全 文 :第 35 卷第 8 期
2015年 4月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.8
Apr.,2015
http: / / www.ecologica.cn
基金项目:国家自然科学基金项目(41201603);中国科学院成都山地灾害与环境研究所“一三五”方向性项目专题(SDS⁃135⁃1204⁃03)
收稿日期:2013⁃03⁃12; 网络出版日期:2014⁃10⁃30
∗通讯作者 Corresponding author.E⁃mail: jialih@ imde.ac.cn
DOI: 10.5846 / stxb201403120425
黄茄莉.基于系统演化视角的可持续性评价方法.生态学报,2015,35(8):2712⁃2718.
Huang J L.A new method to assess sustainability: from the perspective of system evolution.Acta Ecologica Sinica,2015,35(8):2712⁃2718.
基于系统演化视角的可持续性评价方法
黄茄莉
中国科学院成都山地灾害与环境研究所,成都 610041
摘要:可持续发展水平的衡量是可持续发展研究的重要内容,它可以为政府的可持续发展决策提供重要的科学依据。 现有的可
持续性评价方法可分为指标列举法、流量分析法和系统分析法。 前两类方法应用广泛,但理论基础较为薄弱,在指标的选取、标
准化和赋权等方面存在一定的缺陷。 基于系统运行机理的系统分析法尚不多见,但能弥补前两种方法的部分不足,Ulanowicz
于 2009年提出的演化模型是此类方法的代表。 该模型从系统演化角度出发,以网络流为研究对象,以信息论为手段,指出系统
的可持续性是系统上升性(效率)和恢复力平衡的结果,并提出了可持续性评价指标 R。 回顾了现有研究方法的优缺点。 介绍
了从演化视角分析可持续性的原理和数学模型,可持续发展的阈值范围以及该方法的应用案例。 总结了该方法的应用步骤及
尚需解决的问题。
关键词:可持续性;评价;演化;上升性;恢复力
A new method to assess sustainability: from the perspective of system evolution
HUANG Jiali
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Abstract: Sustainability assessment is an important subject in the field of sustainable development. Indicators of
sustainability can provide policy⁃makers with clues as to whether a region is moving toward or away from sustainability: this
can be helpful for decision⁃making. Sustainability assessment methodologies can be classified into three indicators:
enumeration, flow analysis and systemic analysis. The standard used to classify methodologies considers whether the
relationships between components in the system alone or whether the relationships between components in the system and the
outside environment are considered. The indicators enumeration and flow analysis are widely used; however, they contain
some disadvantages. These methods have a poor theoretical basis. Moreover, criteria to choose, standardize and integrate
indicators are not ascertained unanimously. Different results may be derived for the same data if different methods of
standardization or integration are used. Hence, sustainability assessment from the perspective of system dynamics has
emerged as the optimal assessment method. In 2009, the American theoretical ecologist Ulanowicz proposed a typical system
analysis method known as the evolution model. The evolution model—taking flow networks as the study object vand
information theory as the measurement—shows that the sustainability of a system is determined by the balance between
ascendency (efficiency) and resiliency. The model states that the capacity for a system to undergo evolutionary change or
self⁃organization consists of two factors: 1) ascendency: the network′s capacity to perform in a sufficiently organized and
efficient manner to maintain its integrity over time; and 2) resilience: the network′s reserve of flexible fallback positions
and diversity of actions that can be used to meet the exigencies of novel disturbances and the novelty needed for ongoing
development and evolution. These two factors are complementary with respect to diversity and connectivity in the network. A
http: / / www.ecologica.cn
system′s resilience is enhanced by high levels of diversity and connectivity, while ascendency is augmented by low levels of
diversity and connectivity. In other words, too much ascendency ( resilience) means too little resilience (ascendency) . A
system lacking ascendency has neither the extent of activity nor the internal organization needed to survive. By contrast, a
system lacking resilience appears brittle in the face of novel disturbances. Both too much ascendency and too much
resilience negatively affect sustainable development. Both ascendency and resilience are important for long⁃term
sustainability: a system′s sustainability is depending on the tradeoff between ascendency and resilience. According to this
result, the sustainability indicator R is proposed. The paper is organized as follows. First, the advantages and disadvantages
of current sustainability assessment methodologies are reviewed. Section 1 describes the principles used to analyze
sustainability from the perspective of system′s evolution. In section 2, the evolution model is described in the language of
information theory. Section 3 describes the range of sustainable development and the optimal sustainable development state
for ecosystems. This section also examines how to analyze the range of sustainable development in an economic system. The
evolution model is applied to a water system and an economic system; these applications are described in section 4. Finally,
the key steps to applying the evolution model are summarized and its disadvantages are discussed.
Key Words: sustainability; assessment; evolution; ascendency; resiliency
自 1987年世界环境与发展委员会(WCED)出版其报告《我们共同的未来》及 1992 年联合国环境与发展
大会(UNCED)制定《21世纪议程》以来,世界各地迅速掀起了可持续发展研究的热潮。 Bettencourt和 Kaur 对
标题、摘要或关键词中包含了“sustainability”和 /或“sustainable development”的英文论文(1974—2010年)进行
了分析,结果表明:来自 174个国家社会科学、生物学、医学和地球科学等领域的 37000 多位作者共发表论文
约 20000篇,而且从 20 世纪 80 年代末开始论文数量以每 8.3 年翻一番的速度增加[1]。 可见,可持续发展研
究已经渗透到世界各地的各个学科领域,而且研究队伍正在不断壮大。 可持续发展的定量评价是可持续发展
研究的重要内容,是科学家与公众和政府交流的有效途径,可以为政府的可持续发展决策提供重要的科学
依据。
1992年联合国环境与发展大会(UNCED)号召国家及国际上政府和非政府组织“开发并确定可持续发展
指标,以改善各个层面的决策信息”,第一次将可持续发展由理论和概念推向了行动[2⁃3]。 自此,评价可持续
性的各类指标和方法不断涌现,并逐步应用到国家和地区层面的可持续性评价中[4]。 根据可持续性评价方
法是否考虑了系统内部组分之间及内部组分与外部环境之间的关系,可以将他们分为 3类。
第 1类方法 主要从环境、经济、社会和制度等中的一个或几个方面选取指标,评价系统的可持续性,可
称之为指标列举法。 该方法包含的典型框架和指数有压力⁃状态⁃响应(PSR)框架、环境压力指标(EPIs)、生
命行星指数(LVI)、绿色 GDP、真实储蓄率(GSs)、可持续经济福利指数(ISEW)、人类福利指数(HWI)、人文
发展指数(HDI)等。 这类方法由于简单易行,在可持续性评价的初期非常流行,但它几乎没有考虑系统内部
组分之间或系统内部组分与外部环境之间的关系。 而且,由于评价框架较为笼统,针对同一研究对象不同的
研究者可能会选择不同的指标体系,从而产生不同的研究结果,但不能从根本上判断哪个指标体系更恰当。
同时,对指标的标准化、赋权及集成方法的选取,迄今尚未形成统一标准。 对于同样的指标体系和原始数据,
采用不同的标准化、赋权或集成方法会得到不同的绝对数值,且相对可持续性排序也可能发生变化。 采用指
标列举法时,指标的选取和数值的处理过程都会增加可持续性评价结果的不确定性。
第 2类方法 考虑了系统内部组分与外部环境之间的相互作用关系,主要通过资源利用效率衡量系统的
可持续性,可称之为流量分析法,包括物质流分析和能量流分析方法。 其中,能量流分析包括能值分析和火用
分析,尤以能值分析最为常见。 能值分析同时考虑了能量在数量和品质上的差异,改进了传统的能量分析方
法,但未能从根本上解决方法体系中核心的能值转化率的确定问题,其转化率的确定受人为影响较大,没有考
虑到环境的影响因素[5]。 流量分析方法通过建立账户分析资源流动的效率和可获得性等评价系统的可持续
3172 8期 黄茄莉:基于系统演化视角的可持续性评价方法
http: / / www.ecologica.cn
性,建立了系统内部组分与外部环境之间的联系,但这类方法未包含与可持续性有关的全部强度参数[6]。 第
1类和第 2类方法的共同点是都很少研究可持续发展的阈值范围。
第 3类方法为系统分析法,它是基于系统运行机理进行的可持续性评价,既考虑了系统内部组分与外部
环境之间的关系,又考虑了系统内部组分之间的关系。 开发此类指标是可持续性评价的发展趋势。 目前此类
指标还比较少见,美国系统生态学家 Ulanowicz于 2009年从系统演化角度出发提出的可持续性指标 R是此类
指标的代表[7]。 与第 1类和第 2类方法中的指标 /指数相比,可持续性指标 R主要有以下 4点优势:①具备合
理的理论基础,推导过程严谨;②考虑了系统内组分之间及内部组分与外部组分之间复杂的相互关系;③指标
R并非基于指标体系推导得出,因此不存在与指标的选取、标准化、赋权和集成等相关的问题;④提出了可持
续发展的阈值范围和最佳状态。 下面简要介绍从演化角度评价系统可持续性的原理和数学模型,可持续发展
的阈值范围,以及该方法在当前研究中的应用。
1 从演化角度评价可持续性的原理
美国系统生态学家 Ulanowicz从信息论的角度出发,从宏观上分析了驱动系统演化的作用力,定量解析了
系统演化过程,指出系统演化的能力由系统的上升性(效率)和恢复力组成,二者的平衡关系决定了系统的可
持续发展水平[7]。
1.1 系统演化的能力
假设事件 i发生的概率为 pi ,发生的不确定性为 si ,则 si = ⁃klog(pi) ,它表征事件发生变化的潜力。 事件
发生的概率越大,发生变化的潜力越小。 整个系统的平均不确定性可记为 H :
H =∑
i
hi =∑
i
pisi = ⁃k∑
i
pi log(pi) (1)
当 pi ≈1时,事件几乎肯定会发生,但它几乎不可能发生变化( si ≈0),此时 hi ≈0;当 pi ≈0,事件发生
变化的潜力很大( si ≫1),但在系统动力学中它几乎不会以作用者的身份出现( pi ≈0),此时也有 hi ≈0。 只
有当 pi取中间值时,事件才能频繁发生,同时又有足够的潜力变化。 从这个意义上讲, hi表征事件 i在系统变
化或发展过程中起重要作用的能力,H则表示整个系统经历变化的总能力[7]。 这些变化是协调的还是完全随
机的,取决于不同事件 i之间是否相互联系和相互联系的程度。 为了让任何变化有意义和方向,在可能事件
之间必须存在约束[8]。 这种系统内部事件之间的相互约束可以用平均相互信息表示。
信息指不确定性的减少量。 当事件 i发生的不确定性已知,事件 j发生时事件 i发生的不确定性也已知,
就可以求出由 j引起的 i不确定性的降低,此即事件 i从事件 j中得到的信息,也表征了事件 j对事件 i的约束:
X i j = [ ⁃klog(pi)] ⁃[ ⁃klog(pi j)] = klog
pij
p jpi
æ
è
ç
ö
ø
÷ = [ ⁃klog(p j)] ⁃[ ⁃klog(p j i)] = X j i (2)
式中, X i j表示事件 j对事件 i的约束, X j i表示事件 i对事件 j的约束, pi j表示事件 j发生时事件 i发生的概
率, p j i表示事件 i发生时事件 j发生的概率, pij表示事件 i和 j一起发生的概率。 由式(2)可见,事件 i从事件
j中得到的信息等于事件 j从事件 i中得到的信息,即式(2)量化了两个事件之间的相互信息。 将式(2)的每
一项乘以相应的联合概率就可以得到整个系统的平均相互信息 AMI(Average Mutual Information,AMI),也即
系统内部各个事件相互之间的约束:
AMI = k∑
i
∑
j
pij log
pij
p jpi
æ
è
ç
ö
ø
÷ (3)
AMI量化了系统中的有序、连贯和有效行为[7]。 如果将事件看作物质、能量或信息的流动,那么当 AMI
的值越高时,介质流动受到的约束越强,系统的组织结构越清晰。 如果一些路径转化介质的效率更高,那么越
来越多的介质将通过这些高效的路径进行转化,使得它们比低效的路径更具优势(图 1[9])。 这是因为系统在
演化过程中,正反馈作用会选择少数效率更高的路径而删除效率更低的路径,逐步形成如图 1[9]所示的结构。
根据对数函数的凸性可知 H ≥ AMI ≥ 0 [10],由此可见系统的不确定性是系统平均相互信息的上限。 将
4172 生 态 学 报 35卷
http: / / www.ecologica.cn
图 1 生态系统发展的假象情景[9]
Fig.1 Hypothetical scenario for ecosystem development[9]
不确定性 H与平均相互信息 AMI之间的差值即系统残
余的不确定性称为“条件熵” [7],记为 ψ :
ψ = H⁃AMI = ⁃klog∑
i,j
pij log(
pij 2
pip j
) ≥ 0 (4)
将式(4)变形可得式(5):
H = AMI + ψ (5)
由式(5)可知,系统的演化或自组织能力(H)可以
分解为两个组分:量化系统有序、连贯、有效的平均相互
信息 AMI 和量化系统无序、不连贯和无效的“条件熵”
ψ [7]。
1.2 网络流系统的演化能力
流量是对自然界中的转化进行描述的概念。 物质
流、能量流和信息流在生活中随处可见。 任何动力系统
都可以理解成流量网络[10]。 因此,可以通过将真实系统抽象成网络来刻画系统的演化过程。 下面介绍如何
表达网络流系统的不确定性、平均相互信息和“条件熵”。 在网络流系统中,事件 i 可表示一定量的介质从小
室 i离开,事件 j可表示一定量的介质进入小室 j 。 事件发生的概率可用流量表示:
pi—
Ti.
T..
, p j—
T.j
T..
, pij—
Tij
T..
(6)
式中, Tij 表示从小室 i流入小室 j的流量, Ti. 表示所有离开小室 i的流量, T.j 表示所有流入小室 j的流量,称
为系统总吞吐量。
T.. =∑
i,j
Tij (7)
将流量表示的概率式(6)代入式(1)、(3)、(4)可得式(8):
H = ⁃k∑
i,j
Tij
T..
log
Tij
T..
æ
è
ç
ö
ø
÷ , AMI = k∑
i,j
Tij
T..
log
TijT..
T.jTi.
æ
è
ç
ö
ø
÷ , ψ = ⁃k∑
i,j
Tij
T..
log
Tij 2
T.jTi.
æ
è
ç
ö
ø
÷ (8)
此即网络流系统的平均不确定性 H 、平均相互信息 AMI和“条件熵” ψ 。 式(8)中 k表征参数尺度,它只
与对数底数有关,如当对数底数取 2时, k为 1比特。 但是 k不能表征系统的物理维度,因为比特传递不了任
何系统大小的信息。 因此,在网络流系统中选取系统总吞吐量 T..表征网络的大小[10],式(8)变为式(9—11):
C = T..·H = ⁃∑
i,j
Tij log
Tij
T..
æ
è
ç
ö
ø
÷ (9)
A = T..·AMI =∑
i,j
Tij log
TijT..
T.jTi.
æ
è
ç
ö
ø
÷ (10)
φ = T..·ψ = ⁃∑
i,j
Tij log
Tij 2
T.jTi.
æ
è
ç
ö
ø
÷ (11)
式中,C为发展能力,A为上升性, φ为恢复力[7]。 由式(5)易知发展能力是上升性和恢复力的和:
C = A + φ (12)
式(5)和式(12)表明系统的演化能力(或自组织能力)由两个因素组成:表征系统效率的上升性 A和表征
系统发生变化潜力的恢复力 φ 。 在网络中,效率指网络系统充分表现出有组织和有效行为以保持系统的整
体性,而恢复力是指网络系统有灵活的后退空间和多样的行为以面对异常扰动及发展进化过程中的异常需
求[11]。 对系统的发展而言,上升性和恢复力缺一不可,缺乏上升性将使系统缺乏生存所需的活力或内部组
织;而恢复力过小将使系统在面对微小的异常扰动时都易于崩溃。 效率和恢复力在本质上是互补的,因为能
提高效率的流线型会自动降低恢复力。 一般而言,更高的效率意味着更低的恢复力,相反更高的恢复力意味
5172 8期 黄茄莉:基于系统演化视角的可持续性评价方法
http: / / www.ecologica.cn
着更低的效率。 只有当上升性和恢复力之间比例合适时,才既能保证系统处理物质、能量和信息流,又能保证
系统从异常扰动中恢复,从而实现系统的可持续发展[7]。
2 从演化角度评价可持续性的数学模型
只有当上升性和恢复力的比值处于一定的平衡范围内时,系统才能实现可持续发展。 由式(12)可知,系
统的发展能力是上升性和恢复力之和。 因此,Ulanowicz通过定义 a = A / C ( 0 ≤ a ≤ 1)来描述上升性和恢复
力之间的关系,构建了关于 a的“演化的适应性”指标 F ,并且基于 F构建了可持续性指标 R[7]:
F = ⁃kalog(a) (13)
指标 F可测量系统的演化或自组织潜力[7]。 当 a = 1时,系统的恢复力为 0, F = 0;当 a→0时,系统的上
升性趋于 0, F→0。 与对式(1)的解释类似,只有当 a取中间值即效率和恢复力的比例合适时,系统才可能实
现可持续发展。 通过求取 F的最优值,可得到效率和恢复力的最佳平衡比例。 当 a = (1 / e) 时, F 取得最大
值,此时效率和恢复力的比值约为 0.58。 然而,这仅仅是从数学角度推理得到的结果,实际上 F的最大值可能
受到迄今不确定的动力因素影响。 因此,需要对 F 进行调整。 Ulanowicz 引入了调整参数 β [7],这样 F =
- kaβ log(aβ) ,其中 β的值能通过可获取的数据确定。 选取 k = e / log(e) 标准化该函数,则对“演化的适应性”
测量变为式(14):
F = ⁃[e / log(e)]aβ log(aβ) (14)
函数 F的取值在 0到 1之间变化,它是无量纲的。 F在 a = e⁃
1
β 处取得最大值。 因此,确定了 β值就可以确
定最优 a值,即确定了上升性和恢复力的最佳平衡比例。 F 描述了造成 A 和 φ 之间可持续平衡的活力部分。
也就是说,总的活力(例如,经济学中 GDP,或这里的 T.. )已经不能精确估算系统的可持续性。 T.. 必须考虑折
扣比例( 1 - F ),那么系统的可持续性变为 R :
R = T..F (15)
对于任意已知网络, a和 T.. 均可直接求得,若确定了 β 值,则可求得系统当前的可持续发展状态及距离
最佳可持续发展状态的距离。
3 可持续发展的阈值范围
确定可持续发展的阈值范围可以包含两项内容:一是确定最佳可持续发展状态;二是确定可持续发展的
边界。 前已述及,确定了 β值就可以确定系统的最佳可持续发展状态。 然而,迄今还没有证据表明 β 值是通
用的,生态系统网络、经济系统网络和基因演变转化网络等可能具有不同的 β值。 目前,仅有研究确定了生态
系统的 β值和可持续发展的边界。
Zorach和 Ulanowicz通过比较 44个真实生态系统网络与随机模拟产生的 100 个网络的结构[12],分析得
出了生态系统可持续发展的阈值范围。 在这个实证分析中,分别计算了每个网络的 n和 c ,并以 n和 c为横纵
坐标刻画网络属性(图 2) [7]。 其中, n = 2AMI ,测量了系统的有效营养级数; c = 2
φ
2 ,测量了系统的有效连通
性。 c和 n之间的关系间接反映了效率和恢复力之间的关系。 研究得出了“生命窗口”,所有真实生态系统网
络均在“生命窗口”内(图 2虚框) [7]。 结果表明,当一个网络的 c 值的取值范围为 1—3.01,且 n 值的取值范
围为 2—4.5时,系统处于可持续发展状态。 当 c值为 1.25且 n值为 3.25 时,系统处于最佳可持续发展状态。
此时, a值约为 0.46,效率和恢复力的比值约为 0.85。 系统的 a值越接近最优 a值,系统的可持续性越强。 详
细分析过程可参考文献[7]。
如果能构建经济系统流量网络,也可用类似的分析方法分析经济系统可持续发展的阈值范围。 中国和全
球许多国家都会定期编制国家和地区层面的投入⁃产出表。 投入⁃产出表反映了经济系统中不同部门之间的
相互作用关系。 价值型投入⁃产出表可以转化为以部门为网络结点,以部门之间现金流为流量的网络。 国内
已有学者将投入⁃产出表转化为流量网络,并根据本文提及的指标,从不同角度分析了甘肃省和北京市经济系
6172 生 态 学 报 35卷
http: / / www.ecologica.cn
图 2 随机网络(圆圈)与真实网络(实心方块)的链接密度和有
效作用数的组合[7]
Fig.2 Combinations of link⁃density plotted against number of
effective roles in a set of randomly assembled networks (circles)
and empirically estimated ecosystem network (solid squares) [7]
统的可持续发展趋势[13⁃14]。 因此,将投入⁃产出表转化
为流量网络,比较经济系统现金流网络和随机模拟网络
的属性差异,结合网络性质应能得出经济系统可持续发
展的阈值范围。
4 已有的研究案例
从系统演化的角度出发,基于效率和恢复力的平衡
关系评价系统可持续性的方法,已经应用到了经济系统
和水资源系统中。 Li 和 Yang 采用该方法评价了海河
流域 4 个子流域 1999—2007 年水资源系统的可持续
性[15]。 Kharrazi等用该方法分析了 6 个经济资源贸易
网络的可持续性[6]。
Litetaer基于效率和恢复力平衡的关系,专门分析
了银行危机,指出银行危机产生的原因并非循环或者管
理失灵,而是货币系统的结构不稳定[16⁃17]。 研究指出从系统演化的角度看,银行要实现可持续发展就需要多
样化货币种类和制度类型,引入新的货币(辅助货币)专门用于流通。 引入这些辅助货币的目的不是替代传
统的国有货币,而是与之并行运转,提高银行系统的恢复力。 一个成功的案例是以 WIR系统为基础的企业对
企业(B2B)辅助货币[18]。 该货币已经在瑞士成功运行 75a,使用者包含瑞士 1 / 4的企业。 这是瑞士经济体保
持长期稳定的重要原因。
图 3 可持续性与上升性和恢复力之间的关系
Fig. 3 Sustainability as function of the tradeoff between
ascendency and resilience
Goerner等将该模型用到经济系统,分析了它对自
由企业理论、政策和实践的含义,并提出用连通度和多
样性量化系统的可持续性[11]。 恢复力和上升性都与网
络的连通度和多样性水平有关,但方向相反。 高的连通
度和多样性对恢复力起正面作用,因为额外的选择有利
于系统从一条或者多条路径 /结点的缺失或干扰中恢
复。 然而,过高的连通度和多样性会妨碍系统转化介质
的效率,导致系统停滞。 低的连通度和多样性对上升性
起正面作用,但过低的连通度和多样性会使系统在面对
异常扰动时缺乏选择路径,从而极其脆弱。 因此,当连
通度和多样性过高(恢复力过高,效率过低)或过低(恢
复力过低,效率过高) 时系统都将变得不可持续
(图 3) [11]。
由图 3可见,系统离最佳平衡点越远,可持续性越弱,只有处于活力区域内时系统才是可持续的。 国内也
有学者基于该思路评价了北京市经济系统可持续发展的趋势[14]。
5 小结
从演化的视角出发,以系统效率和恢复力平衡为基础提出的可持续性评价方法,为可持续性评价和分析
提供了新的视角。 采用该方法评价系统可持续性时,首先需要构建能代表系统特征的流量网络。 网络构建包
含 3方面的内容:①网络中流动介质的选取,可根据研究目标选择货币、能量、碳或氮等作为流动介质;②网络
结点的选取,结合系统特点和数据收集的难易程度选取网络结点;③结点之间流量数据的获取。 其次,需要确
定 β值的大小,进而明确最佳可持续发展状态,为可持续性评价提供参照系。 目前,仅有研究确定了生态系统
7172 8期 黄茄莉:基于系统演化视角的可持续性评价方法
http: / / www.ecologica.cn
中 β值的大小,其他系统尚无定论,这也是该方法在定量研究方面进展缓慢的重要原因之一。 最后,将网络中
的流量数据代入式(7)可得到系统总吞吐量 T.. ,代入式(9)和式(10)即可求得代表效率和恢复力关系的 a
值,结合 β值和式(15)即可求得系统的可持续发展状态及距离最佳可持续发展状态的距离。 可持续性评价
的最终目的是提出方案使系统朝着更可持续的方向发展。 这里可通过对 R 进行敏感性分析,调整各路径上
的流量实现[7]。 可见,从演化视角评价系统可持续性具有完备的理论和方法体系。
与现有可持续性评价方法相比,从演化视角评价系统可持续性的方法理论基础更坚实,方法体系更完善,
而且不存在因指标选取、标准化、赋权和集总等引起的问题,并且研究了可持续发展的阈值范围。 这些都是该
方法的突出优点。 然而,由于该方法从提出到现在尚不足 5年,在推广应用时还存在一些问题。 其一,网络流
量数据的获取比较困难,尤其涉及时间序列数据时;其二,未明确提出网络结点的选取标准;其三,目前只求取
了生态系统中的 β值,这严重阻碍了该方法在可持续性定量分析中的应用。
参考文献(References):
[ 1 ] Bettencourt L M A, Kaur J. Evolution and structure of sustainability science. Proceedings of the National Academy of the Sciences of the United
States of America, 2011, 108(49):19540⁃19545.
[ 2 ] UNCED. Agenda 21, program of action for sustainable development, adopted at the United Nations conference on environment and development. Rio
de Janeiro, 1992.
[ 3 ] Bohringer C, Jochem P E P. Measuring the immeasurable— a survey of sustainability indices. Ecological Economics, 2007, 63(1):1⁃8.
[ 4 ] Singh R K, Murty H R, Gupta S K, Dikshit A K. An overview of sustainability assessment methodologies. Ecological Indicators, 2012, 15(1):
281⁃299.
[ 5 ] 徐中民, 程国栋. 人地系统中人文因素作用的分析框架探讨. 科技导报, 2008, 26(3):86⁃92.
[ 6 ] Kharrazi A, Rovenskaya E, Fath B D, Yarime M, Kraines S. Quantifying the sustainability of economic resource networks: an ecological
information⁃based approach. Ecological Economics, 2013, 90:177⁃186.
[ 7 ] Ulanowicz R E. Quantifying sustainability: resilience, efficiency and the return of information theory. Ecological Complexity, 2009, 6(1):27⁃36.
[ 8 ] Atlan H. On a formal definition of organization. Journal of Theoretical Biology, 1974, 45(2):295⁃304.
[ 9 ] Bodini A, Bondavalli C, Allesina S. Cities as ecosystems: growth, development and implications for sustainability. Ecological Modelling, 2012,
245:185⁃198.
[10] Ulanowicz R E. Growth and Development: Ecosystems Phenomenology. New York: Springer⁃Verlag, 1986.
[11] Goerner S J, Lietaer B, Ulanowicz R E. Quantifying economic sustainability: implications for free⁃enterprise theory, policy and practice. Ecological
Economics, 2009, 69(1):76⁃81.
[12] Zorach A C, Ulanowicz R E. Quantifying the complexity of flow networks: how many roles are there? Ecological Complexity, 2003, 8(3):68⁃76.
[13] 黄茄莉, 徐中民. 上升性理论在经济系统中的应用———以甘肃省为例. 生态学报, 2007, 27(11): 4785⁃4792.
[14] 黄茄莉, 徐中民. 从演化的角度评价北京市经济系统可持续发展趋势. 生态学报, 2010, 30(24):7038⁃7044.
[15] Li Y, Yang Z F. Quantifying the sustainability of water use systems: calculating the balance between network efficiency and resilience. Ecological
Modelling, 2011, 222(10):1771⁃1780.
[16] Lietaer B, Ulanowicz R E, Goerner S J, McLaren N. Is our monetary structure a systemic cause for financial instability? Evidence and remedies
from nature. Journal of Future Studies, 2010, 14(3):89⁃108.
[17] Lietaer B, Ulanowicz R E, Goerner S J. Options for managing a systemic bank crisis. Sapiens, 2009, 2(1):1⁃15.
[18] Studer T. WIR in unsere Volkswirtschaft. English translation by Philip H. Beard, 2006. WIR and the Swiss National Economy, 2009.
8172 生 态 学 报 35卷