全 文 :热带亚热带植物学报 2016,24(1):99~105
Journal of Tropical and Subtropical Botany
收稿日期:2015-05-29 接受日期:2015-07-13
基金项目:公益性行业(农业)科研专项(201303117);海南省中药现代化专项(ZY201408);中国热带农业科学院热带生物技术研究所基本科研业务费
(ITBB2015RC03)资助
This work was supported by the Special Project for Agricultural Public Welfare Science Research (Grant No. 201303117), the Special Project for Chinese
Traditional Medicine Modernization in Hainan Province (Grant No. ZY201408), and the Basic Research Fund in Institute of Tropical Bioscience and
Biotechnology, Chinese Academy of Tropical Agricultural Sciences (Grant No. ITBB2015RC03).
作者简介:彭俊霖(1990~ ),男,硕士研究生,从事天然产物化学研究。E-mail: peng900923@163.com
* 通信作者 Corresponding author. E-mail: daihaofu@itbb.org.cn
麻楝枝干的化学成分及其α-葡萄糖苷酶抑制活性研究
彭俊霖1,2, 梅文莉2, 刘子琦1, 王佩2, 左文健2, 蔡彩虹2, 姜北1, 戴好富2*
(1. 大理大学药学与化学学院,云南 大理 671000;2. 中国热带农业科学院热带生物技术研究所,海南省黎药资源天然产物研究与利用重点实验室,
海口 571101)
摘要:为了解麻楝(Chukrasia tabularis A. Juss)中的生物活性成分,采用柱色谱技术从其枝干乙醇提取物中分离得到 10 个化
合物,分别鉴定为:3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)propan-1-one (1)、6-hydroxy-1,3,5,7-tetramethoxy-9-xanthen-9-one
(2)、2,6,2′,6′-tetramethoxy-4,4′-bis(2,3-epoxy-1-hydroxypropyl)biphenyl (3)、cleomiscosin D (4)、chuktabularin A (5)、chuktabularin B (6)、
chubularisin H (7)、chubularisin I (8)、tabularisin A (9)和 tabularisin B (10),其中化合物 1~4 为首次从麻楝属中分离得到。对体
外 α-葡萄糖苷酶的抑制活性进行了测定,结果表明化合物 1、2、6、7 和 9 对 α-葡萄糖苷酶均具有较好的抑制活性。
关键词:麻楝;枝干;化学成分;α-葡萄糖苷酶抑制活性
doi: 10.11926/j.issn.1005-3395.2016.01.014
Studies on the Chemical Constituents from the Stems of Chukrasia
tabularis and Their α-Glucosidase Inhibitory Activity
PENG Jun-lin
1,2
, MEI Wen-li
2
, LIU Zi-qi
1
, WANG Pei
2
, ZUO Wen-jian
2
, CAI Cai-hong
2
, JIANG
Bei
1
, DAI Hao-fu
2*
(1. College of Pharmacy and Chemistry, Dali University, Dali 671000, Yunnan, China; 2. Hainan Key Laboratory for Research and Ddevelopment of Natural
Products from Li folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China)
Abstract: In order to find the bioactive components from the stems of Chukrasia tabularis, ten compounds were
isolated from its EtOH extract by using chromatographic techniques. On the basis of spectral data, their structures
were identified as 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)propan-1-one (1), 6-hydroxy-1,3,5,7-tetrameth-
oxy-9H-xanthen-9-one (2), 2,6,2′,6′-tetramethoxy-4,4′-bis(2,3-epoxy-1-hydroxypropyl) biphenyl (3), cleomiscosin
D (4), chuktabularin A (5), chuktabularin B (6), chubularisin H (7), chubularisin I (8), tabularisin A (9), and
tabularisin B (10). Compounds 14 were isolated from the genus Chukrasia for the first time. Furthermore,
compounds 1, 2, 6, 7 and 9 exhibited inhibitory activity against α-glucosidase in vitro.
Key words: Chukrasia tabularis; Stem; Chemical constituent; α-Glucosidase inhibitory activity
麻 楝 (Chukrasia tabularis A. Juss) 为 楝 科
(Meliaceae)麻楝属植物,该属为单种属,仅包括麻
楝原种及其变种毛麻楝(C. tabularis var. velutina)[1],
其主要分布于印度、缅甸、斯里兰卡、中南半岛、
马来半岛等地,我国云南、广东、海南、广西、西
藏等地均有分布。据《中华本草》记载,麻楝的根
皮是我国传统中药材,具有疏风清热的功效,主要
用于治疗感冒发热。麻楝的主要化学成分为柠檬苦
100 热带亚热带植物学报 第 24 卷
素、香豆素、黄酮和挥发油等,其中柠檬苦素是麻
楝的特征性化学成分[2]。据报道,麻楝中的柠檬苦
素类化合物具有抗炎[3–4]、钾离子通道阻断[5–6]、昆
虫拒食[7–8]、抗肿瘤[9]等多种药理活性。前期活性筛
选中发现麻楝乙醇提取物对α-葡萄糖苷酶具有良好
的抑制活性,为了寻找其中具有α-葡萄糖苷酶抑制
活性的成分,我们对麻楝枝干乙酸乙酯部分的化学
成分进行了研究,从中分离鉴定了10个单体化合
物,其中柠檬苦素类化合物6个。本文报道了从麻
楝中分离得到的10个化合物,并测定他们对α-葡萄
糖苷酶的抑制活性。
1 材料和方法
1.1 材料
麻楝枝干于 2014 年 7 月采集于海南省海口市,
经中国热带农业科学院热带生物技术研究所刘寿
柏博士鉴定为麻楝(Chukrasia tabularis A. Juss),凭
证标本(CTHK201407)存放于中国热带农业科学院
热带生物技术研究所。
1.2 仪器和试剂
化合物分离采用青岛海洋化工厂的薄层色谱
硅胶板(GF254)和柱色谱硅胶(200~300和60~80目);
Merck公司的Sephadex LH-20和RP-18填料。旋光度
测定采用 Autopol Ⅲ旋光仪;质谱测定采用
Autospec-3000质谱仪;核磁共振采用瑞士Bruker公
司的Brucker AV-500型超导核磁仪(TMS内标);美国
宝特公司ELX-800酶标仪,超净工作台为上海博讯
实业有限公司医疗设备厂产品;α-葡萄糖苷酶(α-
Glucosidase, EC 3.2.1.2)、4-硝基苯酚-α-D-吡喃葡萄
糖苷(4-Nitrophenyl-α-D-glucopyranoside, PNPG)、阿
卡波糖(Acarbose)均购自Sigma公司。
1.3 提取和分离
麻楝枝干(110 kg)晒干后粉碎,用95%乙醇冷浸
提取3次,室温,每次7 d;过滤,合并滤液后经真
空减压浓缩得粗浸膏,将其分散于水中成悬浊液,
依次用石油醚、乙酸乙酯、正丁醇萃取,分别得石
油醚萃取物30 g、乙酸乙酯萃取物1700 g、正丁醇
萃取物800 g。乙酸乙酯萃取物(1700 g)采用硅胶柱
色谱,以石油醚-乙酸乙酯(1꞉0~0꞉1)梯度洗脱,分
段收集得到18个流分(Fr.1~ Fr.18)。Fr.17 (120 g)继续
采用硅胶(硅胶H)减压柱色谱,以氯仿-甲醇(1꞉0~0꞉1)
梯度洗脱,分段收集得到18个流分 ( Fr. 1 7 -1~
Fr.17-18)。Fr.17-1 (7.0 g)经加压ODS (甲醇-水3꞉7~
1꞉0)梯度洗脱,得21个流分(Fr.17-1-1~Fr.17-1-21)。
经反复Sephadex LH-20 (氯仿-甲醇1꞉1)柱色谱以及
加压硅胶柱色谱得到化合物1 (1.5 mg)、2 (1.8 mg)、
3 (20.0 mg)、4 (7.0mg)、5 (5.2 mg)和6 (9.0 mg);
Fr.15 (268 g)采用硅胶(硅胶H)减压柱色谱,以氯仿-
乙酸乙酯(1꞉0~0꞉1)梯度洗脱,分段收集得到8个流分
(Fr.15-1~Fr.15-8)。Fr. 15-2 (36.8 g)经MCI (甲醇-水
7꞉1~1꞉0)梯度洗脱,得到6个流分(Fr.15-2-1~Fr.15-
2-6)。Fr. 15-2-3 (3.5g)经加压ODS (甲醇-水3꞉1~1꞉0)
梯度洗脱,获得20个流分(Fr. 15-2-3-1~Fr. 15-2-3-20)。
经反复Sephadex LH-20 (氯仿-甲醇1꞉1)色谱及硅胶柱
色谱得到化合物7 (5.4 mg)、8 (4.3 mg)、9 (550.0 mg)
和10 (3.0 mg)。
1.4 α-葡萄糖苷酶抑制活性测定方法
本测试在紫外分光光度计上进行,反应体系参
照Jong-Anurakkun等[10]的方法,优化后的测试方法
为:0.5 mL的磷酸钾缓冲液(0.1 mmol L–1,pH=6.8),
加入100 μL的α-葡萄糖苷酶(0.2 U mL–1)和0.5 mL样
品溶液混匀。在37˚C恒温15 min后,再加入0.5 mL
的PNPG (2.5 mmol L–1),混匀后37℃恒温15 min。
最后加入1 mL的Na2CO3溶液(0.2 mol L
–1
)终止反
应。以阿卡波糖作为阳性对照,于405 nm波长下测
反应液的OD值,重复3次取平均值。计算样品对α-
葡萄糖苷酶的抑制率:抑制率(%)=[A空白-(A样品-
A背景)]/A空白×100%。A空白为不加待测样品反应后的吸光
值,A样品为加入待测样品反应后的吸光值,A背景为
只加待测样品反应后的吸光值。
1.5 结构鉴定
3-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)
propan-1-one (1) 白色粉末; ESI-MS m/z: 249.1
[M + Na]
+
, 225.3 [M - H]−; 推断分子式为C11H14O5;
1
H MNR (CDCl3, 500 MHz): δ 7.26 (2H, d, J = 2.4 Hz,
H-2, H-6), 4.04 (2H, t, J = 5.4 Hz, H-9), 3.96 (6H, s, 3,
5, 2×OCH3), 3.20 (2H, t, J = 5.4 Hz, H-8);
13
C NMR
(CDCl3, 125 MHz): δ 128.7 (C-1), 105.8 (C-2, 6),
147.2 (C-3, C-5), 140.5 (C-4), 199.3 (C-7), 40.3 (C-8),
58.7 (C-9), 56.9 (3, 5, 2×OCH3)。以上波谱数据与文
献[11]报道基本一致,故鉴定为3-hydroxy-1-(4-hydr-
oxyl-3,5-dimethoxyphenyl)propan-1-one。
6-Hydroxy-1,3,5,7-tetramethoxy-9H-xanthen-
第 1 期 彭俊霖等:麻楝枝干的化学成分及其 α-葡萄糖苷酶抑制活性研究 101
9-one (2) 红色粉末; ESI-MS m/z: 333.2 [M + H]+;
推断分子式为C17H16O7;
1
H MNR (CDCl3, 500 MHz):
δ 7.50 (1H, s, H-8), 6.60 (1H, d, J = 2.3 Hz, H-4), 6.38
(1H, d, J = 2.3 Hz, H-2), 4.12 (3H, s, 5-OCH3), 4.11
(3H, s, 1-OCH3), 3.99 (3H, s, 3-OCH3), 3.94 (3H, s,
7-OCH3);
13
C MNR (CDCl3, 125 MHz): δ 161.7 (C-1),
95.3 (C-2), 164.4 (C-3), 92.7 (C-4), 159.5 (C-4a),
134.0 (C-5), 143.8 (C-6), 144.5 (C-7), 100.7 (C-8),
115.6 (C-8a), 174.5 (C-9), 106.7 (C-9a), 144.5 (C-10a),
56.4 (1-OCH3), 56.3 (3-OCH3), 61.6 (5-OCH3), 55.7
(7-OCH3)。以上波谱数据与文献[12]报道基本一致,
故鉴定为6-hydroxy-1,3,5,7-tetramethoxy-9H-xan-
then-9-one。
2,6,2′,6′-Tetramethoxy-4,4′-bis(2,3-epoxy-1-
hydroxypropyl)biphenyl (3) 无色油状物; ESI-
MS m/z: 441.3 [M + Na]
+
; 推断分子式为C22H26O8;
1
H NMR (CDCl3, 500 MHz): δ 6.61 (4H, s, H-3, 3′, 5,
5′), 5.52 (2H, s, 7, 7′, 2×OH), 4.75 (2H, d, J = 4.2 Hz,
H-7, 7′), 4.30 (2H, m, H-9Hb, Hb′), 3.93 (12H, s, 2, 2′,
6, 6′, 4×OCH3), 3.90 (2H, m, H-9Ha, Ha′), 3.12 (2H, m,
H-8, 8′);
13
C NMR (CDCl3, 125 MHz): δ 131.9 (C-1,
1′), 147.0 (C-2, 2′, 6, 6′), 102.5 (C-3, 3′, 5, 5′), 134.1
(C-4, 4′), 86.0 (C-7, 7′), 54.2 (C-8, 8′), 71.7 (C-9, 9′),
56.3 (2, 2′, 6, 6′, 4×OCH3)。以上波谱数据与文献[13]
报道基本一致,故鉴定为2,6,2′,6′-tetramethoxy-4,4′-
bis-(2,3-epoxy-1-hydroxypropyl)biphenyl。
Cleomiscosin D (4) 白色粉末; ESI-MS m/z:
439.2 [M + Na]
+
; 推断分子式为C21H20O9;
1
H NMR
(CDCl3, 500 MHz): δ 7.95 (1H, d, J = 9.5 Hz, H-4),
6.90 (1H, s, H-5), 6.73 (2H, s, H-2′, 6′), 6.33 (1H, d, J =
9.5 Hz, H-3), 4.95 (1H, d, J = 8.0 Hz, H-7′), 4.36 (1H,
m, H-8′), 3.77 (6H, s, 3′, 5′, 2×OCH3), 3.75 (3H, s,
4-OCH3), 3.63 (1H, m, H-9a), 3.39 (1H, m, H-9b);
13
C
NMR (CDCl3, 125 MHz): δ 160.1 (C-2), 113.3 (C-3),
144.7 (C-4), 100.8 (C-5), 145.3 (C-6), 137.1 (C-7),
131.5 (C-8), 138.2 (C-9), 111.3 (C-10), 125.8 (C-1′),
105.7 (C-2′, 6′), 148.0 (C-3′, 5′), 136.3 (C-4′), 76.6
(C-7′), 77.8 (C-8′), 59.9 (C-9′), 55.9 (4-OCH3), 56.2
(3′, 5′, 2×OCH3)。以上波谱数据与文献[14]报道基本
一致,故鉴定为cleomiscosin D。
Chuktabularin A (5) 白色无定形粉末 ;
[α]
D
28 +238° (c 0.1, CHCl3), ESI-MS m/z: 799.4 [M +
Na]
+
; 推断分子式为C38H48O17;
1
H NMR (CDCl3,
500 MHz): δ 7.65 (1H, br s, H-21), 7.37 (1H, br t, J =
1.4 Hz, H-23), 6.50 (1H, br d, J = 1.4 Hz, H-22), 6.16
(1H, s, H-17), 5.67 (1H, d, J = 3.3 Hz, H-11), 5.63
(1H, d, J = 3.3 Hz, H-12), 5.23 (1H, s, H-3), 4.64 (1H,
s, 1-OH), 4.63 (1H, s, H-30), 3.62 (3H, s, 7-OCH3),
3.27 (1H, s, 9-OH), 3.10 (1H, dd, J = 11.7, 7.6 Hz,
H-14), 2.58 (1H, br d, J = 12.1 Hz, H-5), 2.53 (1H, dd,
J = 11.7, 7.6 Hz, H-15β), 2.47 (3H, s, 3-OAc), 2.44
(1H, br d, J = 16.5 Hz, H-6a), 2.22 (1H, dd, J = 16.5,
12.1 Hz, H-6b), 2.10 (3H, s, 17-OAc), 2.08 (3H, s,
12-OAc), 2.07 (3H, s, 2-OAc), 1.94 (3H, s, 11-OAc),
1.90 (1H, d, J = 11.7 Hz, H-15α), 1.84 (1H, d, J = 11.3 Hz,
H-29a), 1.80 (1H, d, J = 11.3 Hz, H-29b), 1.63 (3H, s,
H-32), 1.19 (3H, s, H-19), 0.91 (3H, s, H-18), 0.77
(3H, s, H-28);
13
C NMR (CDCl3, 125 MHz): δ 84.6
(C-1), 82.3 (C-2), 83.5 (C-3), 45.5 (C-4), 41.3 (C-5),
34.3 (C-6), 173.3 (C-7), 90.2 (C-8), 76.3 (C-9), 52.7
(C-10), 72.5 (C-11), 73.4 (C-12), 41.8 (C-13), 44.9
(C-14), 35.6 (C-15), 71.3 (C-17), 19.1 (C-18), 18.9
(C-19), 122.5 (C-20), 140.7 (C-21), 109.7 (C-22),
143.2 (C-23), 16.2 (C-28), 40.1 (C-29), 71.2 (C-30),
110.4 (C-31), 17.8 (C-32), 51.9 (7-OCH3), 2-OAc
[(169.8), (21.1)], 3-OAc [(169.6), (21.2)], 11-OAc
[(169.6), (21.1)], 12-OAc [(169.3), (20.7)], 17-OAc
[(168.9), (20.6)]。以上波谱数据与文献[15]报道基本
一致,故鉴定为chuktabularin A。
Chuktabularin B (6) 白色无定形粉末;
[α]
D
28 +135° (c 0.1, CHCl3), ESI-MS m/z: 783.3 [M +
Na]
+
; 推断分子式为C37H44O17;
1
H NMR (CDCl3,
500 MHz): δ 7.53 (1H, br s, H-21), 7.45 (1H, br t, J =
1.3 Hz, H-23), 6.45 (1H, br d, J = 1.3 Hz, H-22), 6.09
(1H, s, H-17), 5.66 (1H, d, J = 3.6 Hz, H-11), 5.45
(1H, d, J = 3.6 Hz, H-12), 5.31 (1H, s, H-3), 4.96 (1H,
d, J = 12.5 Hz, H-19a), 4.79 (1H, s, 1-OH), 4.61 (1H,
s, H-30), 4.16 (1H, d, J = 12.5 Hz, H-19b), 3.37 (1H,
s, 9-OH), 3.29 (1H, dd, J = 11.7, 8.0 Hz, H-14), 2.56
(1H, dd, J = 11.7, 8.0 Hz, H-15β), 2.45 (3H, s, 3-
OAc), 2.29 (1H, m, H-6), 2.11 (1H, d, J = 11.7 Hz,
H-29a), 2.10 (3H, s, 11-OAc), 2.09 (3H, s, 2-OAc),
2.09 (3H, s, 12-OAc), 2.09 (3H, s, 17-OAc), 2.05 (1H,
m, H-5), 2.01 (1H, dd, J = 11.7, 11.7 Hz, H-15α), 1.99
(1H, d, J = 11.7 Hz, H-29b), 1.65 (3H, s, H-32), 0.91
(3H, s, H-18), 0.90 (3H, s, H-28);
13
C NMR (CDCl3,
125 MHz): δ 85.2 (C-1), 80.9 (C-2), 82.6 (C-3), 45.2
(C-4), 40.5 (C-5), 30.9 (C-6), 173.1 (C-7), 89.6 (C-8),
102 热带亚热带植物学报 第 24 卷
75.2 (C-9), 52.1 (C-10), 71.4 (C-11), 72.0 (C-12), 41.1
(C-13), 44.2 (C-14), 35.7 (C-15), 71.3 (C-17), 19.4
(C-18), 68.7 (C-19), 122.0 (C-20), 140.0 (C-21), 109.0
(C-22), 142.9 (C-23), 15.0 (C-28), 38.4 (C-29), 71.1
(C-30), 110.9 (C-31), 18.7 (C-32), 2-OAc [(169.8),
(20.8)], 3-OAc [(169.4), (21.1)], 11-OAc [(170.9),
(20.4)], 12-OAc [(170.0), (20.6)], 17-OAc [(169.1),
(20.3)]。以上波谱数据与文献[15]报道基本一致,故
鉴定为chuktabularin B。
Chubularisin H (7) 白色无定形粉末 ;
[α]
D
28 +116° (c 0.1, CHCl3), ESI-MS m/z: 911.5 [M +
Na]
+
; 推断分子式为C43H52O20;
1
H NMR (CDCl3,
500 MHz): δ 7.48 (1H, br t, J = 1.7 Hz, H-21), 7.39
(1H, br t, J = 1.7 Hz, H-23), 7.06 (1H, br d, J = 3.0 Hz,
H-15), 6.51 (1H, br d, J = 1.7 Hz, H-22), 6.43 (1H, s,
H-17), 5.92 (1H, s, H-6), 5.46 (1H, s, H-3), 5.36 (1H,
s, H-30), 5.32 (1H, br d, J = 3.5 Hz, H-12), 4.22 (1H,
d, J = 3.5 Hz, H-11), 3.79 (3H, s, 7-OCH3), 3.49 (1H,
s, 2-OH), 2.91 (1H, m, H-2′), 2.88 (1H, s, H-5), 2.85
(1H, s, 1-OH), 2.65 (1H, dd, J = 6.8, 3.0 Hz, H-18a),
2.51 (1H, m, H-2′′), 2.22 (3H, s, 6-OAc), 2.20 (3H, s,
3-OAc), 2.15 (1H, d, J = 10.9 Hz, H-29a), 1.95 (1H, d,
J = 10.9 Hz, H-29b), 1.67 (3H, s, 12-OAc), 1.66 (3H,
s, H-32), 1.43 (1H, d, J = 6.8 Hz, H-18b), 1.34 (3H, s,
H-19), 1.31 (3H, d, J = 7.3 Hz, H-4′), 1.25 (3H, d, J =
6.6 Hz, H-3′), 1.19 (3H, d, J = 6.9 Hz, H-4′′), 1.17 (3H,
d, J = 6.9 Hz, H-3′′), 1.00 (3H, s, H-28);
13
C NMR
(CDCl3, 125 MHz): δ 83.1 (C-1), 76.7 (C-2), 86.0
(C-3), 44.9 (C-4), 43.1 (C-5), 70.8 (C-6), 171.7 (C-7),
78.3 (C-8), 90.8 (C-9), 45.1 (C-10), 74.9 (C-11), 66.4
(C-12), 31.1 (C-13), 30.9 (C-14), 69.3 (C-15), 167.0
(C-16), 71.4 (C-17), 18.6 (C-18), 15.2 (C-19), 122.3
(C-20), 142.1 (C-21), 109.8 (C-22), 143.5 (C-23), 15.4
(C-28), 40.1 (C-29), 70.0 (C-30), 119.6 (C-31), 16.3
(C-32), 53.7 (7-OCH3), 15-isobutyryloxyl [177.9 (C-
1′), 34.2 (C-2′), 19.8 (C-3′), 17.9 (C-4′)], 30-isobu-
tyryloxyl [173.4 (C-1′′), 33.9 (C-2′′), 19.5 (C-3′′), 18.9
(C-4′′)], 3-OAc [(169.2), (21.1)], 6-OAc [(169.2),
(21.2)], 12-OAc [(170.7), (19.7)]。以上波谱数据与文
献[16]报道基本一致,故鉴定为chubularisin H。
Chubularisin I (8) 白色无定形粉末; [α]
D
28
+124° (c 0.1, CHCl3), ESI-MS m/z: 839.3 [M + Na]
+
;
推断分子式为C40H48O18;
1
H NMR (CDCl3, 500 MHz):
δ 7.47 (1H, br s, H-21), 7.39 (1H, br s, H-23), 7.21
(1H, br d, J = 2.8 Hz, H-15), 6.49 (1H, br s, H-22),
6.43 (1H, s, H-17), 5.52 (1H, s, H-3), 5.40 (1H, s,
H-30), 5.13 (1H, br d, J = 3.2 Hz, H-12), 4.17 (1H, d,
J = 3.2 Hz, H-11), 3.80 (1H, s, 2-OH), 3.76 (3H, s,
7-OCH3), 2.92 (1H, m, H-2′), 2.84 (1H, s, 1-OH), 2.65
(1H, d, J = 16.7 Hz, H-6a), 2.64 (1H, dd, J = 6.8, 2.8 Hz,
H-18a), 2.58 (1H, d, J = 12.4 Hz, H-5), 2.45 (1H, d, J =
16.7 Hz, H-6b), 2.32 (2H, q, J = 7.7 Hz, H-2′′), 2.20
(3H, s, 3-OAc), 1.91 (2H, s, H-29), 1.66 (3H, s, H-32),
1.66 (3H, s, 12-OAc), 1.43 (1H, d, J = 6.8 Hz, H-18b),
1.37 (3H, d, J = 7.0 Hz, H-4′), 1.30 (3H, s, H-19), 1.24
(3H, d, J = 7.0 Hz, H-3′), 1.19 (3H, t, J = 7.1 Hz, H-
3′′), 0.82 (3H, s, H-28);
13
C NMR (CDCl3, 125 MHz):
δ 83.1 (C-1), 76.5 (C-2), 85.8 (C-3), 45.0 (C-4), 38.2
(C-5), 33.1 (C-6), 173.9 (C-7), 78.5 (C-8), 90.6 (C-9),
44.1 (C-10), 75.0 (C-11), 66.6 (C-12), 31.2 (C-13),
30.8 (C-14), 69.9 (C-15), 167.1 (C-16), 71.5 (C-17),
18.8 (C-18), 14.7 (C-19), 122.1 (C-20), 142.2 (C-21),
109.8 (C-22), 143.5 (C-23), 14.3 (C-28), 38.9 (C-29),
70.7 (C-30), 119.9 (C-31), 16.4 (C-32), 52.6 (7-OCH3),
15-isobutyryl-oxyl [178.0 (C-1′), 34.2 (C-2′), 19.5
(C-3′), 17.8 (C-4′)], 30-propionyloxyl [171.1 (C-1′′),
27.4 (C-2′′), 9.2 (C-3′′)], 3-OAc [(169.3), (21.1)], 12-
OAc [(170.8), (20.0)]。以上波谱数据与文献[16]报道
基本一致,故鉴定为chubularisin I。
Tabularisin A (9) 白色无定形粉末; [α]
D
28
+185° (c 0.1, CHCl3), ESI-MS m/z: 883.4 [M + Na]
+
;
推断分子式为C41H48O20;
1
H NMR (CDCl3, 500 MHz):
δ 7.48 (1H, br s, H-21), 7.39 (1H, br s, H-23), 7.09
(1H, d, J = 3.0 Hz, H-15), 6.50 (1H, d, J = 2.0 Hz,
H-22), 6.43 (1H, s, H-17), 5.90 (1H, s, H-6), 5.46 (1H,
s, H-3), 5.36 (1H, s, H-30), 5.31 (1H, br d, J = 3.6 Hz,
H-12), 4.22 (1H, d, J = 3.6 Hz, H-11), 3.79 (3H, s,
7-OCH3), 3.36 (1H, s, 2-OH), 2.87 (1H, s, H-5), 2.83
(1H, s, 1-OH), 2.66 (1H, dd, J = 6.8, 3.0 Hz, H-18a),
2.50~2.55 (1H, m, H-2′), 2.33 (3H, s, 15-OAc), 2.21
(3H, s, 6-OAc), 2.18 (3H, s, 3-OAc), 2.15 (1H, d, J =
10.9 Hz, H-29b), 1.94 (1H, d, J = 10.9 Hz, H-29a),
1.66 (3H, s, H-32), 1.66 (3H, s, 12-OAc), 1.42 (1H, d,
J = 6.8 Hz, H-18b), 1.33 (3H, s, H-19), 1.19 (3H, d, J =
7.2 Hz, H-4′), 1.18 (3H, d, J = 7.2 Hz, H-3′), 0.98 (3H,
s, H-28);
13
C NMR (CDCl3, 125 MHz): δ 83.0 (C-1),
76.6 (C-2), 85.9 (C-3), 44.8 (C-4), 43.1 (C-5), 70.7
(C-6), 171.6 (C-7), 78.2 (C-8), 90.7 (C-9), 45.1 (C-10),
第 1 期 彭俊霖等:麻楝枝干的化学成分及其 α-葡萄糖苷酶抑制活性研究 103
74.9 (C-11), 66.3 (C-12), 31.0 (C-13), 30.7 (C-14),
69.7 (C-15), 166.9 (C-16), 71.4 (C-17), 18.6 (C-18),
15.2 (C-19), 122.1 (C-20), 142.1 (C-21), 109.7 (C-22),
143.5 (C-23), 15.3 (C-28), 40.0 (C-29), 70.1 (C-30),
119.6 (C-31), 16.3 (C-32), 53.7 (7-OCH3), 30-isobu-
tyryloxyl [173.5 (C-1′), 34.0 (C-2′), 19.5 (C-3′), 18.9
(C-4′)], 3-OAc [(169.1), (21.1)], 6-OAc [(169.2),
(21.1)], 12-OAc [(170.7), (19.7)], 15-OAc [(172.3),
(21.6)]。以上波谱数据与文献[17]报道基本一致,
故鉴定为tabularisin A。
Tabularisin B (10) 白色无定形粉末; [α]
D
28
+264° (c 0.1, CHCl3), ESI-MS m/z: 841.4 [M + Na]
+
;
推断分子式为C39H46O19;
1
H NMR (CDCl3, 500 MHz):
δ 7.69 (1H, br s, H-21), 7.53 (1H, br s, H-23), 7.08
(1H, d, J = 2.8 Hz, H-15), 6.56 (1H, br s, H-22), 6.42
(1H, s, H-17), 5.47 (1H, s, H-3), 5.36 (1H, s, H-30),
5.34 (1H, s, H-6), 4.25 (1H, d, J = 3.5 Hz, H-11), 4.03
(1H, d, J = 3.5 Hz, H-12), 3.81 (3H, s, 7-OCH3), 3.38
(1H, s, 2-OH), 2.93 (1H, s, 1-OH), 2.77 (1H, s, H-5),
2.50~2.55 (1H, m, H-2′), 2.46 (1H, dd, J = 6.7, 2.8 Hz,
H-18a), 2.33 (3H, s, 15-OAc), 2.23 (3H, s, 6-OAc),
2.18 (3H, s, 3-OAc), 2.14 (1H, d, J = 10.8 Hz, H-29b),
1.96 (1H, d, J = 10.8 Hz, H-29a), 1.67 (3H, s, H-32),
1.37 (1H, m, H-18b), 1.34 (3H, s, H-19), 1.21 (3H, d,
J = 7.0 Hz, H-4′), 1.19 (3H, d, J = 7.0 Hz, H-3′), 0.97
(3H, s, H-28);
13
C NMR (CDCl3, 125 MHz): δ 83.2
(C-1), 76.4 (C-2), 85.8 (C-3), 44.8 (C-4), 42.9 (C-5),
71.1 (C-6), 171.4 (C-7), 77.9 (C-8), 91.1 (C-9), 45.3
(C-10), 76.5 (C-11), 65.1 (C-12), 34.7 (C-13), 31.7
(C-14), 69.8 (C-15), 167.1 (C-16), 71.4 (C-17), 18.3
(C-18), 15.2 (C-19), 122.1 (C-20), 142.7 (C-21), 108.9
(C-22), 145.0 (C-23), 15.4 (C-28), 39.9 (C-29), 70.0
(C-30), 119.4 (C-31), 16.3 (C-32), 53.9 (7-OCH3), 30-
isobutyryloxyl [173.6 (C-1′), 34.0 (C-2′), 19.6 (C-3′),
18.9 (C-4′)], 3-OAc [(169.1), (21.2)], 6-OAc [(169.6),
(21.2)], 15-OAc [(172.4), (21.6)]。以上波谱数据与文
献[17]报道基本一致,故鉴定为tabularisin B。
图1 化合物1~10的结构
Fig. 1 Structures of compounds 1-10
104 热带亚热带植物学报 第 24 卷
1.6 化合物对α-葡萄糖苷酶抑制活性测试
本试验采用体外抑制法测定了化合物1~10
的α-葡萄糖苷酶抑制活性,结果表明 , 麻楝中柠
檬苦素类化合物表现出明显的对α-葡萄糖苷酶
的抑制活性 , 且部分柠檬苦素类化合物的活性
优于阳性对照阿卡波糖;另外,部分木脂素类
化合物也表现出一定的α-葡萄糖苷酶的抑制活
性(表1)。
表1 化合物的α-葡萄糖苷酶抑制活性(IC50)
Table 1 α-Glucosidase inhibitory activity of compounds (IC
50
)
化合物 Compound IC50 (μg mL
–1
) 化合物 Compound IC50 (μg mL
–1
)
1 353.2 7 505.1
2 362.2 8 —
3 — 9 377.5
4 — 10 —
5 — 阿卡波糖 Acarbose 794.5
6 338.0
2 结果和讨论
本文采用多种色谱技术,从麻楝枝干提取物中
分离得到了10个化合物,分别鉴定为:3-hydroxy-1-
(4-hydroxy-3,5-dimethoxyphenyl)propan-1-one (1)、
6-hydroxy-1,3,5,7-tetramethoxy-9H-xanthen-9-one
(2)、2,6,2′,6′-tetramethoxy-4,4′-bis(2,3-epoxy-1-hydr-
oxypropyl)biphenyl (3)、cleomiscosin D (4)、chuktabu-
larin A (5)、chuktabularin B (6)、chubular-isin H (7)、
chubularisin I (8)、tabularisin A (9)和tabularisin B
(10),其中有6个为柠檬苦素类化合物,化合物1~4
为首次从麻楝属植物中分离得到。对所得化合物
进行了体外α-葡萄糖苷酶抑制活性测试,结果表明,
化合物1、2、6、7和9均具有较好的抑制活性,本
文为首次报道柠檬苦素类化合物具有体外抑制α-葡
萄糖苷酶的活性。同时,据文献报道,化合物1具
有抗氧化活性[18]和细胞毒活性[19],化合物4具有抗
炎活性[20],化合物7具有较强的钾离子通道抑制活
性[16],但并未见其他化合物生物活性的报道。本研
究结果为进一步挖掘麻楝的药用价值提供了科学
依据。
参考文献
[1] CHEN S K, CHEN B Y, LI H. Flora Reipublicae Popularis Sinicae,
Tomus 43(3) [M]. Beijing: Science Press, 1997: 4749.
陈书坤, 陈邦余, 李恒. 中国植物志, 第43卷第3分册 [M]. 北京:
科学出版社, 1997: 4769.
[2] TAN Q G, LUO X D. Meliaceous limonoids: Chemistry and biolo-
gical activities [J]. Chem Rev, 2011, 111(11): 74377522. doi: 10.
1021/cr9004023.
[3] LUO J, WANG J S, LUO J G, et al. Velutabularins A-J, phrag-
malin-type limonoids with novel cyclic moiety from Chukrasia
tabularis var. velutina [J]. Tetrahedron, 2011, 67(16): 29422948. doi:
10.1016/j.tet.2011.02.049.
[4] LUO J, LI Y, WANG J S, et al. D-ring-opened phragmalin-type
limonoids from Chukrasia tabularis var. velutina [J]. Chem Biod,
2011, 8(12): 22612269. doi: 10.1002/cbdv.201000285.
[5] LIU H B, ZHANG H, LI P, et al. Chukrasones A and B: Potential
Kv1.2 potassium channel blockers with new skeletons from
Chukrasia tabularis [J]. Org Lett, 2012, 14(17): 44384441. doi:
10.1021/ol301942v.
[6] ZHANG C R, YANG S P, CHEN X Q, et al. Limonoids from the
twigs and leaves of Chukrasia tabularis [J]. Hel Chim Acta, 2008,
91(12): 23382350. doi: 10.1002/hlca.200890254.
[7] YIN J L, DI Y T, FANG X, et al. Tabulvelutin A, the first 19-nor
limonoid with unprecedented ring system from Chukrasia tabularis
var. velutina [J]. Tetrah Lett, 2011, 52(24): 30833085. doi: 10.
1016/j.tetlet.2011.03.112.
[8] NAKATANI M, ABDELGALEIL S A M, SAAD M M G, et al.
Phragmalin limonoids from Chukrasia tabularis [J]. Phytochemistry,
2004, 65(20): 28332841. doi: 10.1016/j.phytochem.2004.08.010.
[9] LUO J, WANG J S, WANG X B, et al. Phragmalin-type limonoid
orthoesters from Chukrasia tabularis var. velutina [J]. Chem Pharm
Bull, 2011, 59(2): 225230. doi: 10.1248/cpb.59.225.
[10] JONG-ANURAKKUN N, BHANDARI M R, KAWABATA J.
α-Glucosidase inhibitors from devil tree (Alstonia scholaris) [J].
Food Chem, 2007, 103(4): 13191323. doi: 10.1016/j.foodchem.
2006.10.043.
[11] MA Z J, ZHAO Z J. Studies on chemical constituents from stem
barks of Fraxinus paxiana [J]. China J Chin Mat Med, 2008, 33(16):
第 1 期 彭俊霖等:麻楝枝干的化学成分及其 α-葡萄糖苷酶抑制活性研究 105
19901993. doi: 10.3321/j.issn:1001-5302.2008.16.016.
马志静, 赵志娟. 秦岭白蜡树化学成分的研究 [J]. 中国中药杂志,
2008, 33(16): 19901993. doi: 10.3321/j.issn:1001-5302.2008.16.016.
[12] KIJJOA A, GONZALEZ M J, AFONSO C M, et al. Xanthones from
Calophyllum teysmannii var. inophylloide [J]. Phytochemistry, 2000,
53(8): 10211024. doi: 10.1016/S0031-9422(99)00520-8.
[13] DAY S H, WANG J P, WON S J, et al. Bioactive constituents of the
roots of Cynanchum atratum [J]. J Nat Prod, 2001, 64(5): 608611.
doi: 10.1021/np000428b.
[14] KUMAR S, RAY A B, KONNO C, et al. Cleomiscosin D, a coumarino-
lignan from seeds of Cleome viscosa [J]. Phytochemistry, 1988, 27(2):
636638. doi: 10.1016/0031-9422(88)83163-7.
[15] ZHANG C R, YANG S P, LIAO S G, et al. Chuktabularins A-D, four
new limonoids with unprecedented carbon skeletons from the stem
bark of Chukrasia tabularis [J]. Org Lett, 2007, 9(17): 33833386.
doi: 10.1021/ol701437h.
[16] LIU H B, ZHANG H, LI P, et al. Kv1.2 potassium channel inhibitors
from Chukrasia tabularis [J]. Org Biomol Chem, 2012, 10(7): 1448
1458. doi: 10.1039/C1OB06666H.
[17] FAN C Q, WANG X N, YIN S, et al. Tabularisins A-D, phragmalin
ortho esters with new skeleton isolated from the seeds of Chukrasia
tabularis [J]. Tetrahedron, 2007, 63(29): 67416747. doi: 10.1016/j.
tet.2007.04.078.
[18] ASIKIN Y, TAKAHASHI M, MISHIMA T, et al. Antioxidant
activity of sugarcane molasses against 2,2′-azobis (2-amidinopropane)
dihydrochloride-induced peroxyl radicals [J]. Food Chem, 2013,
141(1): 466472. doi: 10.1016/j.foodchem.2013.03.045.
[19] KIM K H, MOON E, CHOI S U, et al. Biological evaluation of
phenolic constituents from the trunk of Berberis koreana [J].
Bioorg Med Chem Lett, 2011, 21(8): 22702273. doi: 10.1016/
j.bmcl.2011.02.104.
[20] CHEN J J, WANG T Y, HWANG T L. Neolignans, a coumarinolignan,
lignan derivatives, and a chromene: Anti-inflammatory constituents
from Zanthoxylum avicennae [J]. J Nat Prod, 2008, 71(2): 212217.
doi: 10.1021/np070594k.