免费文献传递   相关文献

Spatial heterogeneity of leaf area index of mixed spruce-fir-deciduous stands in northeast China

云冷杉针阔混交林叶面积指数的空间异质性



全 文 :第 35 卷第 1 期
2015年 1月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.1
Jan.,2015
http: / / www.ecologica.cn
基金项目:国家“十二五冶科技支撑计划课题(2012BAD22B02)
收稿日期:2014鄄03鄄30; 摇 摇 修订日期:2014鄄11鄄27
*通讯作者 Corresponding author.E鄄mail: xdlei@ caf.ac.cn
DOI: 10.5846 / stxb201403300593
姚丹丹 , 雷相东, 余黎, 卢军 , 符利勇 , 俞锐刚.云冷杉针阔混交林叶面积指数的空间异质性.生态学报,2015,35(1):0071鄄0079.
Yao D D, Lei X D, Yu L, Lu J, Fu L Y, Yu R G.Spatial heterogeneity of leaf area index of mixed spruce鄄fir鄄deciduous stands in northeast China.Acta
Ecologica Sinica,2015,35(1):0071鄄0079.
云冷杉针阔混交林叶面积指数的空间异质性
姚丹丹 , 雷相东*, 余摇 黎, 卢摇 军 , 符利勇 , 俞锐刚
中国林业科学研究院资源信息研究所, 北京摇 100091
摘要:叶面积指数(Leaf area index, LAI)是森林生态过程的关键参数和描述森林冠层结构的重要指标。 用半球摄影技术对吉林
省汪清林业局金沟岭林场的 10块 1 hm2云冷杉针阔混交林的 LAI进行测定,采用地统计学的半变异函数和普通克里格法对研
究区的 LAI的空间异质性进行了分析。 结果表明:10块样地的 10 m伊10 m小样方内以及样地间的 LAI离散程度较小,但分布
有一定的规律。 LAI的空间相关性存在不确定性,可由线性、孔状、高斯 3种模型有效的描述,空间相关性存在的尺度范围变异
大,中等和强空间相关性的影响范围在 15—155m之间,10块样地 LAI的空间相关性的影响范围平均为 65.637m。 普通克里格
插值结果显示,LAI的空间分布呈明显的条带状和斑块状的梯度变化。 LAI 与林分平均胸径、林分平均高和林分平均冠长呈显
著负相关,与林分平均冠幅、林分密度以及树种个数呈显著正相关。 研究结果可为不同尺度云冷杉针阔混交林 LAI的估计提供
依据。
关键词:云冷杉针阔混交林;LAI;半变异函数;空间异质性
Spatial heterogeneity of leaf area index of mixed spruce鄄fir鄄deciduous stands in
northeast China
YAO Dandan, LEI Xiangdong*, YU Li,LU Jun, FU Liyong, YU Ruigang
Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
Abstract: Leaf area index (LAI) is defined as half the total leaf area per unit horizontal ground surface area. LAI is a
significant attribute of forest ecosystem that controls, in part, physiological processes such as photosynthesis, transpiration,
and leaf maintenance respiration, as well as physical processes including canopy water interception, evaporation, and light
attenuation. There are several procedures to estimate LAI, both direct and indirect. However, the direct methods are slow
and labor intensive. Although remote sensing potentially offers the opportunity to access features of ecological phenomena on
a large scale, the scaling effect in retrieving LAI is a significant problem because of the heterogeneity in pixels, which can
be well described using a semivariogram. In this study, we monitored LAI of ten mixed spruce鄄fir鄄deciduous stands in
Wangqing Forestry Bureau, Jilin Province, by using a 10 m 伊 10 m grid in 1 hm2 plots and digital hemispherical
photography (DPH), the most commonly implemented method in forest research. In total, we obtained 1000 LAI values in
these plots. The spatial heterogeneity of the LAI was explored using geostatistical analysis. We found that the average LAI in
mixed spruce鄄fir鄄deciduous stands was 2.410, ranging from 1.265 to 4.029. LAI had low variability within and among plots,
with the coefficient of variation ranging from 9.981% to 19.440%. Linear, hole, and Gaussian models were found to best
describe the spatial autocorrelation of LAI. The coefficients of determination of these models were between 0.643 and 0.880.
The LAIs had strong, moderate and weak spatial dependence according to their structure ratios. The ranges of these
http: / / www.ecologica.cn
semivariogram models varied greatly, from 15 to 155 m, with an average of 65.637 m. One reason for the large range was the
large homogeneous areas at the scale that were longer than the lags for which the semivariograms were calculated. Ordinary
kriging was used to analyze the spatial distribution of LAI and showed apparent belt鄄 and spot鄄shaped massive gradient
changes. The relationship between LAI and stand variables was examined. LAI exhibited a significantly negative relationship
with average diameter at breast height, average height, and average crown length, but showed a significantly positive
relationship with average crown width, stand density, and tree species richness. LAI was closely related to tree species, and
plots with few coniferous species had low values. Some unknown factors also contributed to the pattern of LAI in these plots.
The results of this study provide a reference for estimating LAI at stand and large scales.
Key Words: mixed spruce鄄fir鄄deciduous forests; leaf area index; semivariogram; spatial heterogeneity
LAI有多种定义,目前应用较多的为“单位地表面积上的总叶表面积的一半冶 [1鄄2]。 LAI 是森林生态系统
的一个重要参数[3],影响森林生态系统的生产力[4]。 LAI也是描述森林冠层结构的重要指标之一[5],影响森
林冠层降雨截留量[6],也直接影响达到地面的辐射强度[7]。 在森林生长和演替的过程中,它又是一个重要的
驱动因子。 因此,准确测量 LAI并估计其空间分布具有重要意义。 林分 LAI 受林分结构特征[8]、气候[9]、地
形[10]、水分条件以及人类活动[11]等多种因素的影响,具有高度的空间异质性。 即使在林分结构单一的同龄
林中,LAI也有较大的变化[8]。 LAI空间异质性是研究林分生产力[4]和林分碳储量的有效方法,可为碳汇研
究提供重要依据[12]。
国内外对森林 LAI 的空间异质性的研究已取得了一些成果[7鄄9,12鄄13],主要集中在遥感反演 LAI 的尺度效
应方面。 研究表明,LAI的空间异质性是遥感反演 LAI尺度效应的一个重要原因[14鄄16]。 LAI 的空间异质性决
定了用遥感数据进行大尺度 LAI估计时的抽样强度。 由此可见,研究 LAI的空间异质性在遥感领域具有重要
意义。 然而,在传统应用中,半变异函数可以对 LAI 的空间异质性进行定量描述,且可以提高 LAI 的估计精
度[17],可有效的解决尺度效应。 由于森林中林分特征(胸径、树高、冠长、冠幅)的变异性,LAI 表现出高度的
异质性,但如何来量化这种异质性,尤其是局部尺度 LAI 的空间异质性研究并不多见[15]。 另外,如何通过空
间异质性来确定 LAI的取样尺度,以确保空间取样的独立性,也是值得研究的问题。 本研究以 10 块面积为 1
hm2的云冷杉针阔混交林为对象,采用空间统计学方法对局部尺度的 LAI空间异质性进行分析,为大尺度 LAI
的空间插值以及尺度选择提供依据。
1摇 研究地点概况
研究区位于吉林省延边朝鲜族自治州东部的汪清林业局金沟岭林场,其地理坐标为 130毅15.000忆 —130毅
15.339忆 E,43毅22.176忆 N—43毅23.086忆 N。 属长白山系老爷岭山脉雪岭支脉,地貌属低山丘陵,海拔 300—1200
m,坡度一般在 5毅—25毅,个别陡坡在 35毅以上。 研究区属季风型气候,年均气温为 3.9益左右,年均降水量
600—700 mm,且集中在夏季,占全年总降水量的 80%。 土壤主要是玄武岩中低山灰化土灰棕壤类型,平均厚
度在 40 cm左右,该区植被属长白山植物区系,群落结构复杂,植物种类较多。 主要树种有长白落叶松(Larix
olgensis)、鱼鳞云杉(Picea jazensis var. microsperma)、冷杉(Abies nephrolepis)、红松(Pinus koraiensis)及色木
(Acer mono)、水曲柳(Fraxinus mandshurica)、白桦(Betula platyphylla)、黄菠萝(Phelladendron amurense)、榆树
(Ulmus pumila)、杨树(Populus)、紫椴(Tilia tuan)、枫桦(Betula costata)等。
2摇 数据和方法
2.1摇 数据来源
2013年 7月初至 8月末,在吉林省汪清林业局金沟岭林场的云冷杉针阔混交天然林中设立了具有代表
性的 10块方形固定样地,样地面积为 1 hm2,海拔在 742—792 m范围内,坡向为东北向,坡度为 3毅—16毅,每块
27 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
样地分成 100 个 10 m伊10 m 的小样方(图 1),并于 8 月下旬在每块小样方中心处设置样点,由 Nikon,
Coolpix995,f= 7—32 mm 相机与 Nikon,FC鄄E8,f = 8—24m 的鱼眼镜头进行拍照。 选择阴天进行拍照,拍照时
保持相机水平,垂直向上拍摄,将焦距调节至最短,使鱼眼镜头所摄取范围最大,摄取林分全天空照片,视野范
围尽量不收入样地以外的部分。 共得到 1000 张鱼眼照片,用 Hemiview 冠层分析系统分别进行分析处理,选
择天顶角 0毅—90毅范围内的 LAI,即为每个小样方的 LAI。 固定样地其它主要调查因子为树种、胸径、树高、枝
下高、冠幅、坡向、坡度、坡位、海拔等,起测胸径为 1 cm。 样地的基本情况如表 1。
表 1摇 样地基本情况
Table 1摇 General information of the sample plots
样地号
Plot number
平方平均胸径
Average diameter at
breast height / cm
株数
Number of trees /
(株 / hm2)
断面积
Basal area /
(m2 / hm2)
蓄积
Stand volume /
(m3 / hm2)
树种组成(按材积)
Tree species
composition
1 17.37 859 20.34 163.93 3落 2冷 1云 1椴 1枫 1红
+白+杂-色-
榆树
2 15.76 1113 21.69 175.34 3落 2红 1冷 1云 1椴 1枫 1杨
+色+杂+
榆-白
3 16.44 1171 24.84 198.57 2 落 1冷 1云 1红 1白 1椴 1枫 1杨
+色+
榆-水-杂-豆
4 16.24 1051 21.75 169.60 2冷 2云 1落 1红 1椴 1枫 1杨
+白+榆-
色-水-杂
5 15.82 1192 23.43 178.40 2 椴 2云 1落 1冷 1红 1色 1枫 1杨
+榆+
白-水-杂
6 15.46 1302 24.42 190.56 2椴 2枫 1落 1冷 1云 1红 1杨
+色+杂+
豆-水-白-榆
7 15.54 1420 26.91 210.88 2红 2枫 1落 1冷 1云 1色 1椴
+水+白+
杂+榆-杨
8 15.61 1279 24.47 195.71 2色 2椴 2 冷 1 落 1 云 1 色 1 枫
+白-杂
-榆
9 16.82 1087 24.14 187.54 2 枫 1落 1冷 1云 1红 1白 1椴 1杨
+色-
杂-榆
10 16.13 1118 22.84 176.95 2红 2冷 1落 1云 1水 1白 1椴 1枫 1杨+色+榆-杂
摇 摇 落: 落叶松,冷: 冷杉,云: 鱼鳞云杉,红:红松,色:色木,水:水曲柳,白: 白桦,枫:枫桦,椴:紫椴,榆:榆树,杨: 杨树,豆:红豆杉,杂:其
他阔叶树,+树种组成系数在 0.2—0.5之间,-树种组成系数小于 0.2
图 1摇 样方设置示意图
Fig.1摇 The location of subplots
2.2摇 统计分析
采用空间统计学中的半变异函数来描述 LAI 的空
间异质性,并进行空间克里格插值分析。
2.2.1摇 半变异函数
根据空间统计学中半变异函数的定义[18],如果区
域化变量 LAI满足二阶平稳或本证假设,下列 LAI半变
异函数成立:
r(h) = 1
2N(h)移
N(h)
i = 1
Z(xi) - Z(xi + h[ ]) 2 (1)
式中,r(h)为 LAI 半变异函数值;N(h)为间距为 h 的
LAI采样点对数;Z(xi)和 Z( xi +h)分别是固定样地中
xi和与 xi相距 h处的 LAI值。
半变异函数中有 3个基本参数: 变程、基台值和块
金值。 变程,是使半变异函数达到平稳时的空间距离,
37摇 1期 摇 摇 摇 姚丹丹摇 等:云冷杉针阔混交林叶面积指数的空间异质性 摇
http: / / www.ecologica.cn
它用来度量空间相关性的最大距离。 基台值,是半变异函数在变程处达到的平稳值,它反映采样数据的最大
差异量。 块金值,是不能被模型中参数解释的随机变量,主要来源于 LAI 空间尺度上(远小于最小抽样间距)
存在的差异或测量误差。 用结构比(块金值和基台值的比例)作为 LAI 空间相关程度分级的标准。 结构比小
于 25%,表明区域化变量有强烈的空间相关性;在 25%—75%之间,有中等的空间相关性;大于 75%,则空间
相关性微弱[9],说明空间异质性主要由随机效应引起,不适合采用插值方法进行空间插值[14]。
2.2.2摇 数据处理和分析
经过 Hemiview冠层分析系统处理后,得到的是有效叶面积指数 Le,需要转换为实际叶面积指数 LAI,在
应用中才有意义。 根据 Chen等人的研究可知,云冷杉针阔混交林 LAI 可按照下列公式计算:
LAI = (1 - 琢)Le酌E / 赘E (2)
式中,LAI 为实际叶面积指数;琢 为树干等非树叶因素占总面积的比率;Le 为有效叶面积指数,可以由
Hemiview冠层分析系统直接测定;酌E为不同针叶树种的针叶总面积与簇面积的比率;赘E是针叶聚集指数。
琢通过 2次 Hemiview冠层分析系统处理得出,首先,用 Hemiview冠层分析系统得到半球图像的总叶面积
指数(L1);其次用 Photoshop软件处理,把树干部分用他附近的非树干部分代替,再次用 Hemiview冠层分析系
统使用相同的阈值处理,得到绿叶部分的叶面积指数(L2),即可得到树干部分所占比例( 琢 = (L1 - L2) / L1),
得到云冷杉针阔混交林的 琢值在 0.20— 0.35范围内。 酌E和 赘E则根据学者对长白山山系针、阔林 LAI 的研究
得出,分别为 1郾 5和 0.9[9,19]。
半变异函数的计算要求数据符合正态分布,否则会使半变异函数产生比例效应[18]。 采用域法来识别异
常值,并对异常值进行“均值化冶处理[20]。 然后用 R软件的 shapiro.test()函数对数据进行正态检验。 对于不
符合正态分布的数据进行 Box鄄Cox转化,使其呈正态分布。
2.3.2摇 半变异函数模型的选择和克里格插值
根据半变异函数值 r(h)与距离 h的散点图,判断它们之间的曲线关系,选择的半变异函数模型主要有无
基台值的线性模型(公式 3)、有基台值的线性模型(公式 4)、孔状模型(公式 5)、高斯模型(公式 6)。 用 R软
件中 gstat包计算 LAI的半变异函数值,对半变异函数进行拟合[21]。 根据决定系数(R2)来判断最合适的理论
模型,决定系数(R2)越大,模型拟合效果越好。
r(h) =
Co h = 0
Co +{ Ah h > a (3)
r(h) =
Co h = 0
C0 + Ah 0 < h 臆 a
Co +
ì
î
í
ï
ï
ïï C h > a
(4)
r(h) = Co + C 1 - e
- ha cos(2仔 h
b
é
ë
êê
ù
û
úú) (5)
r(h) =
0 h = 0
1 - e -(
h
a )
2 h >{ 0 (6)
式中,Co为块金方差,C为基台值与块金值之差(拱高),a为变程,h为空间变量相距距离,A为直线斜率。
克里格插值法,是以空间相关性、变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏
最优估计,是地统计学中最常用的插值方法之一[21]。 半变异函数的最优模型选择后,R 软件运行结果显示,
研究区中数据适合用普通克里格进行插值计算,设定插值结果的空间分辨率为 1 m伊1 m。 普通克里格的估计
公式为:
Z*(xo) =移
n
i = 1
姿 iZ(xx) (7)
式中,Z*(xo)为待估点 xo处的 LAI估测值;Z(xi)表示样地 xi处 LAI实测值;姿 i是每个实测值的权重且移姿 i =
47 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
1;n为参与估测 xo 处 LAI的实测样点数目。
用交叉验证法对克里格插值进行检验,即重复从已知数据集中删除一个采样点,用剩余的采样点估测删
除点的数值,并计算平均标准误差[22]。
3摇 结果与分析
3.1摇 LAI统计分析
从表 2可以看出,10块样地的 LAI平均值为 2.410,均值范围为 1.265—4.029。 用变异系数来描述 LAI的
离散程度,发现样地间的 LAI的变异系数为 19.440%,10块样地内的 LAI 变异系数在 9.981%—19.145%范围
内,表明云冷杉针阔混交林的 LAI的空间离散程度小。 但是经典统计分析只能概括其总体的变化,不能反映
其局部的变化特征,即只在一定程度上反映样本总体,不能定量地刻画变量的随机性和结构性、独立性和相关
性,因此需进一步采用地统计学方法进行空间变异结构的分析。 分析之前,首先对数据进行正态检验。
结果表明,10 块样地的 LAI 分布均为正偏,其中 6 号样地的峰度较平缓,其他样地的峰度较为陡峭。 只
有样地 5、6、7、8、10的 LAI为正态分布。 对其它不符合正态分布的样地进行 Box鄄Cox正态化转换。
表 2摇 样地的 LAI统计特征
Table 2摇 The statistical summary of LAI of sample plots
样地号
Plot number
平均值
Average
最小值
Minimum
最大值
Maximum
变异系数 / %
Coefficient of variation
偏度
Skewness
峰度
Kurtosis P P
*
1 2.236 1.399 3.365 19.145 0.717 0.289 0.001 0.135
2 2.584 1.658 4.029 17.957 0.621 0.694 0.042 0.933
3 2.485 1.641 3.734 15.949 0.643 0.665 0.032 0.872
4 2.581 1.908 3.717 14.104 0.962 1.198 0.000 0.824
5 2.615 1.795 3.639 14.888 0.355 0.039 0.272
6 2.648 1.615 3.540 16.508 0.082 -0.428 0.240
7 2.826 1.653 3.986 13.910 0.242 0.882 0.222
8 2.099 1.467 2.907 12.867 0.361 0.575 0.231
9 1.971 1.589 2.567 9.981 0.646 0.641 0.026 0.405
10 2.055 1.265 3.129 17.330 0.402 0.304 0.423
样地间
Between the plots 2.410 1.265 4.029 19.440 0.483 0.002 0.217
摇 摇 P:转换前 LAI的正态检验概率值,P*:LAI经 Box鄄Cox转换后的正态检验概率值
3.2摇 LAI半变异函数的拟合
LAI的半变异函数拟合效果见表 3。 由表 3可知,线性模型(3 块样地)、孔状模型(5 块样地)、高斯模型
(2块样地)可以较好的描述 LAI空间相关性,模型的决定系数 R2在 0.643—0.880范围内(图 2)。
表 3摇 LAI半变异函数模型的相关参数
Table 3摇 Parameters of semi鄄variogram models for LAI
样地号
Plot number
模型
Model
块金值
Nugget
基台值
Sill
变程
Range / m
结构比
Structure ratio / %
决定系数
R2
1 Lin 0.022 0.058 140.189 38.571 0.879
2 Hol 0.019 0.034 15.482 57.558 0.761
3 Lin 0.008 0.026 32.830 31.316 0.822
4 Hol 0.002 0.003 13.004 78.619 0.880
5 Hol 0.143 0.158 9.959 90.582 0.771
6 Gau 0.138 0.591 130.079 23.267 0.783
7 Hol 0.136 0.245 51.917 55.511 0.643
8 Lin 0.059 0.103 122.121 57.690 0.777
9 Hol 0.008 0.010 10.818 80.663 0.852
10 Gau 0.096 0.454 129.970 21.187 0.799
平均 Average — — — 65.637 — —
57摇 1期 摇 摇 摇 姚丹丹摇 等:云冷杉针阔混交林叶面积指数的空间异质性 摇
http: / / www.ecologica.cn
摇 摇 结构比可有效说明区域化变量的空间相关性程度。 6 和 10 号样地的结构比小于 25%,说明其有强烈的
空间相关性,分别表现在 130郾 079 m和 129郾 970 m范围内。 样地 1、2、3、7、8 的结构比在 25%—75%范围内,
说明这 5块样地的 LAI 有中等的空间相关性,且表现分别表现在 140.189、15.482、32郾 830、51.917、122.121m
范围内。 样地 4、5、9的结构比大于 75%,说明其空间相关性较弱。 总的来说,变程接近或大于本文设定的采
样距离 10 m,说明该采样距离能满足研究需要。 变程大,说明在较大范围内有空间相关性。
图 2摇 10块样地 LAI的半变异函数图
Fig.2摇 Semi鄄variograms for LAI in ten plots
3.3摇 LAI的空间分析
为研究 LAI在不同尺度内的分布情况,根据半变异函数理论和其空间建模方式,对 LAI 具有中等和较强
空间相关性的样地进行克里格插值。
图 3显示,研究区 LAI的空间分布呈明显的条带状和斑块状的梯度变化,7 和 10 号样地的变化趋势一
致,这可能与这些样地的林分特征或地形条件的相近有关。 7 块样地的插值误差较小在 0.0085—0.1414 内,
误差的标准差都小于 0.01(表 4),插值精度较高。 LAI空间分布的插值误差变动程度较小,在 6.00%以下,说
明误差分布较为均匀。
由图 3和和图 4可知,LAI较小的区域,针叶树种较多且林分密度相对小,说明树种组成和林分密度是引
起 LAI的空间异质性的主要因素。
为研究影响 LAI的林分因子,将 LAI有中等强度和较强空间相关性的 7 块样地,共计 700 个小样方内的
LAI与其林分因子做相关分析(表 5)。 结果表明,LAI与林分平均胸径、林分平均高、林分平均冠长、林分平均
冠幅、林分密度以及树种个数相关关系在统计上均达到极显著(P<0.01),但相关程度较弱。 其中 LAI 与林分
平均胸径、林分平均高、冠长呈显著负相关,这说明高大林木多的林分,其 LAI 较小。 LAI 与冠幅、林分密度以
及树种个数呈显著正相关,这说明在高密度、大冠幅、树种种类多的林分,其 LAI 较大,高密度林分的 LAI 较
67 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
大,与林木位置图的分析结果一致。
表 4摇 普通克里格插值法估计的 LAI误差统计量
Table 4摇 Error statistics of LAI estimated by ordinary鄄kriging method
样地号
Plot number
平均误差值
Mean error
最大值
Maximum
最小值
Minimum
标准差
Standard deviation
变异系数
Coefficient of variation / %
1 0.0263 0.0310 0.0000 0.0015 5.7097
2 0.0210 0.0242 0.0000 0.0012 5.9014
3 0.0119 0.0173 0.0000 0.0010 5.5186
6 0.1414 0.1486 0.0000 0.0073 5.1778
7 0.1405 0.1501 0.0000 0.0074 5.2365
9 0.0663 0.0740 0.0000 0.0036 5.4148
10 0.0085 0.0091 0.0000 0.0004 5.2772
图 3摇 普通克里格插值法估计的 LAI空间分布图
Fig.3摇 Spatial distribution pattern of LAI estimated by ordinary鄄kriging method
表 5摇 LAI与林分因子的相关关系(n= 700)
Table 5摇 Correlation between LAI and stand factors(n= 700)
因子
Factor
林分平均胸径
Average diameter
at breast height
林分平均高
Average height
of stand
平均冠幅
Average crown
width
平均冠长
Average
crown length
林分密度
Stand
density
树种个数
Number of
species
相关系数 Correlation coefficient -0.20603 -0.2884 0.2729 -0.1446 01182 0.1648
P 0.0000 0.0000 0.0000 0.0004 0.0000 0.0003
4摇 结论与讨论
本文采用半球摄影技术获取 LAI,利用地统计学方法,对云冷杉针阔混交林的 LAI 的空间异质性进行了
分析。 发现云冷杉针阔混交林 LAI在 1.265—4郾 029之间,平均值为 2.410。 目前文献中尚未有云冷杉针阔混
交林的 LAI的相关报道,但其他学者用半球摄影法得到的云冷杉针叶林的 LAI 有 2.44、2.30 和 2.10[9, 23]。 本
文 LAI的范围较大,是因为研究区林分是针阔混交林,阔叶树种在林分中所占比例不同会使 LAI 有所不
同[9],这与混交林的 LAI变化范围比纯林大的[24]研究结果一致。 10块样地内和样地间的 LAI 的离散程度都
较小,10块样地 LAI的变异系数在 9.981%—19.145%之间,样地间的 LAI的变异系数为 19.440%。
线性、孔状和高斯模型可以较好地拟合云冷杉针阔混交林 LAI的半变异函数(0.60间相关性存在微弱、中等、强烈 3种,且其空间相关性存在的尺度范围变异大,在 15.00—155.00m 之间,这与
不同样地内树种组成和地形条件不同有关,但其平均尺度为 65.637m。 Burrows 曾研究发现,不同植被类型其
77摇 1期 摇 摇 摇 姚丹丹摇 等:云冷杉针阔混交林叶面积指数的空间异质性 摇
http: / / www.ecologica.cn
图 4摇 树木位置图
Fig.4摇 The location of trees in the plots
圈的大小代表胸径大小,红色代表阔叶树种,绿色代表针叶树种
LAI空间相关性的变程也不相同,如山杨林、硬阔叶林和针叶林 3种森林类型 LAI的变程在 53—91m之间,并
指出变程较小是由小植被和样地的地形条件影响所致,变程较大是因为人为干扰较少[25]。 一些样地的影响
范围超越所设置的研究区域(95伊姨2 m),说明因为这些样地内的 LAI 在大尺度范围内存在空间相关性[26]。
虽然该类型 LAI的空间相关性的尺度有较大的不确定性,但其平均尺度,也可作为遥感影像的尺度效应分析
和大尺度 LAI的估计方法的参考基数。
研究区域中 LAI的空间分布呈条带状和斑块状的梯度变化,相关分析表明,LAI 与林分平均胸径、林分平
均高、林分平均冠长呈显著负相关,与林分平均冠幅、林分密度以及树种个数呈正显著正相关。 将不同样地内
LAI与其林分平均胸径、林分平均高、林分断面积、林分密度等因子建立回归关系,结果显示回归关系的决定
系数较小,仅在 0.04—0.30范围内,说明这些林分因子对 LAI 的解释能力非常有限。 而 Bequet 的研究表明,
87 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
LAI与胸径呈负相关关系,与树高、冠长、冠幅呈正相关,且这些林分因子对 LAI 的影响与树种有关[8]。 本研
究结果与 Bequet[8]有所差异,是因为该林分为过伐林,有人为干扰的影响,使林分因子对 LAI的空间分布的影
响变异较大。 另外,研究区是有 14种树种的针阔混交林,因此,林分因子对 LAI 的影响也会因树种组成的不
同而与会其他研究有所差异。 LAI与林分因子的关系,可为森林经营管理提供部分信息和依据[5]。
有研究表明海拔、坡度、坡向等地形因子是影响 LAI的重要因子[10]。 由于缺少小样方小尺度范围的地形
因子,无法分析小尺度内 LAI空间分布与地形因子的关系。 从空间插值图来看,仍有一些本研究尚未涉及的
随机因子影响 LAI的空间分布,需要做进一步的分析。 另外,在分析 LAI的空间相关性方面,在今后的研究中
可以考虑各向异性等问题。
参考文献(References):
[ 1 ]摇 Chen J M, Black T A. Defining leaf area index for non鄄flat leaves. Plant, Cell and Environment, 1992, 15(4): 421鄄429.
[ 2 ] 摇 Asner G P, Scurlock J M O, Hicke J A. Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies.
Global Ecology and Biogeography, 2003, 12(3): 191鄄205.
[ 3 ] 摇 Berterretche M, Hudak A T, Cohen W B, Maiersperger T K, Gower S T, Dungan J. Comparison of regression and geostatistical methods for
mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sensing of Environment, 2005, 96(1): 49鄄61.
[ 4 ] 摇 Schlerf M, Buddenbaum H, Vohland M, Werner W, Dong P H, Hill J. Assessment of forest productivity using an ecosystem process model,
remotely sensed LAI maps and field Data. GIS and Remote Sensing, 2004, 113: 93鄄100.
[ 5 ] 摇 王希群, 马履一, 贾忠奎, 徐程扬. 叶面积指数的研究和应用进展. 生态学杂志, 2005, 24(5): 537鄄541.
[ 6 ] 摇 Granier A, Loustau D, Br佴da N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index.
Annals of Forest Science, 2000, 57(8): 755鄄765.
[ 7 ] 摇 陈健, 倪绍祥, 李静静, 吴彤. 植被叶面积指数遥感反演的尺度效应及空间变异性. 生态学报, 2006, 26(5): 1502鄄1508.
[ 8 ] 摇 Bequet R, Campioli M, Kint V, Muys B, Bogaert J, Ceulemans R. Spatial variability of leaf area index in Homogeneous Forests relates to local
variation in tree characteristics. Forest Science, 2012, 58(6): 633鄄640.
[ 9 ] 摇 刘志理, 戚玉娇, 金光泽. 小兴安岭谷地云冷杉林叶面积指数的季节动态及空间格局. 林业科学, 2013, 49(8): 58鄄64.
[10] 摇 吕瑜良, 刘世荣, 孙鹏森, 张国斌, 张瑞蒲. 川西亚高山暗针叶林叶面积指数的季节动态与空间变异特征. 林业科学, 2007, 43(8): 1鄄7.
[11] 摇 黄玫, 季劲钧. 中国区域植被叶面积指数时空分布———机理模型模拟与遥感反演比较. 生态学报, 2010, 30(11): 3057鄄3064.
[12] 摇 Arag觔o L E O C, Shimabukuro Y E, Santo F D B E, Williams M. Landscape pattern and spatial variability of leaf area index in Eastern Amazonia.
Forest Ecology and Management, 2005, 211(3): 240鄄256.
[13] 摇 Zhao C H, Zhang S J, Wang F H, Jie D F, Zhang H H. Spatial structure of LAI of spring soybean based on sunscan canopy analysis system and
geo鄄statistic / / World Automation Congress. Kobe: IEEE, 2010: 91鄄94.
[14] 摇 曾春阳, 唐代生, 唐嘉锴. 森林立地指数的地统计学空间分析. 生态学报, 2010, 30(13): 3465鄄3471.
[15] 摇 徐希孺, 范闻捷, 陶欣. 遥感反演连续植被叶面积指数的空间尺度效应. 中国科学 D辑, 2009, 39(1): 79鄄84.
[16] 摇 范闻捷, 盖颖颖, 徐希孺, 闫彬彦. 遥感反演离散植被有效叶面积指数的空间尺度效应. 中国科学: 地球科学, 2013, 43(2): 280鄄286.
[17] 摇 王政权. 地统计学及在生态学中的应用. 北京: 科学出版社, 1999.
[18] 摇 冯益明, 唐守正, 李增元. 空间统计分析在林业中的应用. 林业科学, 2004, 40(3): 149鄄155.
[19] 摇 Chen J M. Optically鄄based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology,
1996, l 80(2鄄4): 135鄄163.
[20] 摇 Zhang C S, Zhang S, He J B. Spatial distribution characteristics of heavy metals in the sediments of Changjiang River system鄄geostatistics method.
Acta Geographica Sinica, 1997, 52(2): 184鄄192.
[21] 摇 Bivand R S, Pebesma E J, G佼mez鄄Rubio V. Applied Spatial Data Analysis with R. New York: Springer, 2013.
[22] 摇 高惠璇. 应用多元统计分析. 北京: 北京大学出版社, 2005: 369鄄379.
[23] 摇 Thimonier A, Sedivy I, Schleppi P. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods.
European Journal of Forest Research, 2010, 129(4): 543鄄562.
[24] 摇 周宇宇, 唐世浩, 朱启疆, 李江涛, 孙睿, 刘素红. 长白山自然保护区叶面积指数测量及结果. 资源科学, 2003, 25(6): 38鄄42.
[25] 摇 Burrows S N, Gower S T, Clayton M K, Mackay D S. Application of geostatistics to characterize leaf area index (Lai) from flux tower to landscape
scales using a cyclic sampling design. Ecosystems, 2002, 5(7): 667鄄679.
[26] 摇 Artan G A, Neale C M U, Tarboton D G. Characteristic length scale of input data in distributed models: implications for modeling grid size. Journal
of Hydrology, 2000, 227(1鄄4): 128鄄139.
97摇 1期 摇 摇 摇 姚丹丹摇 等:云冷杉针阔混交林叶面积指数的空间异质性 摇