Abstract:Early bolting of Chinese cabbage (Brassica rapa L.) during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting varieties is a major objective of Chinese cabbage breeding programs. In order to analyze the genetic basis of bolting traits, a genetic map of B. rapa was constructed based on amplified fragment-length polymorphism (AFLP), sequence-related amplified polymorphism (SRAP), simple sequence repeat (SSR), random amplification of polymorphic DNA (RAPD), and isozyme markers. Marker analysis was carried out on 81 double haploid (DH) lines obtained by microspore culture from F1 progeny of two homozygous parents: B. rapa L. ssp. pekinensis (BY) (an extra-early bolting Chinese cabbage line) and B. rapa L. ssp. rapifera (MM) (an extra-late bolting European turnip line). A total of 326 markers including 130 AFLPs, 123 SRAPs, 16 SSRs, 43 RAPDs and 14 isozymes were used to construct a linkage map with 10 linkage groups covering 882 cM with an average distance of 2.71 cM between loci. The bolting trait of each DH line was evaluated by the bolting index under controlled conditions. Quantitative trait loci (QTL) analysis was conducted using multiple QTL model mapping with MapQTL5.0 software. Eight QTLs controlling bolting resistance were identified. These QTLs, accounting for 14.1% to 25.2% of the phenotypic variation with positive additive effects, were distributed into three linkage groups. These results provide useful information for molecular marker-assisted selection of late bolting traits in Chinese cabbage breeding programs.