胞中SA诱导H2O2产生
理生化过程(Mori et al., 2001; Suhita et al., 2004)。
虽然动物细胞中p38 MAP激酶被证明广泛调节ROS信
号过程, 但植物细胞中是否存在这样的机制尚未见报
道。本研究发现 , p 3 8 M A P 激酶专一性抑制剂
图 1 SB202190 阻断蚕豆保卫细胞 SA诱导 H2O2产生
(A1-A3) 空白处理时保卫细胞中 ROS探针荧光变化记录, (A0)为相应的透射光图;
(B1-B3) 100 mmol.L-1 SA处理时 ROS产生情况记录, (B0)为相应的透射光图;
(C1-C3) 100 mmol.L-1 SA+10 mmol.L-1 SB202190处理下 ROS产生情况, (C0)为相应的透射光图;
(D) 不同处理统计结果。
表皮条事先孵育H2O2探针H2DCFDA
Figure 1 SB202190 block SA-induced H2O2 generation in Vicia guard cells
(A1-A3) no change in ROS generation in guard cell by blank treatment, (A0) from the bright-light image;
(B1-B3) ROS elevation by 100 mmol.L-1 SA, (B0) the corresponding bright-light image;
(C1-C3) the change in ROS generation by 100 mmol.L-1 SA+ 10 mmol.L-1 SB202190 treatment, (C0) the corresponding bright-light image;
(D) the measurements of DCF fluorescent intensity by the various treatments. Results are the averages± SE from at least 3
independent experiments.
Guard cells loaded with H2DCFDA
448 植物学通报 24(4) 2007
SB202190阻断 SA诱导 H2O2浓度升高, 而且Ca2+螯
合剂BAPTA没有阻断SB202190的这种作用。这些结
果初步揭示, 植物细胞中存在类似动物细胞中p38 MAP
激酶调节H2O2信号传递的反应机制。但该抑制剂不影响
ABA启动的这些反应, 暗示了H2O2信号途径的专一性。
生理生化实验表明, SB202190可以结合活性形式
和非活性形式的p38 MAP激酶, 进而非常专一地阻断它
的下游作用机制(Frantz et al., 1998; Nemoto et al.,
1998; Lee et al., 1999), 因此被用来研究p38 MAP激
酶和ROS调节动物细胞中各种各样的胁迫机制, Ca2+参
与此过程的调节(Manthey et al., 1998; Montero et al.,
2002; Cicconi et al., 2003; Prakash et al., 2005)。
与动物细胞中反应类似, SA通过调节植物细胞中
ROS产生和代谢来帮助植物应答环境胁迫, 提高生存能
力(Mori, 2001)。SA诱导 H2O2产生和积累机理是: 一
方面SA可以提高植物体SOD酶活性, 加速O2-. 歧化为
H2O2 (Rao et al., 1997), 另一方面 SA与一些 CAT类
蛋白 -水杨酸结合蛋白(salicylic acid binding protein,
SABP) 结合而抑制CAT降解H2O2的能力 (Slaymaker
et al., 2002)。已证明气孔保卫细胞中 H2O2和 SA相
互作用, 放大胁迫信号(Mori et al., 2001; Suhita et al.,
2004), 因此, SB202190阻断SA诱导ROS产生(图1),
暗示蚕豆保卫细胞中类似 p38MAP激酶活性可能正调
节SOD活性升高, 或者同时正调节SA与CAT结合, 加
速 H2O2产生和积累, 放大胁迫信号。
Ca2+不仅可以和p38 MAP激酶共同调控动物细胞
中H2O2信号转导(Blanc et al., 2004), 而且是植物细胞
H2O2产生过程的重要影响因子(Pei et al., 2000; Mori
et al., 2001; Jiang and Zhang, 2003)。与HeLa细胞
研究结果(Montero et al., 2002)相似, 单独的SB202190
不影响蚕豆保卫细胞胞质Ca2+浓度(表1)。所以, SA和
SB202190联合处理, 胞质Ca2+探针荧光强度仍然升高
(表 1)。虽然研究显示 SA诱导 SOD活性升高, 并依赖
Ca2+加速O2-. 歧化为H2O2 (Rao et al., 1997; Slaymaker
et al., 2002; Kawano, 2003), 但平行证据表明, 蚕豆
保卫细胞中NADPH氧化酶催化O2-. 产生的反应发生在
SOD催化O2-. 为 H2O2反应之后, 同时, SA诱导O2-. 浓
度升高反应在胞内 Ca2+ 浓度升高之前(Mori et al.,
2001)。综合这些结果, Ca2+ 浓度升高与 H2O2产生和
积累反应可能是平行进行的。所以, 使用 BAPTA后,
SB202190对SA诱导H2O2产生阻断作用没有被解除, 或
者说 Ca2+ 浓度升高和SB202190阻断SA诱导H2O2产生
共同出现的结果(表 1)不难理解。可以想象, SB202190
专一作用于SA诱导H2O2产生信号路段, 而没有触及Ca2+
信号通路。这些结果很好地回应了Li等(1998)的报道: 无
论Ca2+还是EGTA处理条件下, 蚕豆保卫细胞都有高活
性的38 kDa蛋白激酶出现。因此推测, 植物细胞中p38
MAP激酶活性不仅调节氧化胁迫信号转导, 而且可能有
依赖 Ca2+ 和不依赖 Ca2+两种方式并存。
本研究结果显示, SB202190 没有调节 ABA诱导
H2O2信号机制(图2), 佐证H2O2作为信号分子的特性。
图 2 SB202190 不能调节蚕豆保卫细胞中 ABA诱导 H2O2产生
ABA和 ABA+SB202190处理时, 保卫细胞内 DCF荧光强度统计
结果。数据是 4 个以上不同细胞内荧光强度平均值
Figure 2 SB202190 do not block ABA-induced H2O2 genera-
tion in Vicia guard cells
The measurements of DCF fluorescent intensity are at the pres-
ence of ABA or ABA+SB202190 for before treatment, 5 min,
and 10 min. Results are the averages ± SE from at least 4
independent experiments
449江静等: SB202190调节蚕豆保卫细胞中SA诱导H2O2产生
已有研究表明, ABA可以依赖、也可以不依赖 Ca2+ 调
节ROS产生 (Fedoroff, 2006), 并可能由其它MAP激
酶家族成员专一调节, 比如, MEK1/2专一调节ABA诱
导 ROS产生 (Grant et al., 2000; Jiang and Zhang,
2003; Jiang et al., 2003; Fedoroff, 2006), 而不调节
SA诱导 H2O2产生(Grant et al., 2000; Jiang et al.,
2003)。Li等(1998) 报道蚕豆保卫细胞中38 kDa和57
kDa蛋白激酶同时被磷酸化激活, 暗示除38 kDa蛋白激
酶外, 还有其它MAP激酶类参与保卫细胞ABA信号转
导。2C型蛋白磷酸酶 ABI1和 ABI2调节 ABA及其下
游 H2O2信号通路 (Murata et al., 2001; Meskiene et
al., 2003), 进一步说明不同MAP激酶成员分享ROS信
号通路, 因为 p38MAP激酶是被 PTP2/3, 而不是被
PP2C类去磷酸化。ABA和 SA拉动的 ROS产生和代
谢机制既相似, 又各具特色, 胞质Ca2+和蛋白激酶 / 磷
酸酶顺应特色而发挥不同的调节作用。
由此可见, 作为信号分子的H2O2, 它的产生和灭活
都有特异性, Ca2+和p38 MAP激酶参与SA诱导H2O2
的产生, 显示H2O2信号途径的复杂性和专一性。MAP
激酶家族成员可能是实现ROS产生和代谢信号途径特
性的基础。
参考文献
Blanc A, Pandey NR, Srivastava AK (2004). Distinct roles of
Ca2+, calmodulin, and protein kinase C in H2O2 -induced activa-
tion of ERK1/2, P38 MAPK, and protein kinase B signaling in
vascular smooth muscle cells. Antioxid Redox Signal 6, 353-
366.
Cicconi S, Ventura N, Pastore D, Bonini P, DiNardo P, Lauro
R, Marlier LN (2003). Characterization of apoptosis signal
transduction pathways in HL-5 cardiomyocytes exposed to
ischemia/reperfusion oxidative stress model. J Cell Physiol
195, 27-37.
Czubryt MP, Austria JA, Pierce GN (2000). Hydrogen perox-
ide inhibition of nuclear protein import is mediated by the mito-
gen-activated protein kinase, ERK2. J Cell Biol 148, 7-15.
Desikan R, Cheung MK, Bright J, Henson D, Hancock JT,
Neill SJ (2004). ABA, hydrogen peroxide and nitric oxide sig-
nalling in stomatal guard cells. J Exp Bot 55, 205-212.
Fedoroff N (2006). Redox regulatory mechanisms in cellular stress
responses. Ann Bot 98, 289-300.
Frantz B, Klatt T, Pang M, Parsons J, Rolando A, William H,
Tocci MJ, O’Keefe SJ, O’Neill EA (1998). The activation
state of p38 mitogen-activated protein kinase determines the
efficiency of ATP competition for pyridinylimidazole inhibitor
binding. Biochem 37, 13846-13853.
Grant JJ, Yun BW, Loake GJ (2000). Oxidative burst and cog-
nate redox signalling reported by luciferase imaging: identifi-
cation of a signal network that functions independently of
ethylene, SA and Me-JA but is dependent on MAPKK activity.
Plant J 24, 569-582.
Hoyos ME, Zhang S (2000). Calcium-independent activation of
salicylic acid-induced protein kinase and a 40-kilodalton pro-
tein kinase by hyperosmotic stress. Plant Physiol 122, 1355-
1363.
Hsieh CC, Papaconstantinou J (2006). Thioredoxin-ASK1 com-
plex levels regulate ROS-mediated p38 MAPK pathway activ-
ity in livers of aged and long-lived Snell dwarf mice. FASEB J
20, 259-268.
Hu T, Ramachandrarao SP, Siva S, Valancius C, Zhu Y,
Mahadev K, Toh I, Goldstein BJ, Woolkalis M, Sharma K
(2005). Reactive oxygen species production via NADPH oxi-
dase mediates TGF-b-induced cytoskeletal alterations in en-
dothelial cells. Am J Physiol Renal Physiol 289, F816- 825.
Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006)
MEKK1 is required for MPK4 activation and regulates tissue-
specific and temperature-dependent cell death in Arabidopsis.
J Biol Chem 281, 36969-36976.
Jiang J, An GY, Wang PC, Wang PT, Han JF, Jia YB, Song C-
P (2003). MAP kinase specifically mediates the ABA-induced
H2O2 generation in guard cells of Vicia faba L. Chin Sci Bull
48, 1919-1926.
Jiang M, Zhang J (2003). Cross-talk between calcium and reac-
tive oxygen species originated from NADPH oxidase in absci-
sic acid-induced antioxidant defence in leaves of maize
seedlings. Plant Cell Environ 26, 929-939.
Kawano T (2003). Roles of the reactive oxygen species-gener-
ating peroxidase reactions in plant defense and growth
induction. Plant Cell Rep 21, 829-837.
Kim HS, Lee MS (2005). Essential role of STAT1 in caspase-
independent cell death of activated macrophages through the
p38 mitogen-activated protein kinase/STAT1/reactive oxygen
species pathway. Mol Cell Biol 25, 6821-6833.
Kim JK, Pedram A, Razandi M, Levin ER (2006). Estrogen
450 植物学通报 24(4) 2007
prevents cardiomyocyte apoptosis through inhibition of reac-
tive oxygen species and differential regulation of p38 kinase
isoforms. J Biol Chem 281, 6760-6767.
Komis G, Apostolakos P, Gaitanaki C, Galatis B (2004).
Hyperosmotically induced accumulation of a phosphorylated
p38-like MAPK involved in protoplast volume regulation of plas-
molyzed wheat root cells. FEBS Lett 573, 168-174.
Kreideweiss S, Ahlers C, Nordheim A, Ruhlmann A (1999).
Ca2+-induced p38/SAPK signalling inhibited by the immunosup-
pressant cyclosporin A in human peripheral blood mononuclear
cells. Eur J Biochem 265, 1075-1084.
Kuruganti PA, Wurster RD, Lucchesi PA (2002). Mitogen ac-
tivated protein kinase activation and oxidant signaling in astro-
cytoma cells. J Neurooncol 56, 109-117.
Lee JC, Kassis S, Kumar S, Badger A, Adams JL (1999). P38
mitogen-activated protein kinase inhibitors— mechanisms and
therapeutic potentials. Pharmacol Ther 82, 389-397.
Li J, Lee YR, Assmann SM (1998). Guard cells possess a
calcium-dependent protein kinase that phosphorylates the KAT1
potassium channel. Plant Physiol 116, 785-795.
Manthey CL, Wang SW, Kinney SD, Yao Z (1998). SB202190,
a selective inhibitor of p38 mitogen-activated protein kinase, is
a powerful regulator of LPS-induced mRNAs in monocytes. J
Leukoc Biol 64, 409-417.
Meskiene I, Baudouin E, Schweighofer A, Liwosz A, Jonak
C, Rodriguez PL, Jelinek H, Hirt H (2003). Stress-induced
protein phosphatase 2C is a negative regulator of a mitogen-
activated protein kinase. J Biol Chem 278, 18945-18952.
Montero M, Lobatón CD, Moreno A, Alvarez J (2002). A
novel regulatory mechanism of the mitochondrial Ca2+ uniporter
revealed by the p38 mitogen-activated protein kinase inhibitor
SB202190. FASEB J 16, 1955-1957.
Mori IC, Pinontoan R, Kawano T, Muto S (2001). Involvement
of superoxide generation in salicylic acid-induced stomatal
closure in Vicia faba. Plant Cell Physiol 42, 1383-1388.
Mori IC, Schroeder JI (2004). Reactive oxygen species activa-
tion of plant Ca2+ channels: a signaling mechanism in polar
growth, hormone transduction, stress signaling, and hypo-
thetically mechanotransduction. Plant Physiol 135, 702-708.
Morris PC (2001). MAP kinase signal transduction pathways in
plants. New Physiol 151, 67-89.
Munnik T, Ligterink W, Meskiene II, Calderini O, Beyerly J,
Musgrave A, Hirt H (1999). Distinct osmo-sensing protein
kinase pathways are involved in signaling moderate and se-
vere hyper-osmotic stress. Plant J 20, 381-388.
Murata Y, Pei ZM, Mori IC, Schroeder J (2001). Abscisic acid
activation of plasma membrane Ca2+ channels in guard cells
requires cytosolic NAD(P)H and is differentially disrupted up-
stream and downstream of reactive oxygen species produc-
tion in abi1-1 and abi2-1 protein phosphatase 2C mutants.
Plant Cell 13, 2513-2523.
Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002).
Hydrogen peroxide and nitric oxide as signalling molecules in
plants. J Exp Bot 53, 1237-1242.
Nemoto S, Xiang J, Huang S, Lin A (1998). Induction of apoptosis
by SB202190 through inhibition of p38beta mitogen-activated
protein kinase. J Biol Chem 273, 16415-16420.
Niwa K, Inanami O, Ohta T, Ito S, Karino T, Kuwabara M
(2001). P38 MAPK and Ca2+ contribute to hydrogen peroxide-
induced increase of permeability in vascular endothelial cells
but ERK does not. Free Radic Res 35, 519-527.
Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen
GJ, Grill E, Schroeder JI (2000) Calcium channels activated
by hydrogen peroxide mediate abscisic acid signalling in guard
cells. Nature 406, 731-734.
Pitzschke A, Hirt H (2006). Mitogen-activated protein kinases
and reactive oxygen species signaling in plants. Plant
Physiol 141, 351-356.
Pöpping B, Gibbons T, Watson MD (1996). The Pisum sativum
MAP kinase homologue (PsMAPK) rescues the Saccharomy-
ces cerevisiae hog1 deletion mutant under conditions of high
osmotic stress. Plant Mol Biol 31, 355-363.
Prakash J, Saluja V, Visser J, Moolenaar F, Meijer DK,
Poelstra K, Kok RJ (2005). Bioanalysis and pharmacokinet-
ics of the p38 MAP kinase inhibitor SB202190 in rats. J
Chromatogr B Analyt Technol Biomed Life Sci 826, 220-
225.
Ramachandiran S, Huang Q, Dong J, Lau SS, Monks TJ
(2002). Mitogen-activated protein kinases contribute to reac-
tive oxygen species-induced cell death in renal proximal tu-
bule epithelial cells. Chem Res Toxicol 15, 1635-1642.
Rao MV, Palivath G, Ormrod DP, Murr DP, Watkins CB (1997).
Influence of salicylic acid on H2O2 production, oxidative stress,
and H2O2-metabolizing enzymes. Plant Physiol 115, 137-149.
Rodrkguez-Gabriel MA, Russell P (2005). Distinct signaling
pathways respond to arsenite and reactive oxygen species in
Schizosaccharomyces pombe. Eukaryotic Cell 4, 1396-1402.
Sheikh-Hamad D, Gustin MC (2004). MAP kinases and the
adaptive response to hypertonicity: functional preservation
from yeast to mammals. Am J Physiol Renal Physiol 287,
451江静等: SB202190调节蚕豆保卫细胞中SA诱导H2O2产生
F1102-1110.
Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C
(1997). Salicylic acid potentiates an agonist-dependent gain
control that amplifies pathogen signals in the activation of de-
fense mechanisms. Plant Cell 9, 261-270.
Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB,
Klessig DF (2002). The tobacco salicylic acid-binding protein
3 (SABP3) is the chloroplast carbonic anhydrase, which ex-
hibits antioxidant activity and plays a role in the hypersensitive
defense response. Proc Natl Acad Sci USA 99, 11640-11645.
Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004).
Cytoplasmic alkalization precedes reactive oxygen species
production during methyl jasmonate- and abscisic acid-induced
stomatal closure. Plant Physiol 134, 1536-1545.
Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki
M, Hiravam T, Shinozaki K (1999). A transmembrane hy-
brid-type histidine kinase in Arabidopsis founctions as an
osmosensor. Plant Cell 11, 1743-1754.
Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001). Oxi-
dative stress activates ATMPK6, an Arabidopsis homologue of
MAP Kinase. Plant Cell Physiol 42, 1012-1016.
Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006). Mitogen-
activated protein kinase is involved in abscisic acid-induced
antioxidant defense and acts downstream of reactive oxygen
species production in leaves of Maize plants. Plant Physiol
141, 475-487.
Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP
(2001). Hydrogen peroxide is involved in abscisic acid-in-
duced stomatal closure in Vicia faba. Plant Physiol 126, 1438-
1448.
SB202190 Modulate Salicylic Acid-induced H2O2 Generation
in Vicia Guard Cells
Jing Jiang, Shuan Han, Chunpeng Song*
Laboratory of Plant Stress Biology and Colege of Life Sciences, Henan University, Kaifeng 475001, China
Abstract Using laser scanning confocal microscopy, we tested the mechanism of mitogen-activated protein kinase (MAPK)
regulation of salicylic acid (SA)- or abscisic acid (ABA)-induced reactive oxygen species H2O2 elevation in Vicia guard cells.
SB202190, a special inhibitor of p38 MAPK, blocked the elevation of H2O2 by SA but not ABA, whereas SB202190 alone could not
increase H2O2 or Ca2+ level in guard cells. The combination of BAPTA, the chelator of Ca2+, and SA+SB202190 could not increase
H2O2 level, which suggests that activation of p38 MAPK-like especially modulates H2O2 signaling in plant cells, regardless of Ca2+
level, similar to the mechanism in mammalian or yeast cells. To our knowledge, this is the first report that SB202190 regulates SA-
induced ROS signaling in plant cells.
Key words ABA, H2O2, p38 MAP kinase, SA, SB202190, Vicia guard cells
Jiang J, Han S, Song CP (2007). SB202190 modulate salicylic acid-induced H2O2 generation in Vicia guard cells. Chin Bull Bot 24,
444-451.
* Author for correspondence. E-mail: songcp@henu.edu.cn
(责任编辑: 韩亚琴)