免费文献传递   相关文献

Spatio-temporal distribution of maize chilling damage intensity in the Three Provinces of Northeast China During 1961to 2013

1961-2013年东北三省玉米低温冷害强度的时空分布特征



全 文 :第 36 卷第 14 期
2016年 7月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.36,No.14
Jul.,2016
http: / / www.ecologica.cn
基金项目:国家自然科学基金重点项目(41330531);江苏省普通高校研究生科研创新项目计划项目(CXLX13_497)
收稿日期:2014⁃12⁃25;     网络出版日期:2015⁃10⁃30
∗通讯作者 Corresponding author.E⁃mail: gszhou@ cams.cma.gov.cn
DOI: 10.5846 / stxb201412252574
杨若子,周广胜.1961—2013年东北三省玉米低温冷害强度的时空分布特征.生态学报,2016,36(14):4386⁃4394.
Yang R Z, Zhou G S.Spatio⁃temporal distribution of maize chilling damage intensity in the Three Provinces of Northeast China During 1961to 2013.Acta
Ecologica Sinica,2016,36(14):4386⁃4394.
1961—2013年东北三省玉米低温冷害强度的时空分布
特征
杨若子1,2,周广胜1,∗
1 中国气象科学研究院,北京  100081
2 南京信息工程大学,南京  210044
摘要:基于东北三省 1961—2013年气象数据、《北方春玉米冷害评估技术规范(QX / T167—2012)行业标准》,结合具有生物学意
义的热量指数,给出了东北三省低温冷害强度分级,利用经验正交函数(EOF)分解法和旋转经验正交函数(REOF)分解法分析
了东北三省玉米低温冷害强度时空分布特征。 结果表明:东北三省玉米低温冷害强度具有明显的空间分布特点,可分为全区一
致型、南北反相位分布型以及东西反相位分布型。 东北三省玉米低温冷害强度的时间变化具有较好的一致性,1961—2013 年
东北三省低温冷害的发生强度呈波动减小趋势。 低温冷害强度区域差异显著,按照低温冷害强度强弱可分为黑龙江⁃吉林北部
区(Ⅰ区)、吉林南部⁃辽宁北部区(Ⅲ区)和辽宁南部区(Ⅱ区)。 研究结果可为东北三省低温冷害风险区划和采取有效的减灾
避灾措施提供依据。
关键词:东北三省;玉米;低温冷害;时空特征
Spatio⁃temporal distribution of maize chilling damage intensity in the Three
Provinces of Northeast China During 1961to 2013
YANG Ruozi1,2, ZHOU Guangsheng1,∗
1 Chinese Academy of Meteorological Sciences, Beijing 100081, China
2 Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract: The classification and spatio⁃temporal distribution of maize chilling damage intensity in the three provinces of
Northeast China were studied using the daily meteorological data from 1961to 2013, the chilling damage data presented in
the Industry Standard: Technical Specification of Northern Spring Maize Chilling Damage Assessment (QX / T167—2012)
as well as by empirical orthogonal function (EOF) and rotated EOF method. The results showed that the maize chilling
damage intensity in the three provinces of Northeast China showed significant spatial difference, which could be divided in
three categories: the regional consistency type, the anti⁃phase distribution type between northern and southern parts, and
the anti⁃phase distribution type between eastern and western parts. The maize chilling damage intensity in the three
provinces of Northeast China showed a consistent fluctuating pattern and a decreasing trend from 1961 to 2013. The maize
chilling damage intensity displayed a significant regional difference, separating three sub⁃regions based on maize chilling
damage intensity, i.e., the sub⁃region with the strongest chilling damage intensity including Heilongjiang Province and the
northern part of Jilin Province (I sub⁃region), the sub⁃region with the intermediate chilling damage intensity including the
southern part of Jilin Province and the northern part of Liaoning Province (Ⅲ sub⁃region), and the sub⁃region with the
http: / / www.ecologica.cn
lowest chilling damage intensity in the southern part of Liaoning Province (Ⅱ sub⁃region) . The results presented herein will
provide the scientific reference for maize chilling damage division and help establish countermeasures for coping with the
negative effects of the maize chilling damage.
Key Words: Northeast China; maize; chilling damage; spatio⁃temporal characteristics
玉米是重要的粮食作物、饲料作物和工业原料,用途广泛,增产潜力大,对提高人民的生活水平、促进畜牧
业的发展起着不可替代的作用。 黑龙江省、吉林省和辽宁省(简称东北三省)是中国玉米主产区之一,玉米生
长期内要求温暖多雨,而东北三省地理纬度高,热量条件年际波动大[1],使玉米生长发育过程中极易受到低
温威胁,平均三至四年发生一次低温冷害[2],1969、1972、1976 年发生严重低温冷害导致作物平均减产 57. 8
亿 kg[3]。
东北三省玉米低温冷害研究主要包括低温冷害指标判定[4],低温冷害时空分布规律研究[5⁃7],低温冷害
对玉米生育期、产量和种植格局的影响[8],低温冷害监测预警[9],低温冷害风险评估[3]等。 其中低温冷害指
标判定和灾害时空分布规律研究是低温冷害研究的基础,只有正确认识所面临的灾害种类,识别灾害发生的
活动频率、活动强度和活动区域,才能对研究区灾害程度有一个直观、准确的了解,为下一步灾害的监测和风
险的评估提供定量依据。 低温冷害指标判定研究起步较早,已经取得大量成果[6],而对低温冷害时空分布的
研究多基于频率分布的研究[1,5],对灾害强度分布研究较少。 严重灾害发生的频率虽然小,但是造成的作物
减产损失是巨大的,严重低温冷害年东北玉米减产可达 20%以上[10],已有研究[11]基于经验正交函数
(Empirical Orthogonal Function, 简称 EOF)分解法对东北三省玉米各个生育期低温冷害强度的时空分布进行
了研究。 但 EOF分解法是对协方差矩阵求解特征值和特征向量,选择区域大小对分解结果有影响[12]。 旋转
经验正交函数(Rotated Empirical Orthogonal Function, 简称 REOF)分解法克服了取样范围误差[13],在 EOF基
础上,通过选择正交旋转矩阵使原始矩阵旋转后的列向量元素平方差达最大,以使原要素场的信息特征集中
映射到几个优势空间上[13]。 基于 REOF分解法的气象灾害分区研究有干旱灾害分区[14⁃17],低温分区[18]和霜
冻灾害分区[19]等,但关于低温冷害的分区研究仍未见报道。
为揭示东北三省玉米低温冷害强度的发生规律和区域分异特征,利用东北三省 1961—2013 年的逐日气
象数据,结合《北方春玉米冷害评估技术规范(QX / T167—2012)行业标准》,研究东北三省玉米低温冷害强度
分级;进而基于 EOF分解法阐明东北三省玉米低温冷害强度的时空动态特征,并根据 REOF分解法分析东北
三省低温冷害强度的区域分异,以为东北三省低温冷害风险区划和采取有效的减灾避灾措施提供依据。
1  资料与方法
1.1  研究资料
研究所用气象资料为 1961—2013年东北三省国家气候基本、基准站逐日气象数据,包括研究站点的经纬
度(度)、海拔高度(m)、日气温(最高、最低、平均气温 / ℃)数据,来源于国家气象信息中心。 作物数据为
1981—2010年的东北三省农业气象试验站的玉米生育期数据,来源于中国农业科学院。 基于研究站点的地
理信息与温度资料齐全考虑,筛选出了 70个研究站点(图 1)。
1.2  低温冷害强度分级
研究表明[20],生长季热量指数(F(T))具有明确的生物学意义,可以反映研究地区热量条件对作物的影
响。 在此,选用对东北三省玉米低温冷害具有较好代表性的热量指数[21]作为判定指标:
F(T) =
(T - T1) (T2 - T) B
(T0 - T1) (T2 - T0) B
(1)
B =
T2 - T0
T0 - T1
(2)
7834  14期       杨若子  等:1961—2013年东北三省玉米低温冷害强度的时空分布特征  
http: / / www.ecologica.cn
图 1  研究所用气象站点的空间分布
Fig.1  The spatial distribution of weather stations in the study
式中, F(T) 为某旬的热量指数, T 为某旬的气温, T0、
T1、 T2 分别为该时段内作物生长发育和产量形成的适
宜温度、下限温度和上限温度。 表 1给出了东北三省玉
米三基点温度指标[6]。 热量指数的计算过程:利用各
站逐旬气象资料分别计算逐旬的玉米热量指数,各月逐
旬热量指数的平均值代表当月的热量指数,各月热量指
数之和表示各站当年的玉米生长季的热量指数[20]。 玉
米生育期日期采用多年平均值,其中出苗—三叶为 5 月
上旬到 5月中旬,三叶到拔节为 5 月下旬到 7 月上旬,
拔节—开花为 7月中旬到 7月下旬,开花—乳熟为 8 月
上旬到 8月下旬,乳熟—成熟为 9月上旬到 9月下旬。
东北三省各地的热量差异显著。 研究表明[22],当
辽宁省热量指数小于 0. 836,或吉林省热量指数小于
0.714,或黑龙江省热量指数小于 0.604,则发生低温冷
害。 为使各地的低温冷害强度具有可比性,对热量指数
求距平百分率作为低温冷害指数[23]:
CI = F(T)
- F(T)
F(T)
× 100% (3)
式中, CI为低温冷害指数, F(T) 为热量指数多年平均值。 《北方春玉米冷害评估技术规范(QX / T167—
2012)行业标准》 [24]基于 5—9月月平均气温和的距平值划分了东北三省玉米低温冷害等级,可以用判断低温
冷害的类型,但是由于标准中的指标是阶段性的,指标值间不具有可比性,不适用于低温冷害强度的比较。 故
本研究采用 SPSS聚类分析法对东北三省 70个站的低温冷害指数 CI进行聚类分析分成四类,即无低温冷害、
轻度低温冷害、中度低温冷害和重度低温冷害,将得到的划分结果参照《北方春玉米冷害评估技术规范(QX /
T167—2012)行业标准》中北方春玉米低温冷害强度指标(表 2)进行调整,得到东北三省低温冷害强度的分
级(表 3)。
表 1  东北三省玉米三基点温度指标
Table 1  Three point temperature indices of maize in the three provinces of Northeast China
玉米生育阶段 Maize growth stages T1 / ℃ T2 / ℃ T0 / ℃
出苗—三叶 Seedling—Clover 8.0 27.0 20.0
三叶—七叶 Clover—Seven leaf 11.5 30.0 24.5
七叶—拔节 Seven leaf—Jointing 11.5 30.0 24.5
拔节—抽雄 Jointing—Tassel 14.0 33.0 27.0
抽雄—开花 Tassel—Blossom 14.0 33.0 27.0
开花—乳熟 Blossom—Milk 14.0 32.0 25.5
乳熟—成熟 Milk—Mature 10.0 30.0 19.0
1.3  研究方法
针对 EOF分解法受地理范围的限制,分解的模态可能没有物理意义,不能清晰表示不同地理分区的特
征[25]这一不足,使用 REOF分解法对低温冷害强度值进行分区。 REOF分解法可将方差贡献集中在某一较小
区域,着重体现各主分量所代表的优势空间,可以较客观地反映要素场的区域变化特征,并有助于分析不同区
域之间要素异常的相互关系和变化响应[26]。 气象上经常采用 REOF 方法对气象要素场进行分析,使原来的
特征向量结构简化,反映的气候特征更明显[27]。
8834   生  态  学  报      36卷 
http: / / www.ecologica.cn
表 2  北方春玉米低温冷害强度指标
Table 2  Intensity index of chilling damage to spring maize in Northern China
5—9月月平均气温和的多年平均值 / ℃
The average sum of 5—9 month
average temperature for many years
低温冷害强度 Chilling damage intensity
重度低温冷害
Severe chilling damage
中度低温冷害
Moderate chilling damage
轻度低温冷害
Mild chilling damage
T≤80 ΔT≤-1.7 -1.7<ΔT≤-1.4 -1.4<ΔT≤-1.1
80<T≤85 ΔT≤-2.4 -2.4<ΔT≤-1.9 -1.9<ΔT≤-1.4
85<T≤90 ΔT≤-3.1 -3.1<ΔT≤-2.4 -2.4<ΔT≤-1.7
90<T≤95 ΔT≤-3.7 -3.7<ΔT≤-2.9 -2.9<ΔT≤-2.0
95<T≤100 ΔT≤-4.1 -4.1<ΔT≤-3.1 -3.1<ΔT≤-2.2
100<T≤105 ΔT≤-4.4 -4.4<ΔT≤-3.3 -3.3<ΔT≤-2.3
T>105 ΔT≤-4.7 -4.7<ΔT≤-3.5 -3.5<ΔT≤-2.4
减产率参考值 / %
Reference value of yield reduction rate >15 10—15 5—10
表 3  低温冷害强度分级
Table 3  The classification of chilling damage intensity
低温冷害强度等级
Chilling damage intensity grade
指标值 / %
Index
低温冷害强度等级
Chilling damage intensity grade
指标值 / %
Index
重度低温冷害 Severe chilling damage CI≤-10.99 轻度低温冷害 Mild chilling damage -3.92<CI≤0.11
中度低温冷害 Moderate chilling damage -10.99<CI≤-3.92 无低温冷害 No chilling damage CI>0.11
1.4  检验方法
North检验[12]是通过计算特征值误差范围进行显著性检验,检验的目的是考察各个模态之间是否相互独
立,也就是能否称为一个有着独立特征的模态。 特征值 λ的误差范围 ei = λ i (


) ,n为样本量。 当相邻特
征值 λ i+1满足 λ i+1-λ i≥ei 时,认为这两个特征值对应的经验正交函数是有价值的信号。
  图 2  东北三省低温冷害强度的 EOF 分解法特征值随自然数序
列的变化
Fig.2  The change with the natural number sequence from EOF
decomposition method of chilling damage intensity in the three
provinces of Northeast China
2  结果分析
2.1  旋转特征向量个数的确定
选取研究站点发生低温冷害(即 CI≤0.11)的站年数据进行 EOF 分解,得到的空间荷载向量和时间系数
体现了东北三省低温冷害强度的时空特征分布。 利用 REOF 分解法对 EOF 的特征向量进行旋转,得到低温
冷害强度的分区特征。 研究中的空间特征分析及分区的有效性由特征向量的个数决定,为此,特征向量个数
的确定既要考虑一定准则又要考虑实际情况。 按照
Cattell理论[28],将 EOF 分析得到的特征值依自然序数
变化绘成图形,并选择最后一个显著转折点之前的特征
向量进行方差最大正交旋转。 基于 EOF分解法获取的
东北三省低温冷害强度值前 10个特征值的方差贡献如
表 4所示,将所有特征值按从大到小随自然序数的变化
绘成图 2。 由图 2可见,东北三省低温冷害特征值收敛
快,前 3个低温冷害特征值的累积方差贡献率较大,达
到 85.16%,可以选用为最少的特征向量来描述灾害变
化,根据 North特征值误差范围,可以选用前 3 个低温
冷害荷载向量进行正交旋转,获取东北三省低温冷害强
度场。 因此,确定了东北三省低温冷害的旋转特征向量
9834  14期       杨若子  等:1961—2013年东北三省玉米低温冷害强度的时空分布特征  
http: / / www.ecologica.cn
个数为 3。 旋转后的方差贡献反映出旋转的低温冷害特征向量所占的比重(表 4)。
表 4  东北三省低温冷害前 10个 EOF分解法和 REOF分解法的特征量对总方差的贡献率
Table 4  The contribution rate of the first 10 characteristic values from EOF decomposition method and REOF decomposition method to total
variance of chilling damage in the three provinces of Northeast China
分解法
Decomposition method
方差贡献 Variance contribution / %
1 2 3 4 5 6 7 8 9 10
EOF 66.21 14.11 4.84 2.46 2.15 1.66 1.29 1.14 66.21 14.11
REOF 28.59 13.93 15.77 1.11 1.68 1.09 1.32 1.78 0.82 0.75
    EOF, 经验正交函数 empirical orthogonal function; REOF, 旋转经验正交函数 rotated empirical orthogonal function
2.2  低温冷害强度时空格局动态
EOF分解法是将给定的时空场进行分解,拆分成不同的正交荷载向量,配合对应的时间系数来解释原
场[29]。 图 3a为低温冷害强度分解第一荷载向量场,全区为正值,说明东北三省低温冷害发生具有较好的一
致性,同时增大或者同时减小,在空间分布上表现为东北三省中部值大、四周值小的分布型。 荷载向量场值越
小低温冷害强度越大,故黑龙江省大兴安岭地区低温冷害强度最大,黑龙江省三江平原、吉林省东部和辽南地
区为低温冷害强度次大值区,吉林中部平原地区为低温冷害强度最小值区。 东北三省低温冷害强度从黑龙江
省大兴安岭地区、三江平原、吉林省东部和辽南地区向中部减小。 结合第一时间系数曲线(图 4a)可以看出,
从 1961到 2013年时间系数曲线呈波动上升趋势,表明东北三省玉米低温冷害强度呈波动减小趋势,其中,时
间系数曲线前期波动大,反映低温冷害强度波动较大,重度灾害年有 1969、1972 和 1976 年,与已有研究结
果[30⁃31]相同,后期时间系数趋于平缓,反映低温冷害强度变异较小。 该荷载向量方差贡献占总方差的
66.21%,故第一荷载向量空间分布可以反映东北三省低温冷害发生主要特点。 低温冷害强度分解第二荷载
向量(图 3b)以吉林中部纬向为分界线,呈现北部和南部反相位分布特征,说明两个地区低温冷害的强度变化
呈相反状态。 空间向量荷载值为负值的大兴安岭地区、三江平原和松嫩平原部分地区低温冷害较严重,低温
冷害强度从北向南减小。 对应第二时间系数曲线(图 4b)可以看出,时间系数曲线呈先降低后升高的趋势,对
应空间荷载向量为正值的地区,低温冷害强度随时间先增加后减小,空间荷载向量为负值的地区,低温冷害强
度随时间先减小后增加。 具体表现为 1973年前,东北三省低温冷害北部重、南部轻,1973—2000 年北部低温
冷害严重区的灾害强度减小,南部低温冷害较轻区灾害强度增加,2000 年后时间系数曲线值趋于平缓接近零
值,说明东北三省低温冷害南北差异变小,这种南北差异的空间分布特点约占全部研究样本方差贡献的
14.11%。 低温冷害强度分解第三荷载向量(图 3c)以东北⁃西南走向为分界线,呈现东北三省西部大部分地区
和吉林东部反相位分布特征,低温冷害强度大值区位于吉林省东部,次大值区位于黑龙江省西北部,其他地区
为低温冷害强度低值区,低温冷害强度趋势由东向西减小。 对应第三时间系数曲线(图 4c)可知,前期时间系
数负值居多,后期时间系数正值居多,表明空间荷载向量为正值的区域前期低温冷害强度大、后期小,空间荷
载向量为负值的区域正相反。 具体表现为东北三省西部大部分地区低温冷害强度呈减小趋势,吉林省东部地
区低温冷害强度呈增加趋势。 这种分布特征仅占全部研究样本方差贡献的 4.84%。
2.3  低温冷害区域分异
从上可知,东北三省低温冷害强度的分布呈现很强的区域差异。 为此,对 EOF分解法得到的特征向量列
向量进行平方差最大化旋转,旋转后低温冷害强度荷载高值集中在某一较小区域。 对其进行分区,将旋转向
量场荷载向量贡献≥0.6(图 5a—c中绝对值≥0.6)且在地理上连成一片,站点多于 4 个的区域划分为同一变
化区[27],如有站点按上述原则可以同时归于两个或以上相邻变化区,则按其与相邻气候变化区对应的荷载向
量场的荷载值大小,将其归于荷载向量值最大的区域[32]。
旋转向量场荷载值大小表明空间相关性强弱,把相邻相关性强的站点划分为一个区域,可以将东北三省
低温冷害强度大小划分为 3个区域(图 5d)。 黑龙江—吉林北部区(Ⅰ区):该区 REOF分解法特征向量平均
荷载值为 0.84,包括黑龙江省全部和吉林省北部地区,共 34 个站点,代表站是克山站(0.95);辽宁南部区(Ⅱ
0934   生  态  学  报      36卷 
http: / / www.ecologica.cn
图 3  EOF分解法空间荷载向量
Fig.3  The spatial load vectors of EOF decomposition method
图 4  EOF分解法时间系数
Fig.4  The time coefficients of EOF decomposition method
虚线为趋势线
区),该区 REOF分解法特征向量平均荷载值为 0.78,包括辽宁省西南大部分地区,共 15 个站点,代表站是兴
城(0.93);吉林南部⁃辽宁北部区(Ⅲ区),该区 REOF分解法特征向量平均荷载值为-0.72,包括吉林南部和辽
宁东北部地区,共 18个研究站,代表站是临江(-0.82)。
结合逐年低温冷害指标 CI值,分析各个低温冷害强度区代表站的低温冷害变化情况可知(表 5),Ⅰ区发
生重度低温冷害的年份多,受灾严重;Ⅱ区发生轻度低温冷害年份较多,受灾相对较小;Ⅲ区中度和重度低温
冷害发生年份多于Ⅱ区,东北三省低温冷害北部和东部灾害强度较大。 虽然 3个低温冷害区强度值发生年份
不尽相同,但各区低温冷害发生年份主要集中在 20 世纪 70—80 年代,整体趋势是 2000 年前处于偏冷阶段,
不同强度的低温冷害发生次数多,1969、1972和 1976年发生了全区范围的严重低温冷害,2000 年后处于偏暖
阶段,低温冷害发生的强度降低。
1934  14期       杨若子  等:1961—2013年东北三省玉米低温冷害强度的时空分布特征  
http: / / www.ecologica.cn
图 5  REOF分解法空间分布图
Fig.5  The spatial distribution map of REOF decomposition method
表 5  东北三省分区代表站低温冷害发生时间
Table 5  The chilling damage occurrence time of sub⁃region representative stations in three provinces of Northeast China
代表站
Representative station
轻度低温冷害发生年份
The occurrence time of
mild chilling damage
中度低温冷害发生年份
The occurrence time of
moderate chilling damage
重度低温冷害发生年份
The occurrence time of
severe chilling damage
I克山
I Keshan 1961,1967,1984,1988,1993,1995
1965—1966,1968,1971,1974,1985,
1989,1990,1999
1964, 1969, 1972, 1976, 1980—1981,
1983,1987,1992
Ⅱ兴城
Ⅱ Xingcheng
1966,1968,1971,1973,1974,1978—
1979, 1986—1988, 1990—1993,
1995,1998,2005,2008
1976—1977,1980,1985 1969,1972
Ⅲ临江
Ⅲ Linjiang
1968, 1971, 1973—1974, 1984,
1987—1989,1991,1997
1966,1979—1982,1985—1986,
1992—1993,1995 1969,1972,1976,1992
3  结论
本研究利用东北三省 1961—2013年的气象数据,结合《北方春玉米冷害评估技术规范(QX / T167—2012)
2934   生  态  学  报      36卷 
http: / / www.ecologica.cn
行业标准》,阐明了东北三省低温冷害强度的时空变化规律。 主要结论有:
(1)东北三省玉米低温冷害的空间分布主要可分为 3 种类型,即全区一致型,以吉林中部东西向为分界
线的南北反相位分布型,以及东北三省西部和吉林东部反相位分布型。 全区一致型的低温冷害强度在空间分
布上表现为从黑龙江省大兴安岭地区、三江平原、吉林省东部和辽南地区向中部减小,时间分布上从 1961—
2013年东北三省低温冷害的发生强度呈波动减小趋势,在 20世纪 90年代以前低温冷害强度波动较大,20 世
纪 90年代以后低温冷害发生强度变小;以吉林中部东西向为分界线的南北反相位分布型在空间分布上表现
为大兴安岭地区、三江平原和松嫩平原部分地区低温冷害较严重,低温冷害强度从北向南减小,时间分布上
1973年前大兴安岭地区、三江平原和松嫩平原部分地区的低温冷害较为严重,1973—2000年北部低温冷害严
重区的灾害强度减小,南部低温冷害较轻区灾害强度增加,2000 年后南北差异变小;东北三省西部大部分地
区和吉林东部反相位分布型在空间分布上表现为低温冷害强度呈由东向西减小趋势,时间分布上表现为东北
三省西部大部分地区低温冷害强度呈减小趋势,吉林省东部地区低温冷害强度呈增加趋势。 低温冷害强度第
一荷载向量空间分布方差贡献占总方差的 66.21%,故对第一荷载向量空间分布与以往研究进行比较。 本研
究的第一荷载向量空间分布特点与王远皓[33]基于热量指数修正值得到低温冷害强度第一荷载向量空间分布
(1961—2006年)基本一致,均表现为全区一致型,且呈中部值高、四周值低的特点,但受气候变暖的影响,低
温冷害强度降低,本研究中部低温冷害强度低值区范围变大,南部包括了辽宁省北部地区,本研究低温冷害强
度空间分布结果基本符合气候变化背景下的东北地区玉米低温冷害强度分布。
(2)用 REOF分解法得到的东北三省玉米低温冷害强度区域差异显著,可分为低温冷害强度最大、发生
重度低温冷害年份多且受灾严重的黑龙江—吉林北部区(Ⅰ区);发生轻度低温冷害年份较多的辽宁南部区
(Ⅱ区);以及发生中度和重度低温冷害强度较多的吉林南部-辽宁北部区(Ⅲ区)。 各区的低温冷害强度变化
具有较好的一致性,发生年份主要集中在 20 世纪 70—80 年代,整体趋势是 2000 年前处于偏冷阶段,1969、
1972和 1976 年发生了覆盖整个东北三省的严重低温冷害,2000 年后处于偏暖阶段,冷害发生的强度降低。
冯佩芝等[30]对东北地区 1951—1980年夏季低温冷害进行研究,得出分省低温冷害强度统计结果表明,黑龙
江省最大,辽宁最小;分区域低温冷害强度统计结果表明,嫩江和佳木斯地区低温冷害强度最大,辽宁省的沈
阳、营口和丹东低温冷害强度最小,这与本研究分区结果一致。 虽然气候变暖背景下低温冷害强度整体呈减
小趋势,但是受东北三省地理位置的影响,东北三省低温冷害强度分区变化不大。 考虑本研究受站点影响得
到的结果可能有偏差,而近年来低温冷害分区研究较少,用 REOF 分解法对东北三省低温冷害分区的准确性
需要进一步验证。
参考文献(References):
[ 1 ]  赵俊芳, 杨晓光, 刘志娟. 气候变暖对东北三省春玉米严重低温冷害及种植布局的影响. 生态学报, 2009,29(12):6544⁃6551.
[ 2 ]   李帅, 陈莉, 王晾晾, 万琳琳. 黑龙江省延迟型低温冷害气候指标研究. 气象与环境学报, 2014, 30(4):79⁃83.
[ 3 ]   张建平, 王春乙, 赵艳霞, 杨晓光, 王靖. 基于作物模型的低温冷害对我国东北三省玉米产量影响评估. 生态学报, 2012, 32(13):
4132⁃4138.
[ 4 ]   杨若子, 周广胜. 不同玉米低温冷害指标在梅河口地区的比较分析. 气象科学, 2012, 32(6):600⁃608.
[ 5 ]   胡春丽, 李辑, 林蓉, 李晶, 王颖. 东北水稻障碍型低温冷害变化特征及其与关键生育期温度的关系. 中国农业气象, 2014, 35(3):
323⁃329.
[ 6 ]   高晓容, 王春乙, 张继权. 气候变暖对东北玉米低温冷害分布规律的影响. 生态学报, 2012, 32(7) : 2110⁃2118.
[ 7 ]   高懋芳, 邱建军, 刘三超, 覃志豪, 王立刚. 我国低温冷冻害的发生规律分析. 中国生态农业学报, 2008, 16(5):1167⁃1172.
[ 8 ]   李正国, 杨鹏, 唐华俊, 吴文斌, 陈仲新, 刘佳, 张莉, 谭杰扬, 唐鹏钦. 近 20年来东北三省春玉米物候期变化趋势及其对温度的时空
响应. 生态学报, 2013, 33(18):5818⁃5827.
[ 9 ]   程勇翔, 王秀珍, 郭建平, 赵艳霞, 黄敬峰. 农作物低温冷害监测评估及预报方法评述. 中国农业气象, 2012, 33(2):297⁃303.
[10]   马树庆, 袭祝香, 王琪. 中国东北地区玉米低温冷害风险评估研究. 自然灾害学报, 2003, 12(3):137⁃141.
[11]   高晓容, 王春乙, 张继权. 东北玉米低温冷害时空分布与多时间尺度变化规律分析. 灾害学, 2012,27(4):65⁃70.
3934  14期       杨若子  等:1961—2013年东北三省玉米低温冷害强度的时空分布特征  
http: / / www.ecologica.cn
[12]  魏凤英. 现代气候统计诊断与预测技术. 北京:气象出版社,2007:105⁃147.
[13]   Liu Z Y, Zhou P, Zhang F Q, Liu X D, Chen G. Spatiotemporal characteristics of dryness / wetness conditions across Qinghai Province, Northwest
China. Agricultural and Forest Meteorology, 2013, 182⁃183:101⁃108.
[14]   茅海祥, 王文. 中国南方地区近 50a夏季干旱时空分布特征.干旱气象, 2011, 29(3):283⁃288.
[15]   陈豫英, 陈楠, 王式功, 钱正安, 穆建华. 中蒙干旱半干旱区降水的时空变化特征(I): 年降水特征及 5—9月降水的 REOF分析. 高原气
象, 2010, 29(1):33⁃43.
[16]   苗春生, 赵文宁, 王坚红, 朱勇, 吴琼. 近 53 a云南东部春季旱涝及其环流距平波列影响. 干旱区研究, 2014, 31(2):250⁃260.
[17]   杨绚, 李栋梁. 中国干旱气候分区及其降水量变化特征.干旱气象, 2008, 26(2):17⁃24.
[18]   国世友, 邹立尧, 周永吉. 黑龙江省冬、夏季低温的区域特征. 黑龙江气象, 2005, (3):8⁃11.
[19]   李芬, 张建新. 山西近 50年初霜冻的区域特征. 灾害学, 2013, 28(4):104⁃109,181⁃181.
[20]   郭建平, 庄立伟, 陈玥熤. 东北玉米热量指数预测方法研究(I)⁃热量指数与玉米产量. 灾害学, 2009, 24(4):6⁃10.
[21]   杨若子. 东北地区玉米低温冷害指标及其风险研究[D]. 北京: 中国气象科学研究院, 2012:35⁃35.
[22]   王春乙, 张雪芬,赵艳霞. 农业气象灾害影响评估与风险评价. 北京: 气象出版社, 2010:47⁃47.
[23]   吕厚荃. 中国主要农区重大农业气象灾害演变及其影响评估. 北京: 气象出版社,2011:4⁃4.
[24]   杨霏云, 郭建平, 马树庆, 龙志长, 朱玉洁, 赵俊芳. QX / T167⁃2012北方春玉米冷害评估技术规范行业标准. 北京: 气象出版社,2012:
208⁃216.
[25]   Hannachi A. Pattern hunting in climate: a new method for finding trends in gridded climate data. International Journal of Climatology, 2007, 27
(1):1⁃15.
[26]   刘吉峰, 李世杰, 丁裕国, 姚书春. 近几十年我国极端气温变化特征分区方法探讨. 山地学报, 2006, 24(3):291⁃297.
[27]   唐亚平, 张凯, 李忠娴, 李岚, 戴新童, 严晓瑜. 1964—2008年辽宁省旱涝时空分布特征及演变趋势. 气象与环境学报, 2011, 27(2):
50⁃55.
[28]   辛渝, 毛炜峄, 李元鹏, 张新, 卢戈, 博力健. 新疆不同季节降水气候分区及变化趋势. 中国沙漠, 2009, 29(5):948⁃959.
[29]   Tao L, Chen D. An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. Journal of Climate, 2012, 25(15):
5361⁃5373.
[30]   冯佩芝, 李翠金, 李小泉. 中国主要气象灾害分析(1951—1980). 北京: 气象出版社,1985:115⁃116.
[31]   周立宏, 刘新安, 周育慧. 东北地区低温冷害年的环流特征及预测. 沈阳农业大学学报, 2001, 32(1): 22⁃25.
[32]   Reichrath S, Davies T W. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi⁃
span Venlo⁃type glasshouse. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(3):139⁃149.
[33]   王远皓. 东北地区玉米冷害的风险评估技术研究[D]. 北京: 中国气象科学研究院, 2008:27⁃28.
4934   生  态  学  报      36卷