免费文献传递   相关文献

Effect of limestone and magnesite applications on masson pine(Pinus massoniana) forest growing on acidified soil

投加石灰石和菱镁矿对酸化土壤上马尾松(Pinus massoniana)林的影响


The effects of limestone and magnesite additions on masson pine (Pinus massoniana) forest growing on acidified soil were studied at Tieshanping, Chongqing in Southwest China. The site receives very high sulfur deposition (about 16g•m-2a-1 measured in canopy throughfall) and severe forest defoliation and mortality are observed. The pH value of soil is in the range of 3.6~4.2, much lower than what considered optimal for masson pine (4.5~6.0).A field manipulation experiment was set up in 2003 in a planted 40 year old masson pine stand. 6 adjacent sample plots of 10×10 m2 were divided into two blocks of three plots each. Within each block, one plot was randomly assigned to one out of three treatments. The three treatments consisted of two different liming treatments (one-time addition of 30 kg limestone and 25 kg magnesite respectively on the soil surface in December 2003) and a reference treatment. The magnesite powder was much coarser than the limestone. To find the effect of such treatments, ecological investigation was first carried out in November 2003 and redone in November 2004, including the measurement of tree height and diameter at breast height (DBH), evaluation of crown color and crown density, collection of needles and fine roots, and analysis of ground vegetation.The comparison of the results before and after the treatments indicates that some ecological responses may be visible already after one year. The average increments of DBH in limestone and magnesite treated plots were 0.43 and 0.38 cm respectively, much higher than 0.27 cm in reference plots (with the significance of p<0.005). The average needle density and biomass did not change significantly after liming (p>0.05), but the average needle length in the magnesite-treated plots was remarkably higher than that in reference plots (p<0.005). The biomass of fine roots in the upper 30cm of the soil increased in all plots (including reference plots), with larger increment in the treated ones. This indicates that liming may increase the root biomass production. The average increments of fine root biomass were 0.16, 0.32, and 0.67 kg/m in the upper 10 cm soil layer from the reference, limestone-treated, and magnesite-treated plots respectively, 0.20, 0.17, and 0.35 kg/m in the middle 10 cm layer, and-0.07, 0.15, and 0.21 kg/m in the lower 10 cm. Hence, the change of root biomass was more notable in upper layer of soil than lower.Although most studies in Europe indicated that there was no increase in tree growth in general as a result of liming, it seems that application of limestone and/or magnesite in this study could increase the growth of masson pine. The treatment also had effects on the biodiversity of ground vegetation, for instance decreased the abundance of oxyphilic species such as Miscanthus sinensis and Dicranopteris pedata quickly. The five 1×1 m quadrates in each limestone-treated plot lost on average three clusters of Miscanthus sinensis and five clusters of Dicranopteris pedata, and the magnesite-treated plots lost on average 10 and 18, respectively. Many seedlings were found in the treated plots, so were several dead saplings of oxyphilic plants such as Camellia sinensis. In contrast, very few seedlings and several dead saplings of Cunninghamia lanceolata and Quercus fabri were found in the reference plots.In conclusion, the two treatments show different effects on the ecosystem. In addition to the DBH and average needle length of masson pine, the Ca and Mg content of needle in magnesite-treated plots was remarkably higher than that in limestone-treated plots. It seems that the addition of magnesite is more effective for increasing forest growth than limestone. It should also be noted that the Ca and Mg content of needle in limestone-treated plots was even lower than that in reference plots, which indicates that the addition of Ca only with large amount may cause deficiency of other nutrient elements such as Mg. Long term follow up of controlled liming experiments should be conducted before conclusions regarding large scale applications are drawn.


全 文 :第26卷第3期
2OO6年 3月
生 态 学 报
ACTA ECOLOGICA SINICA
Vo1.26.No.3
Mar.,2006
投加石灰石和菱镁矿对酸化土壤上
马尾松(Pinus massoniana)林的影响
黄永梅 ,段 雷",靳 腾 ,杨永森 ,郝吉明
(1.北京师范大学资源学院。北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875;2.清华大学环境科学与工程系,北京 moos4)
摘要:为了确定酸化森林生态系统的修复效果,在重庆铁山坪的马尾松林内设立了6个 10m×10m的样地,其中2个作为对照样
地。另外4个分别在土壤表面施撇石灰石和菱镁矿粉末,各有 2个重复。在处理前和处理 la后的生长季末各进行了一次植被
观测 ,协方差分析和多重比较的结果显示投加修复剂对马尾松生长的影响已经初步显现。马尾松的胸径增量和针叶平均长度都
有显著的增加,而针叶中 Ca~Mg元素含量也表现出显著的差别。另外 ,立木更新的变化、细根生物量 的增加和物种多度的变化
也较明显,总体来说生态系统有恢复的趋势。土壤上层细根的增加较快,这与在土壤表面施撒修复剂 ,上层土壤的化学变化较
显著是一致的。而两种修复剂对生态系统的影响也表现出明显的差异,相对而言,施撇菱镁矿的效果可能会更好。由于土壤修
复的效果是长期的,其影响观测还将继续下去。
关键词:酸化;土壤修复;石灰石;菱镁矿;马尾松
文重编号:1000.0933(2006)03.0786.07 中田分类号:X53 文献标识码:A
Efect of limestone and magnesite applications on masson pine(Pinus massoniana)
forest growing on acidified soil
HUANG Yong—Mei ,DUAN Lei ,JIN Teng~,YANG Yong—Sen ,HAO Ji.Ming2 (1
. f D,鼢 。 & ,W Ⅱ,ld死c f0 ,
研 Laboratory ofEnvironmental Change and Natural Disaster,Beling Normal University,Beqing 100875,China;2.Department ofEnvironmental&ience and
Engineering,Tsinghna University,Beijing 100084,China).Acta Ecologica 8inica,20O6,26(3):786—792.
Abstract:The efects of limestone and magnesite additions on masson pine(Pinus massoniana)forest growing on acidified soil
were studied at Tieshanping,Chongqing in Southwest China.The site receives very high sulfur deposition(about 16g’m a
measured in canopy throughfal1)and severe forest defoliation and mortality are observed.The pH value of soil is in the range of
3.6—4.2,much lower than what considered optimal for masson pine(4.5—6.0).
A field manipulation experiment was set up in 2003 in a planted 40 year old masson pine stand.6 adjacent sample plots of 10
×10 m2 were divided into two blocks of three plots each
. Within each block,one plot was randomly assigned to one out of three
treatments.The three treatments consisted of two diferent liming treatments(one—time addition of 30 kg limestone and 25 kg
magnesite respectively on the soil surface in December 2003)and a reference treatment.The magnesite powder was much coarser
than the limestone.To find the efect of such treatments,ecological investigation was first carried out in November 2003 and
redone in November 2004,including the measurement of tree height and diameter at breast height(DBH),evaluation of crown
color and crown density,collection of needles and fine roots,and analysis of ground vegetation.
The comparison of the results before and after the treatments indicates that$ome ecological responses may be visible already
基金项目:国家863计划资助项目(2002AA649150)
收稿日期:2005 03 16;修订日期 :2006.02.02
作者简介:黄永梅(1974一),女。蒙古族,内蒙古宁城人,博士。讲师,主要从事植被生态学和生态水文学研究.E-mail:ymh g@ires.cn
*通讯作者Author for corespondence.E-mail:lduan@tsinghua.edu.ca
Foundation item:The pmject was surpported by National 863 Program of China(No.2002AA649150)
Received date:2005-03-16:Accepted date:2006-02-O2
Biography:HUANG Yong-Meit Ph.D.,mainly eggaged in vegetation ecology and eeohydrology
. E-mail:ymhuang@ires.cn
维普资讯 http://www.cqvip.com
3期 黄永梅 等:投加石灰石和菱镁矿对酸化土壤上马尾松(胁 凇 M)林的影响 787
after one year.The average increments of DBH in limestone and magnesite treated plots were 0
.43 and 0.38 cm I℃spectively,
much higher than O.27 am in reference plots(with the signifcance of Pnot change significantly after liming(P>O.05),but the average needle length in the magnesite.tI℃ated plots was I℃markably
higher than that in reference plots(p(including reference plots),with larger increment in the treated ones.This indicates that liming may incr℃ase the root bi0眦ss
production·Th e average increments offine root biomass were 0.16,0.32,and 0

67 ks/m。in the upper 10 cm soil layer from the
reference,limestone—treated,and magnesite-treated plots respectively
, 0.20,0.17,and 0.35 kg/m in the middle 10 cm layer.
and一0-07,0.15,and 0.21 ks/m in the lower 10 am.Hence,the change of root biomass was more notable in upper layer of soil
than lower.
Although most studies in Europe indicated that there was no increase in tree growth in general as a result of liming
, it seems
that application of limestone and/or magnesite in this study could increase the growth of masson pine
. Th e treatment also had
efects on the biodiversity of ground vegetation,for instance decreased the abundance of oxyphilic species such as Miscanthus
sinensis and Dicranopteris pedata quickly.The five 1×1 m quadrates in each limestone·treated plot lost on average three clusters
of Miscanthus sinensis and five clusters of Dicranopteris pedata,and the magnesite-treated plots lost on average 10 and 1 8

respectively.Many seedlings were found in the treated plots。so were several dead saplings of oxyphilic plants such as Camelia
sinerrsis.In contrast,very few seedlings and several dead saplings of Cunninghamia lanceolata and Q rc _厂口br/were found in
the reference plots.
In conclusion,the two treatments show diferent efects on the ecosystem.In addition to the DBH and average needle length
of masson pine.the Ca and Mg content of needle in magnesite-treated plots was remarkably higher than that in limestone-treated
plots.It seems that the addition of magnesite is more efective for increasing forest growth than limestone.It should also be noted
that the Ca and Mg content of needle in limestone-treated plots was even lower than that in reference plots,which indicates that the
addition of Ca only with large amount may cause deficiency of other nutrient elements such as Mg.Long term follow up of
controled liming experiments should be conducted before conclusions regarding large scale applications are drawn.
Key words:acidifcation;soil remediation;liming;magnesite;masson pine forest
从2O世纪7O年代末期开始,欧洲和北美相继出现了大面积的森林减产和衰亡现象,土壤酸化(主要是由
酸沉降导致的)被认为是一个最重要的原因 。2o世纪8O年代以来,我国在许多地区也相继出现这类事
件,酸沉降造成了极大的生态破坏和经济损失,每年仅森林损失一项就已经达到几百亿元q),这种危害随着酸
沉降问题的愈发严重而在继续。尽管土壤酸化的最终解决依赖于酸性气体污染物(二氧化硫和氮氧化物)排
放的大幅度削减,但是针对特定的地区(主要是对酸沉降敏感的森林地区),为了及时避免重大损失,也很有必
要对酸化的土壤进行修复,对退化的生态系统进行恢复重建。目前,适当投加石灰石、自云石或者一些易溶的
盐类被认为是防止森林土壤酸化同时提高土壤养分的有效方法,从而在欧洲获得一定程度的利用 “ 。但是
初步的研究表明,其副作用也不容忽视"]。同时,大多数研究 还表明,尽管上述处理导致的土壤性质的改
变十分明显,但对森林的生长却没有显著的效果。由于有关的研究开展较少,特别是在国内,对修复剂的加入
对植被的影响的认识还存在很大不确定性。
马尾松(Pinus ma~soniana)林是我国东南部湿润亚热带地区分布最广、资源最大的森林群落,也是这一地
区典型代表群系之一,有天然林,也有大面积的人工林 。¨。 这些地区同时也是我国土壤酸化(或者潜在酸化)
较严重的地区⋯],而马尾松对土壤酸化较为敏感①。为了对修复剂的大规模生产和使用提供科学依据。本研
究以马尾松林为实验对象,对酸化森林土壤的修复效果进行研究。研究中采用了“全生态系统实验(whole一
。。。 vstem experiment)”的方法,这种通过对生态系统的环境响应进行野外长期综合观测的方法在过去的几十
① 中国环境科学研究院,等.我国酸沉降及其生态环境影响研究.“八五”国家科技攻关项目报告(aS一912-01),1996
维普资讯 http://www.cqvip.com
788 生 态 学 报 26卷
年里,在生态研究,尤其是和环境污染物有关的研究中的重要性越来越显著n 。例如,欧洲曾利用这种方
法,研究氮沉降的改变对森林生态系统的影响 。
1 实验样地和方法
1.1 实验地点
在我国酸沉降污染较严重的重庆市的一个小集水区内进行野外实验,该点(106。41.24 E,29。37.42 N)位于
城市东北部的铁山坪林场,据市中心大约 25km。海拔约 500m,年均温度 18~C~右,年均降水量 llOOmm左右,
植被为人工马尾松林,土壤为山地黄壤,成土母质为砂页岩,现状硫沉降量约 16 g·m~·a。。,降水平均pH值
4.0 4.2①
。 土壤分析结果显示,pH值范围为3.6 4.2 ,远低于马尾松最适宜的土壤pH值范围(4.5—
6.0C。 )。
1.2 样地设置
实验在位于南坡的40年树龄人工马尾松林内开展,林分比较整齐,以人工种植的马尾松为主,密度约为
800株/hrn2,平均树高 15m,平均胸径 15cm,伴生树种主要有杉木 (Cunninghamia lanceolata)和岗柃 (Earya
grafil)等。林下灌木层主要有油茶 (Camelia oleifera)、山黄皮 (Randia cochinchinensis)、继木 (Loropetalum
chinense)等;草本层盖度为 35%左右,以蕨类植物为主,有芒萁(Dicranopteris pedata)、狗脊蕨 (Woodwardia
japonica)和黑足鳞毛蕨(Dryopteris f~,cipe,)等,另外 常见的还有芒(Miscanthus sinensis)和求米草(Oplismenus
MndMl0tifolius)等;层间植物有菝葜(Smilax chinense)和土茯苓(Smilax glabra)等。共设立 6个 10×10m2的样地,
对穿透水(大气沉降)、土壤溶液和植被进行长期观测。本文仅对植被变化进行分析。实验方案如表 1所示,
在土壤表表面均匀施撒的两种修复剂的纯度均较高(石灰石中 CaO含量和菱镁矿 中 MgO含量分别达到
50.7%和 44.1%),但是修复剂的粒径差别很大:由于石灰石的溶解速率较低,为了尽快看到效果,采用供应电
厂脱硫的很细的粉末,粒径在 200目下;而菱镁矿则是自行粉碎,100目筛下仅 16.6%。两种修复剂的投加量
按照中和 10a的酸沉降量估算,其摩尔数相当(均为 6.0eq·m )。实验样地于 2003年 10月设立,并对各样地
进行了本底调查。修复剂于2003年 12月底加入,经过一个生长季,于2004年 10月进行了第2次植被调查。
1.3 植被调查方法 裹1实验方案
1.3.1 马尾松生长状况测定
(1)对样区内胸径大于 5cm的乔木进行标号,开
展每木调查,进行树木生长和活力观测,包括胸径、树
高、冠幅和落叶率等。胸径调查,用精度为 1mm皮尺
测量周长,然后换算为直径,并对测量处进行标注,以
便进行长期观测。
样区号 处理
Sample plot Treatment
Refl,Ref2 不添加任何修复剂 No addition of limestone or magnesite
Cal。 Ca2 施石灰石粉 Limestone addition(CaCO3,0.30kg·m一 )
Mgl,Mg2 施菱镁矿粉 Magnesite addition(Mgc03,0.25kg·mI2)
(2)马尾松针叶观测 在每个样地中选取两株生长状况相似的马尾松,每株随机摘取冠层中上部的 3个
枝条,测定一年生枝的长度、针叶数和针叶平均长度,计算单位枝长上的针叶数。每株马尾松摘取 1年生针叶
1000个,用烘箱在 80—90℃烘干至恒重,测定针叶干重,并分析其主要元素(K、Na、Ca、Mg、P、A1、S和N)含量。
其中,N含量采用浓 H。S0 .H:0 消解、凯氏法测定,其它元素则采用 HNO .HCIO。消解、ICP分析。
1.3.2 马尾松林细根生物量测定 通过钻芯法进行不同土层根生物量的测定,研究群落细根(<2ram)的动
态变化。用 6cm直径的土钻在每个样区中随机取 5钻,分别统计土壤 0~10、10~20和 20~30cm三层中的细
根生物量。
1.3.3 物种多样性调查 在每个样区内随机设立 5个 lm×lm样方,进行草本层和立木更新层调查,包括物
种组成、高度、盖度、多度和分种生物量等,并统计当年生实生苗数量。
① Larss~n T.,Tang D.G.,eds.Integrated M0nit0ring Program on Acidification of Chinese Terrestrial Systeins,Annual Report of IMPACTS project,results
2003.NIVA report 4905 2004,ISBN 82-577-4594-4,2004
m ≈诤 ■r 靠” " . :^ l 也 “ _1¨
维普资讯 http://www.cqvip.com
3期 黄永梅 等:投加石灰石和菱镁矿对酸化土壤上马尾松(尸fn瑚?BASSOn )林的影响 789
1.4 数据分析
用方差分析方法揭示不同处理对上述指标的影响,并用Duncan法检验每个指标在处理间的差异显著性

2 结果
通过投加修复剂前后植物群落调查结果的统计分析,可以初步分析投加不同的修复剂对马尾松林的生态
效应。
2.1 对马尾松的影响
不同处理对马尾松的影响利用单因子方差分析进行了显著性检验,结果如表2所示。结果表明,马尾松
的胸径增量、针叶平均长度在不同处理间差别显著,而且针叶中 Ca和 Mg的含量差别明显。但是,平均针叶
重、单位枝长针叶数和针叶中K、Na、P、A1、S和 N含量没有表现出明显的差异。
寰2 不同处理对马尾松的影响
Table 2 Efects ofdiferenttreatments onInas目oⅡpine
显著水平 Level of signifcance:**p同字母表示差异显著(Psignificantly different,at the O.05 level
2.1.1 对马尾松胸径的影响 投加修复剂 la后,不同处理问马尾松的胸径增量表现出显著差异(P维普资讯 http://www.cqvip.com
790 生 态 学 报 26卷
(见表2)。由于生境不同,马尾松个体的差异也可能影响马尾松胸径的增量变化,为了区分马尾松个体和不
同处理的影响,在单因子方差分析的基础上,以2003年进行处理前测量的各马尾松胸径作为协变量进行了协
方差分析,结果 (F:0+290,P:0.594>0.05)表明马尾松个体问的差异对马尾松胸径增量的影响不明显,
因此胸径增量的差异应该是不同处理的结果。进一步的多重比较 Ducan法)表明,投加修复剂样地的马尾松
胸径增量明显大于对照样地。其中,投加菱镁矿样地的马尾松胸径平均增加了0.38cm,投加石灰石的样地增
加了0.43 m,而对照样区的胸径平均增长量只有0.27cm。但是,在两种投加不同修复剂的处理之间,马尾松
胸径增量的差别并不显著。
2.1.2 对马尾松针叶的影响 如表 2所示,不同处理下的马尾松平均针叶长度存在显著差异(P<0.005)。
而以2003年处理前各样地马尾松的平均针叶长作为协变量进行的协方差分析结果(F=1.441,P=0.42>
0.05)表明,马尾松个体的差异对平均针叶长的影响不显著。经过进一步多重比较(Ducan法),投加菱镁矿样
地的马尾松平均针叶长度为 17.33cm,与对照样区(15+04cm)相比明显变长;而石灰石样区为 16.17era,处于中
间水平,与对照和投加菱镁矿样地的差别都不显著。此外,处理样地和对照样地相比平均针叶重量也有所增
加(对照组、石灰石组和菱镁矿组的平均重量增加量分别为 1.18、7.78和 3.75mg),但差异并不显著。
不同处理下马尾松针叶元素含量的单因子方差分析表明(见表 2),仅有针叶的 ca和 Mg含量差异显著。
其中,投加石灰石的样区,其针叶 Ca含量与其它处理差异显著,仅为 3.54mg/g,远小于对照样区的4.87mg/g
和菱镁矿样区的5.27mg/g。这表明 ca的大量加入不仅没有使针叶中的ca含量增加,反而有所降低。另一方
面,针叶 Mg含量在不同处理间的差异也很显著,投加石灰石样区的针叶 Mg含量仅 1.06mg/g,明显小于菱镁
矿样区的 1.39mg/g,而对照样地为 1.24mg/g,处于中间水平,表明ca的大量加入同样降低了针叶 Mg含量。
2.2 对细根生物量的影响
2003—2004年不同处理样区的细根生物量如图 1
所示。与对照样区相比,在 3层土壤中,投加石灰石样
区和投加菱镁矿样区的细根增加量均较大(投加石灰石
样区第 2层土壤除外),表明修复剂的使用有利于细根
的生长。其中,投加菱镁矿样区的细根增长量又明显高
于投加石灰石的样区,另外土壤上层的细根对环境变化
的响应比较明显。例如,对于土壤 0 10cm层来说,1a
后对照样区平均增加了0.16kg/m3,而投加石灰石样区
平均增加了0.32kg/m3,投加菱镁矿样区细根增加量最
大,达到了0.67kg/il3。
2.3 对物种多样性的影响
实验处理 1a后,在酸化土壤上占优势的草本植物
— — 芒和芒萁的多度变化明显(如图2所示):石灰石处
理样地的芒和芒萁的多度分别下降了3丛和5丛,菱镁
矿处理样地分别减少了 10丛和 l8丛,而对照样地只减
少了 1丛和 3丛。

i


2.00
1.5O
1.00
O.5O
0
口 2003 翻 2004
Rcf Ca Mg
样区 Plots
图 1 2003~2004年各样区的细根生物量变化
Fig.1 Biomass of fine root in each plot during 2003—2004
误差线表示标准误 Error bars show standard elTOI~
通常认为,油茶也是一种喜好酸性土壤的物种,实验中发现,对照样地 Refl中的两颗油茶幼树生长良好,
高生长分别为9cm和31cm,而在施撒菱镁矿的样地 Mgl中,6cm高的幼苗死亡,在施撒石灰石的样地 Ca2中,
49cm的幼树同样死亡。对于一些不喜酸性土壤的物种,比如杉木和白栎(Q
. ),则出现了相反的情
况:在对照样地Ref2中高41em的杉木幼树和高17cm的白栎幼苗都出现死亡现象,而在施撒菱镁矿的Mg2样
地中的杉木和白栎幼树都生长良好。也有一些物种,比如山黄皮,在不同的处理下,其生长没有表现出明显的
差别,表明这些树种不敏感。
∞ 如 ∞ 如 0 ∞ 如 ∞ 0
维普资讯 http://www.cqvip.com
3期 黄永梅 等:投加石灰石和菱镁矿对酸化土壤上马尾松(Pinus massoniana)林的影响 791
此外,可能由于土壤化学性质,特别是表层土壤性
质的变化,实生苗在处理后的样地里数量都有明显增 0
加,结果如图3所示。菱镁矿处理样地平均增加 14株, 20
而石灰石处理样地平均增加 30株。对照样地中实生苗
l0
下 ¨。投加白云石和石灰石并不会对树木的生长起到改
善的作用 ]。这种差异可能是由我国特殊的植被、气
候条件以及酸沉降特征和土壤酸化程度造成的。
投加石灰石和菱镁矿对马尾松林下灌木层和草本
层的多样性有一定的影响:喜欢酸性土壤的草本层优势
种芒萁和芒的多度明显下降,喜酸的油茶幼树的生长受
到抑制甚至死亡,而不喜酸的白栎和杉木的幼树生长情
况则好于对照样地。同时,处理样地的当年生实生苗的
数量大大高于对照样地。类似的变化在欧洲的研
究 ¨ 中也多有发现。种种现象表明,投加修复剂可
能有利于退化生态系统的修复,但同时也可能改变群落 Fig.3
的物种组成和物种多样性,这还需要通过长期的定位观
测实验来论证 。

¨
误差线表示标准误 Error bars show standard elTOrs




8
图3 2004年实生苗数量
Number of seedlings lower than 5cm in each plot in 2004
误差线表示标准误Eror bars show standard erors
本研究采用了两种修复剂,它们对生态系统的影响表现出了一定的差异。例如,投加菱镁矿样地的细根
生物量和马尾松针叶长度明显大于对照样地,而投加石灰石样地的处于中间水平。但是,马尾松针叶中Ca和
Mg的含量,在石灰石处理样地中不仅小于投加菱镁矿的样地,而且还低于对照样地。这表明,投加石灰石的
副作用(比如导致 Mg缺乏)不容忽视,投加菱镁矿的生态效应可能会更好。关于 CaCO,和 MgCO 在酸化土壤
修复中的不同效应,此前国内外未见报道,其原理还需要进一步结合土壤化学变化过程和植物的生理生态响
应过程进行综合分析。另外,由于土壤修复的效果是长期的(从实验结果看,土壤上层根的变化较明显,表明
在土壤表面施撒修复剂,上层土壤的化学变化较显著,而要使下层土壤也充分见效,可能还需要更长的时间),
生态系统的短期响应和长期响应可能也会有差别,所以其影响观测还将继续下去。
References:
[1] Ulrich B,Mayer R,Khanna P K.Chemical changes due to acid precipitation in a loess-derived soil in central Europe.Soil Science,1980,130:193~
199.
[2] Pitelka L F,Raynal D.J.Forest decline and acidic deposition.Ecology,1989,70:2~10.
[3] Gorham E.Scientifc understanding of ecosystem acidifcation:a historical review.Ambio,1989,18:150~154-
尽n目曩 l 一蛊 眉IP8而 0矗 d詈 lN
维普资讯 http://www.cqvip.com
792 生 态 学 报 26卷
[4]
[5]
[6]
[7]
[8]
[9]
[16]
[17]
[18]
[19]
HUR R F,Z~tfl H W .Liming as a mitigation tool in Germany’8 declining fo gts— — reviewiⅡg results from former and recent trials.Forest Ecology and
Management。1993。61:325—338.
LnndstrOm U S.Bain D C。TaylorA F S。 a/.Efects of acidification anditsmitigationwithlimeandwood ash onforest soil proce~so8 1 a review.Water,
Air.and Sol Polution:Focus,2003,3:5—28.
Hindara A,Wright R F,Nilsen P,et a1.Efects on stroanl water chemistry and forest vitality after whole—catchment application of dolomite to a forest
ecosystem in southern Norway.Forest Ecology and Mmaqement,2003,180:509—525.
Hutfl R F.Schneider B U.Forest ecosystem degradation and rehabilitation.Ecological Enginering 1998。10:19—31.
Solberg S,Tveite B.Crown density and ∞ relationships between stands of Pieea abies in Norway.Scandinavian Journal of Forest Research,1999,15;
盯 一96.
Ljunptrom M.Nihlgmd B.Efects of lime and phosphate additions on nutrient status and growth of beech(Fagus sylvatica L.)seedlings.Forest Ecology
and Management。1995,74(I-3):133—148.
Wu Z Y,ed.China Vegetation.Bering:Science Pres。1980.
Duma L。Xie S D,Zhou Z P,et a1.Critical Loads of Acid Deposition on Soil in China.Water,Air and Soil Polution,2000,118(1-2);35—51.
Ca_q~nter S R.Chisholm S W。lC~ebs C J,et a1.Ecosystem experiments.Science。1995。269:324—327.
Beier C.Rasmussen L.Efects ofwhole—ecosystem manipulations on ecosystem,internal processes.Tree。1994,9:218—223.
Wright R F,Rasmussen L.Introduction to the NITREX and EXMAN p叫eets.Forest Ecology and Management,1998。101(1-3)。1—7.
Yang Y S,Jin T,Zhao D W ,et a1.Efect on soil water chemistry after limestone and magncsite application to an acidified forest soil in Chongqing,China:
a preliminary study.Environmental Science。2006.
Halbacken L,Zhmag L O.Efects of experimental acidifcation,nitrogen addition and liming on ground vegetation in a mature stand of Norway spruce
(Picea abies(L.)Ka.rst.)in SE Sweden.Forest Ecology andManagement,1998,108:201 213.
Olsson B A。Kelner 0.Efects of soil acidification and liming on ground flora establishment after clear-felling of Norway spruce in Sweden.Forest Ecology
and Management,2002,158(1-3):127—139.
Duliere J F,CarnolM,Dalem S,et a1.Impact of dolomitelime ontheground vegetation and onpotential net Ntransformationsin Norway spruce(Pizza
abies(L.)Karst.)and sessile oak(Q rc /~raea(Mat.)Lieb.)stands in the Belgian Ardenne.Annals of Forest Science,1999,56(5):361—370.
vaII Dobben H F。ter Brnak C J F。Dirkse G M.Undergrowth as a biomoniter for deposition of nitrogen mad acidity in pine forest.Forest Ecology and
Management,1999,114(1):83—95,
参考文献 :
[10] 吴征镒主编.1980.中国植被.北京:科学出版社 .
[15] 杨永森,靳腾,赵大为,等.投加石灰石和菱镁矿对酸化森林土壤溶液化学组成影响的初步研究.环境科学。2006
维普资讯 http://www.cqvip.com