免费文献传递   相关文献

Temporal and Spatial Variation of the Vegetation Coverage in Upper Dadu River Based on RS and GIS

基于RS和GIS的大渡河上游植被覆盖时空变化



全 文 :第 51 卷 第 7 期
2 0 1 5 年 7 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 51,No. 7
Jul.,2 0 1 5
doi:10.11707 / j.1001-7488.20150706
收稿日期: 2014 - 06 - 16; 修回日期: 2015 - 02 - 23。
基金项目: 国家科技支撑计划资助项目(2008BAK51B02) ; 四川省科技支撑计划资助项目 (2013SZ0110)。
基于 RS和 GIS的大渡河上游植被覆盖时空变化
胡玉福 邓良基 刘 宇 蒋双龙 李 翔 陈 波 王钰婷
(四川农业大学资源环境学院 成都 611130)
摘 要: 【目的】在 RS 和 GIS 技术的支持下,对大渡河上游丹巴段 1989—2012 年的植被覆盖状况及时空变化特征
进行分析研究,为区域生态环境保护和建设提供理论依据。【方法】以 1989,2000 和 2012 年 3 期 TM 遥感影像和
ASTER GDEM 数字高程模型为数据源,首先运用 RS 软件计算提取研究区 3 个时期基于 TM 影像的归一化植被指数
的植被覆盖度图和基于 ASTER GDEM 数字高程模型的海拔、坡度、坡向地形因子图; 然后在 ArcGIS 软件平台下,对
植被覆盖度图及 3 种地形因子图进行等级划分; 最后将对应年份的植被覆盖度等级图分别与海拔等级图、坡度等级
图、坡向等级图进行叠加,统计分析获得 3 个时期的植被覆盖状况及时空变化特征。【结果】1989,2000 和 2012 年 3
个年份的植被覆盖度 fc≥0. 5 的区域面积比例均达研究区总面积的 58%以上; 1989—2012 年间Ⅰ级( fc≥0. 7)和Ⅱ级
(0. 5≤fc < 0. 7)植被覆盖度区域面积分别减少 2. 98%和 4. 72%,而Ⅲ级(0. 3≤fc < 0. 5)、Ⅳ级(0. 15≤ fc < 0. 3)和 V 级
( fc < 0. 15)植被覆盖度区域面积分别增加 10. 88%,1. 22%和 9. 39% ; 不同时段研究区植被覆盖度呈现出不同的变化
特征,其中,1989—2000 年,由于人为砍伐和过度放牧等原因,植被覆盖度整体呈下降趋势,2000—2012 年,由于退耕
还林和天然林保护工程,植被覆盖度整体呈上升趋势。不同海拔、坡度和坡向地带植被覆盖具有不同的分布和变化
特征,植被覆盖度较高的区域主要分布在海拔 2 500 ~ 4 500 m 以及坡度 30° ~ 45°的地带,而海拔 < 2 500 m、> 4 500 m
和坡度 < 30°的地带,植被覆盖度相对较低; 不同坡向植被覆盖呈现出半阳坡 >阳坡 >半阴坡 >阴坡的特征。植被覆
盖变化较为明显的区域集中海拔 < 2 500 m 和坡度 < 30°的地带,海拔 > 4 500 m和坡度 > 45°的地带受人为活动影响
小,植被覆盖变化不明显。【结论】1989—2012 年间研究区植被覆盖状况较好,但总体呈现降低的变化特征; 研究区
植被覆盖状况受海拔、坡度和坡向等地形因子和人类活动等 2 方面因素影响较大。因此,森林资源的保护一方面要
加强退耕还林、天然林保护等措施的力度,另一方面也应利用有利的地形来提高和改善植被覆盖状况,以避免研究区
植被覆盖度逐渐降低。
关键词: RS; GIS; 植被覆盖; 时空变化
中图分类号: S157 文献标识码: A 文章编号: 1001 - 7488(2015)07 - 0049 - 11
Temporal and Spatial Variation of the Vegetation Coverage in Upper Dadu
River Based on RS and GIS
Hu Yufu Deng Liangji Liu Yu Jiang Shuanglong Li Xiang Chen Bo Wang Yuting
(College of Resource and Environmental Science,Sichuan Agricultural University Chengdu 611130)
Abstract: 【Objective】Based on three periods of remote sensing images of TM (1989,2000 and 2012) and digital
elevation model of ASTER GDEM,the temporal and spatial variation of vegetation coverage in recent 23 years in upper
Dadu River in Sichuan province were analyzed by RS and GIS technology in this paper. 【Method】Firstly,the vegetation
coverage based on normalized difference vegetation index (NDVI) and the map of terrain factors including altitude,slope
and slope aspect based on ASTER GDEM digital elevation were extracted through RS software in three periods. Then,the
vegetation coverage map,altitude map,slope gradient map and slope aspect map were ranked through ArcGIS software.
Finally,the vegetation coverage level map was analyzed together with the altitude level map,slope gradient map and slope
aspect level map in each year,and obtained the vegetation coverage condition and temporal variation characteristics in
three periods by statistical analysis in the study area.【Result】The results showed that the vegetation coverage f c≥ 0. 5 in
the study area accounted for more than 58% of the whole study area. The vegetation coverage area of grade I ( f c≥ 0. 7)
and II (0. 5 ≤ f c < 0. 7) decreased by 2. 98% and 4. 72% respectively,while the vegetation coverage area of grade III
(0. 3 ≤ f c < 0. 5 ),Ⅳ ( 0. 15 ≤ f c < 0. 3 ) and V ( f c < 0. 15 ) increased by 10. 88%,1. 22% and 9. 39%
林 业 科 学 51 卷
respectively. The vegetation coverage in the study area exhibited variation characteristics in different periods. During
1989—2000,the vegetation coverage decreased due to anthropogenic deforestation and overgrazing by human,and during
2000—2012,the vegetation coverage increased due to project and policies about Returning Cropland to Forestland and
Natural Forest Protection. The distribution and variation of vegetation coverage were different according to elevations,
slope gradient and slope aspect. The areas with high vegetation coverage were mainly distributed in the altitude of 2 500-
4 500 m and the slope gradient of 30°-45°. The vegetation coverage was relatively low in the areas of altitude < 2 500 m
or > 4 500 m and slope gradient < 30°. The vegetation coverage in different slope aspect showed as semi-
sunny > sunny > semi-shady > shady. The significant variation of vegetation coverage mainly concentrated in the areas of
altitude < 2 500 m and slope gradient < 30°. And no obvious changes were found for vegetation coverage in the areas of
altitude > 4 500 m and slope gradient > 45°,where relatively less the intervention of human activities. 【Conclusion】
The vegetation coverage conditions in the study area were good in 1989—2012,but exhibited a decreasing trend in recent
23 years. Furthermore,the vegetation coverage in the study area was mainly affected by human activities and altitude,
slope gradient and slope aspect,indicating that the protection of forest resources should not only strengthen the measures
such as returning cropland to forestland and natural forest protection,but also use some advantage terrain to improve the
vegetation coverage,so as to avoid the vegetation coverage gradually decreased in the study area.
Key words: RS; GIS; vegetation cover; temporal and spatial variation
植被作为陆地生态系统的主体,是连接大气、土
壤和水分的“纽带”,在保持水土、维持气候、调节大气
及整个生态系统稳定等方面都具有十分重要的作用
(秦伟等,2006; Ian et al.,2010)。植被覆盖度是植
被的直观量化指标,在很大程度上反映了植被的基本
情况,是研究气象、水文、生态等方面区域或全球性问
题的基础数据,对水土保持、水源涵养、调节径流和改
善森林小气候等生态功能具有重要意义,已成为生态
环境变化研究领域的核心内容之一(刘琳等,2010)。
3S 技术(遥感技术 RS、地理信息系统 GIS、全球定位
系统 GPS)具有客观、准确、快速、技术先进等特点,是
当前地表环境信息获取和分析处理的重要工具和手
段,随着遥感、地理信息系统等技术的发展和广泛应
用,对植被覆盖变化研究已经越来越深入(Douglas et
al.,2004; Xin et al.,2008; 牛宝茹等,2005; 顾晓鹤
等,2012; 王莺等,2010)。大量研究表明,基于归一
化植被指数(NDVI)的植被覆盖度遥感估算方法模型
简单,不依赖地面实测数据,可操作性强,被广泛应用
于区域植被信息的动态监测(秦伟等,2006; 刘琳等,
2010; 戴声佩等,2010; 吴昌广等,2012; 胡玉福等,
2014)。近年来,国内外学者在不同时间和空间尺度
上对植被覆盖的时间变化规律、空间分布特征进行了
较多研究,但这些研究主要集中在我国西部青藏高
原、西北干旱和半干旱区以及北部蒙古草原等区域,
在研究内容上重点从区域整体角度分析植被覆盖度
时空变化特征(戴声佩等,2010; 吴昌广等,2012; 孙
智辉等,2010; 张宝庆等,2011; 马娜等,2012; 王强
等,2012; 李双双等,2012; 李军媛等,2012; 王智
等,2011; 张飞等,2011; Piao et al.,2006; Ross
et al.,2006),而对区域植被覆盖度的地形分异及变
化特征的研究相对较少,尤其是同时结合海拔、坡度、
坡向等地形因子定量分析区域植被覆盖度空间分异
和变化特征的报道更为少见。大渡河上游地处我国
横断山区东缘,四川盆地与青藏高原过渡地带,该区
是我国西南林区的重要组成部分,也是长江上游重要
的水源涵养地和生态环境脆弱区,其植被覆盖变化对
于长江下游生态安全具有重要影响 (胡玉福等,
2011)。目前,关于该区域土壤、水文、地质地貌、生物
多样性等方面研究已有较多报道(李婷等,2006; 李
宗省等,2010; 姚永慧等,2010),但该区地表植被覆
盖时间和空间变异特征的研究还较为缺乏。因此,本
文以大渡河上游丹巴县段 3 期同时相遥 TM 遥感影
像为数据源,利用遥感(RS)和地理信息系统(GIS)等
技术,对 1989—2012 年 23 年来地表植被覆盖时空变
化进行动态研究,以期为区域生态环境保护与建设提
供理论依据。
1 研究区概况与研究方法
1. 1 研究区概况
研究区位于甘孜藏族自治州丹巴县南部,长江
上游重要支流大渡河的上游,地理位置 101° 45
28″—102°03 58″ E,30° 38 31″—31° 01 12″ N,面积
62 637. 48 hm2(图 1)。该区地处我国横断山区东
缘,境内地质构造复杂,地貌类型多样,大渡河自北
向南纵贯全境,切割强烈,形成了典型的高山峡谷地
貌,地势西高东低,最低海拔 1 700 m,最高海拔
05
第 7 期 胡玉福等: 基于 RS 和 GIS 的大渡河上游植被覆盖时空变化
5 820 m,相对高差 4 120 m。该区属青藏高原型季
风气候,呈垂直带分布,山顶与河谷的气温相差 24
℃以上。年平均气温 14. 2 ℃,1 月平均气温 4. 4
℃,8 月平均气温 22. 4 ℃,年降水量 600 mm,无霜期
316 天,日照充足,冬无严寒,夏无酷暑。区域土地利
用类型以林草地为主,分别占 42. 31%和 26. 94%,是
西南地区重点林区之一,区内动植物资源丰富,植被
主要呈垂直分布。该区是以汉、藏民族为主体的多民
族聚居区,农业生产以种植业和蓄牧业为主。
图 1 研究区地理位置
Fig. 1 Geographical position of the study area
1. 2 数据来源与处理
地表植被受摄影季节和时相的影响较大,根据
研究内容的需要,同时考虑地表景观及植被物候差
异的季相差异,本文选取了时相基本一致的 1989 年
7 月、2000 年 8 月和 2012 年 6 月 3 期陆地资源卫星
Landsat TM 遥感影像作为研究数据,3 期遥感影像
质量良好,植被信息丰富,空间分辨率均为 30 m,并
已进行了辐射校正和几何粗校正。为了探讨地表植
被覆盖的地形分异和变化特征,本研究还选取了美
国 TERRA 卫星提取的 30 m 地面分辨率 ASTER
GDEM 高程模型。同时,结合本研究的实际需要,收
集了研究区 1 ∶ 5万比例尺的地形、地质地貌、土地、
土壤图和植被资源分布图,以及气候、水文、植被、土
壤、交通、人口和农牧业等自然和社会经济资料。在
遥感图像处理软件平台 Erdas Imagine 9. 2 的支持
下,采用控制点误差纠正的方法,分别对 3 个时期
TM 遥感影像以及 ASTER GDEM 数字高程模型进行
几何精校正和图像配准,然后结合研究区行政区划
图采用 AOI 多边形裁剪的方法裁剪得到研究区的
遥感图像和 ASTER GDEM 数字高程模型。
1. 3 地表植被覆盖度的提取
1. 3. 1 地表植被指数的提取 植被指数是指利用
卫星不同波段探测数据组合而成的、能反映植物生
长状况的指数,其与地表植被生物量和盖度等植被
信息具有较好的相关性(Douglas et al.,2004; 牛宝
茹等,2005)。植物叶面在可见光红光波段有很强
的吸收特性,在近红外波段有很强的反射特性,这是
植被遥感监测的物理基础,通过这 2 个波段测值的
不同组合可得到不同的植被指数。其中归一化植被
指数(NDVI)为近红外波段的反射值与红光波段的
反射值之差除以二者之和,是目前地表植被信息提
取过程中最常用的植被指数,被广泛应用于地表植
被覆盖信息提取和动态变化监测(毛留喜等,2008;
吴门新等,2009)。其计算方法为:
NDVI = NIR - R
NIR + R
。 (1)
式中: NDVI 为归一化植被指数; NIR 为地表近红
外波段反射率; R 为地表可见光的红光波段反
射率。
NDVI 一般介于 - 1 ~ 1 之间,负值表示地面覆
盖为云、水、雪等,对可见光高反射; 0 表示有岩石
或裸土等,NIR 和 R 近似相等; 正值表示有植被覆
盖,其值越大,植被覆盖状况越好 (沈明霞等,
2007)。本文在 Erdas Image 9. 2 软件平台支持下,
进行空间建模,采用图像运算的方法分别提取了研
究区 3 个时相的归一化植被指数。
1. 3. 2 植被覆盖度估算 植被覆盖度是指植被
(包括叶、茎、枝)在单位面积内的垂直投影面积所
15
林 业 科 学 51 卷
占百分比,是衡量地表植被状况的一个综合量化指
标。目前,基于 NDVI 的像元二分模型估算植被覆
盖度的方法在植被覆盖研究中得到了广泛应用(朱
蕾等,2008; 范建忠等,2012; 李娟等,2011)。像
元二分模型假设一个像元由植被覆盖部分和土壤覆
盖部分地表组成,通过遥感传感器所观测的像元信
息 S 可表达为由植被成分所贡献的信息 S v和由土
壤成分所贡献的信息 S s构成:
s = sv + s s。 (2)
对于一个由土壤和植被 2 部分组成的混合像
元,像元中有植被覆盖的面积比例为该像元的植被
盖度 fc,而非植被覆盖的土壤面积比例为 1 - fc。设
全由土壤覆盖的像元信息为 S soil,全由植被覆盖的
纯像元所得的遥感信息为 S veg,则混合像元的植被
成分所贡献的信息 S v可以表示为:
sv = sveg·fc; (3)
混合像元的土壤成分所贡献的信息 S s可以表
示为:
s s = s soil· 1 - f( )c 。 (4)
将式(3)和式(4)带入式(2),可得:
fc =
s - s soil
sveg - s soil
。 (5)
将 NDVI 与像元二分模型相结合,可获得基于
NDVI 像元二分模型的植被覆盖度提取模型:
fc =
NDVI - NDVIsoil
NDVIveg - NDVIsoil
。 (6)
式中: NDVIveg 为全植被覆盖像元的 NDVI 值;
NDVIsoil为裸土或无植被覆盖区域的 NDVI 值。
理论上,NDVIsoil值接近于 0,但受地表湿度、土壤
类型等多种因素的影响,其值常在 - 0. 1 ~ 0. 2 之间变
化(Toby et al.,1997; Rundquist,2002),但是对于特
定的土壤类型,其 NDVIsoil值是确定的。由于 NDVIveg
与植被类型、植被生长季节密切相关,在不同的时间
和空间 NDVIveg存在差异特征,因而,在测算区域覆盖
度时,采用固定的 NDVIsoil和 NDVIveg值是不可取的
(Kaufman et al.,1992)。另一方面,相关研究表明,采
用置信度和置信区间的方法确定 NDVIveg与 NDVIsoil
值可提高植被覆盖度测算精度和准确性(李娟等,
2011; 李苗苗等,2004)。因此,本文将土地利用现状
图与土壤图的套合图作为确定 NDVIveg和 NDVIsoil值
的依据,选取相同土地利用类型和相同土壤类型图斑
内累计频率为 95%的 NDVI 值作为其 NDVIveg值,选
取累计频率为 5%的 NDVI 值作为其 NDVIsoil值。具
体来说,首先在 ArcGIS 9. 3 软件平台支持下,将前面
计算得到的 NDVI 值分布图与土壤图进行空间叠加
和套合,确定不同土壤类型和不同土地利用方式下的
NDVIsoil和 NDVIveg值,然后在 Erdas Image 9. 2 软件中
进行空间建模,分别计算研究区 1989,2000 和 2012
年的地表植被覆盖度,得到地表植被覆盖度空间分
布图。
依据《土壤侵蚀分类分级标准》,对研究区地表
植被覆盖度进行分级:Ⅰ级植被覆盖度( fc≥0. 7)、Ⅱ级
植被覆盖度(0. 5≤ fc < 0. 7)、Ⅲ级植被覆盖度(0. 3≤
fc < 0. 5)、Ⅳ级植被覆盖度(0. 15≤ fc < 0. 3)和Ⅴ级植
被覆盖度( fc < 0. 15)。
1. 3. 3 植被覆盖度遥感估算的精度验证 为保证本
次研究结果的正确性和精度,本研究于 2013 年 6 月
18—20 日进行了野外实地调查和植被覆盖度实地测
算。首先在遥感图像上随机产生 30 个验证点,并结
合当地的交通条件对部分样点进行适当移位,然后记
录每个样点的经纬度坐标; 野外采用手持式 GPS 定
位对样点进行定位,采用综合运用数码照相法、样方
调查法和目估法测算样点植被覆盖度。相关分析结
果表明,植被覆盖度遥感估算值与实测值之间存在极
显著正相关关系,r = 0. 880**,拟合曲线方程决定系
数为 R2 = 0. 774(图 2),表明本研究中遥感估算值与
观测值相关性较高。采用 Janssen 等(1995)提出的
比较模拟值与实测值的方法检验植被覆盖度估算模
型的精度,结果表明,植被覆盖度估算最小误差为
0. 009,最大误差为 0. 298,平均误差(ME)为 0. 127,均
方根误差(RMSE)为 0. 183。平均误差和均方根误差
较小,说明基于 NDVI 像元二分模型的植被覆盖度遥
感估算精度能满足区域尺度的植被覆盖度调查要求
(张飞等,2011)。
图 2 植被覆盖度估算结果与实测结果相关性分析
Fig. 2 Correlation analysis of vegetation coverage
between estimation results and measured
1. 4 基于 EM 数据的植被覆盖度变化分析
本研究根据研究区具体的海拔及地形情况,运
用 ArcGIS 9. 3 软件将 DEM 数据裁剪后进行海拔、
坡度和坡向重分类,分别得到研究区海拔、坡度和坡
向图 (图 3 )。海拔分级为 < 2 500 m,2 500 ~
25
第 7 期 胡玉福等: 基于 RS 和 GIS 的大渡河上游植被覆盖时空变化
3 500 m,3 500 ~ 4 500 m 和 > 4 500 m; 坡向分级为
阴坡(315° ~ 360°,0° ~ 45°)、阳坡(135° ~ 225°)、半
阳坡(45° ~ 135°)和半阴坡(225° ~ 315°); 坡度分
级为 < 15°,15° ~ 30°,30° ~ 45°和 > 45°。在 ArcGIS
9. 3 软件中将研究区 3 个年份的地表植被覆盖度空
间分布图分别与海拔图、坡度图和坡向图进行空间
叠加,统计分析不同海拔、不同坡度和不同坡向的植
被覆盖度分布及变化特征。
图 3 研究区地形
Fig. 3 Topographic maps in study area
图 4 研究区植被覆盖度等级
Fig. 4 Grade of vegetation coverage in study area
2 结果与分析
2. 1 植被覆盖度空间分布及面积统计特征
研究区植被覆盖较高的Ⅰ级和Ⅱ级区域 ( fc≥
0. 5)面积比重达 58% 以上,其中Ⅰ级植被覆盖度
( fc≥0. 7)区域面积比重达 30%以上,而Ⅴ级植被覆
盖度( fc < 0. 15)区域面积最小,其面积比重不足 5%
(图 4,表 1),说明研究区植被覆盖状况总体良好。
研究区Ⅰ级和Ⅱ级植被覆盖度主要分布在海拔较
高、人为干扰相对较少的西部、东部及东南部; Ⅲ级
植被覆盖度主要分布大渡河两岸的低山区; Ⅳ级和
Ⅴ级植被覆盖度主要集中分布在海拔较低、地势相
对平坦、人口比较密集的大渡河沿岸以及支流沿岸
地带(图 4)。
2. 2 植被覆盖度总体变化特征
1989—2012 年研究区植被覆盖度总体上呈下
降特征,其中,Ⅰ级和Ⅱ级植被覆盖度区域面积分别
减少 567. 25 和 950. 64 hm2,降幅分别为 2. 98% 和
4. 72%,而Ⅲ级、Ⅳ级和Ⅴ级植被覆盖度分别增加了
1 173. 71,125. 73 和 218. 45 hm2,增 幅 分 别 为
10. 88%,1. 22%和 9. 39% (表 1)。
研究区不同时段植被覆盖度呈现出不同的变化
35
林 业 科 学 51 卷
特征。1989—2000 年间植被覆盖呈现大幅下降的
变化特征,主要表现为高植被覆盖区域面积下降,而
低植被覆盖区域面积增加。Ⅰ级和Ⅱ级植被覆盖区
域面积分别减少了 1 361. 24 和 11 84. 19 hm2,降幅
分别为 6. 76%和 6. 22% ; 与此同时,Ⅳ级和Ⅴ级植
被覆盖区域面积分别增加 1 541. 02 和 1 085. 6 hm2,
增幅分别为 14. 89% 和 46. 66%。研究区植被覆盖
度下降,其原因一方面是由于该区为汉藏结合区域,
信息闭塞,盲目过度放牧导致草地退化; 另一方面,
随着研究区人口的增长和经济的需求,人为伐木、毁
林开荒等导致了部分林地退化。
表 1 1989—2012 年不同植被覆盖区域面积统计①
Tab. 1 Area statistical table of different vegetation coverage in 1989—2012
植被覆
盖度等级
Vegetation
coverage
grade
1989 2000 2012 1989—2000 2000—2012 1989—2012
面积
Area /
hm2
比例
Proportion
(% )
面积
Area /
hm2
比例
Proportion
(% )
面积
Area /
hm2
比例
Proportion
(% )
变化量
Variation /
hm2
变化率
Variance
ratio
(% )
变化量
Variation /
hm2
变化率
Variance
ratio
(% )
变化量
Variation /
hm2
变化率
Variance
ratio
(% )
Ⅰ 20 147. 5 32. 17 18 786. 26 29. 99 19 196. 86 30. 65 - 1 361. 24 - 6. 76 410. 60 2. 19 - 950. 64 - 4. 72
Ⅱ 19 026. 14 30. 38 17 841. 95 28. 48 18 458. 89 29. 47 - 1 184. 19 - 6. 22 616. 94 3. 46 - 567. 25 - 2. 98
Ⅲ 10 789. 46 17. 23 10 708. 27 17. 10 11 963. 17 19. 10 - 81. 19 - 0. 75 1 254. 90 11. 72 1 173. 71 10. 88
Ⅳ 10 347. 97 16. 52 11 888. 99 18. 98 10 473. 70 16. 72 1 541. 02 14. 89 - 1 415. 29 - 11. 90 125. 73 1. 22
Ⅴ 2 326. 41 3. 71 3 412. 01 5. 45 2 544. 86 4. 06 1 085. 6 46. 66 - 867. 15 - 25. 41 218. 45 9. 39
合计 Total 62 637. 48 100. 00 62 637. 48 100. 00 62 637. 48 100. 00 0 — 0 — 0 —
①“ -”表示减少。“ -”means decrease.
2000—2012 年植被覆盖度呈上升趋势。植被覆
盖度 fc≥0. 3 区域面积均有不同程度增加,其中,Ⅲ级
植被覆盖度区域面积增加最多,增加了1 254. 90 hm2,
增幅为 11. 72%,Ⅰ级和Ⅱ级植被覆盖度分别增加了
2. 19%和 3. 46% ;Ⅳ级和Ⅴ级植被覆盖度区域面积呈
减少特征,12 年间Ⅳ级和 V 级植被覆盖度区域面积
分别减少了 1 415. 29和 867. 15 hm2,降幅分别达
11. 9%和 25. 41%。其原因是 1998 年长江下游发生
重大水灾,国家高度重视长江上游的植被保护和生态
环境建设,实施退耕还林(还草)政策和天然林保护
工程,研究区大量的陡坡耕地生态退耕使植被覆盖得
到有效恢复和提高;同时,研究区近年来先后启动了
“绿色走廊工程”和“干热河谷造林工程”也是植被覆
盖度提高的重要原因。
2. 3 植被覆盖度的变化过程
为了进一步研究植被覆盖度的时空变化特征和
过程,本研究在 Erdas Imagine 9. 2 软件支持下,将
1989,2000 和 2012 年 3 个时期的植被覆盖度等级图
进行空间叠加和属性统计,研究了不同时段各等级植
被覆盖区域的面积转移特征(表 2、表 3)
1989—2000 年,研究区Ⅰ级和Ⅱ级植被覆盖区
域面积呈下降趋势,转出面积大于转入面积,其中,
植被覆盖较高的Ⅰ级植被覆盖区域转出面积达
11. 25%,其去向主要是转为Ⅱ级和Ⅲ级植被覆盖区
域,占转出面积的 61. 56%,Ⅱ级植被覆盖区域转出
面积达 13. 39%,主要转为Ⅲ级和Ⅳ级,占其转出面
积的 70. 07% ; Ⅲ级植被覆盖区域转入和转出大致
相等; 总面积变化不大; Ⅳ级和Ⅴ级植被覆盖区域
转出面积分别为 10 347. 98 和2 326. 41 hm2,同期转
入面积分别为 11 888. 99 和3 412. 01 hm2,转入高于
转出,面积有较大幅度增加,主要表现为Ⅱ级和Ⅲ级
植被覆盖区域向Ⅳ级植被覆盖区域转移,以及Ⅲ级
和Ⅳ级植被覆盖度区域向Ⅴ级植被覆盖区域转移
(表 2)。这说明由于人类活动的影响,研究区植被
覆盖度呈现出由高植被覆盖度向低植被覆盖度转化
的特征。
2000—2012 年,研究区Ⅰ级和Ⅱ级植被覆盖区
域面 积 有 较大 幅度增加,其转 入面 积 分 别 达
2 088. 68和 2 405. 81 hm2,而同期转出面积分别仅
为 1 678. 08 和 1 788. 86 hm2。Ⅱ级和Ⅲ级植被覆盖
区域是Ⅰ级植被覆盖区域的主要转入来源,其转入
面积占总转入面积的 75% 以上。Ⅲ级植被覆盖区
域面积转入大于转出,也呈现增加趋势,其中Ⅳ级植
被覆盖区域是转入的主要来源,其转入面积占总转
入面积的 61. 13%。此研究时段内,Ⅳ级和Ⅴ级植被
覆盖区域面积明显下降,其中Ⅳ级植被覆盖区域主要
向Ⅲ级植被覆盖度区域转移,其转出面积占总转出面
积的 66. 41%,而Ⅴ级植被覆盖区域主要向Ⅳ级植被
覆盖度区域转移,其转出面积占总转出面积的
54. 87% (表 3)。这说明 2000—2012 年,由于 1998 年
长江下游发生特大洪灾后,国家实施长江上游陡坡耕
地退耕还林(草)和天然林保护工程,研究区加强了
生态环境建设,植被得到有效恢复,低植被覆盖区域
趋于向高植被覆盖区域转化。
45
第 7 期 胡玉福等: 基于 RS 和 GIS 的大渡河上游植被覆盖时空变化
表 2 1989—2000 年不同植被覆盖区域面积转移矩阵
Tab. 2 Area transfer matrix of different vegetation coverage from 1989 to 2000
等级 Grade Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ
1989 年合计
Total in 1989

面积 Area / hm2 17 881. 14 731. 90 663. 24 566. 04 305. 18 20 147. 50
比例 Proportion(% ) 88. 75 3. 63 3. 29 2. 81 1. 52 100. 00

面积 Area / hm2 426. 83 16 478. 12 908. 86 876. 48 335. 85 19 026. 14
比例 Proportion(% ) 2. 24 86. 61 4. 78 4. 61 1. 76 100. 00

面积 Area / hm2 255. 46 336. 09 8 660. 92 937. 52 599. 47 10 789. 46
比例 Proportion(% ) 2. 37 3. 11 80. 27 8. 69 5. 56 100. 00

面积 Area / hm2 112. 24 152. 96 260. 47 9 202. 59 619. 72 10 347. 98
比例 Proportion(% ) 1. 08 1. 48 2. 52 88. 93 5. 99 100. 00

面积 Area / hm2 110. 59 142. 89 214. 78 306. 36 1 551. 79 2 326. 41
比例 Proportion(% ) 4. 76 6. 14 9. 23 13. 17 66. 70 100. 00
2000 年合计
Total in 2000 面积 Area / hm
2 18 786. 26 17 841. 96 10 708. 27 11 888. 99 3 412. 01 62 637. 48
表 3 2000—2012 年不同植被覆盖区域面积转移矩阵
Tab. 3 Area transfer matrix of different vegetation coverage from 2000 to 2012
等级 Grade Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ
2000 年合计
Total in 2000

面积 Area / hm2 17 108. 18 897. 62 328. 17 367. 60 84. 70 18 786. 26
比例 Proportion(% ) 92. 13 3. 71 1. 75 1. 96 0. 45 100. 00

面积 Area / hm2 843. 83 16 053. 09 686. 34 159. 25 99. 44 17 841. 95
比例 Proportion(% ) 4. 73 91. 09 2. 73 0. 89 0. 56 100. 00

面积 Area / hm2 762. 73 822. 80 8 598. 80 272. 91 251. 03 10 708. 27
比例 Proportion(% ) 5. 26 7. 68 82. 17 2. 55 2. 34 100. 00

面积 Area / hm2 338. 23 397. 17 2 056. 67 8 792. 17 304. 75 11 888. 99
比例 Proportion(% ) 2. 85 3. 34 17. 30 73. 95 2. 56 100. 00

面积 Area / hm2 143. 89 288. 22 293. 19 881. 77 1 804. 94 3 412. 01
比例 Proportion(% ) 4. 22 8. 45 8. 59 25. 84 52. 90 100. 00
2012 年合计
Total in 2012 面积 Area / hm
2 19 196. 86 18 458. 90 11 963. 17 10 473. 70 2 544. 86 62 637. 48
2. 4 不同海拔带植被覆盖度分布及变化特征
海拔可通过影响水热分配和人类活动进而影响
地表植被覆盖状况。本文研究了不同海拔带植被覆
盖的空间分布及变化特征,结果表明,随着海拔的升
高,研究区植被覆盖度总体呈现出先增加后降低的
趋势。研究区海拔 < 2 500 m 的地带,植被覆盖度以
Ⅱ、Ⅲ和Ⅳ级为主,其面积比重达 74% 以上; 海拔
2 500 ~ 3 500 m 和3 500 ~ 4 500 m 的地带,植被覆
盖度以Ⅰ级和Ⅱ级为主,其面积比重达均 66% 以
上; 海拔 > 4 500 m 的地带,植被覆盖度以Ⅲ级和Ⅳ
级为主,其面积比重达 70%以上。研究区各海拔带
Ⅴ级植被覆盖区域面积比重较小,均不超过 11%,
但海拔 < 2 500 m 和 > 4 500 m 的地带,其Ⅴ级植被
覆盖区域面积比重明显高于 2 500 ~ 3 500 m 和
3 500 ~ 4 500 m 的地带(表 4)。这说明研究区植被
覆盖同时受自然条件和人类活动的共同控制。海拔
< 2 500 m的地带由于受人类活动的影响相对较强,
植被覆盖度相对较低; > 4 500 m 的地带温度较低,
热量条件不足,部分区域常年冰雪覆盖,植被覆盖度
亦相对较低; 海拔 2 500 ~ 3 500 m 和 3 500 ~
4 500 m 的地带,由于受人类活动干扰相对较少,加
之水热条件相对较好,植被覆盖度相对较高。
研究时段内各海拔带植被覆盖度有不同程度的
降低,其中海拔相对较低的地带( < 2 500 m)是植被
覆盖度下降较为明显的区域,2012 年Ⅰ级和Ⅱ级植
被覆盖区域面积相对 1989 年减少了 10. 27% 和
7. 24%,而Ⅲ,Ⅳ,Ⅴ级植被覆盖区域面积分别增加
了 7. 43%,1. 91%和 12. 44%。海拔2 500 ~ 3 500m
的地带,植被覆盖度亦呈下降特征,但变化幅度不及
海拔 < 2 500 m 的地带; 海拔3 500 ~ 4 500 m和海拔
> 4 500 m的区域植被覆盖度变化相对较小(表 4)。
这说明人类活动是引起研究区植被覆盖变化的主要
原因,海拔相对较低的区域,自然条件相对较好,人
口分布和人类活动相对较多,受人为活动的影响植
55
林 业 科 学 51 卷
被覆盖变化也相对较大。
表 4 1989—2012 年不同海拔带植被覆盖度的变化特征
Tab. 4 Variation characteristics of vegetation coverage in different elevation from 1989 to 2012
< 2 500 m 2 500 ~ 3 500 m 3 500 ~ 4 500 m > 4 500 m
年份
Year
等级
Grade
面积
Area /
hm2
比例
Proportion
(% )
面积
Area /
hm2
比例
Proportion
(% )
面积
Area /
hm2
比例
Proportion
(% )
面积
Area /
hm2
比例
Proportion
(% )
1989
Ⅰ 2 078. 82 17. 59 9 904. 86 37. 24 7 681. 70 38. 22 482. 12 11. 70
Ⅱ 2 595. 6 21. 96 8 985. 09 33. 78 6 925. 32 34. 46 520. 13 12. 62
Ⅲ 3 374. 17 28. 55 3 575. 09 13. 44 2 529. 75 12. 59 1 310. 45 31. 80
Ⅳ 3 023. 58 25. 58 3 247. 65 12. 21 2 496. 85 12. 42 1 579. 89 38. 33
Ⅴ 747. 38 6. 32 887. 00 3. 33 463. 11 2. 30 228. 92 5. 55
合计 Total 11 819. 6 100. 00 26 599. 7 100. 00 20 096. 70 100. 00 4 121. 51 100. 00
2000
Ⅰ 1 762. 53 14. 91 9 229. 46 34. 70 7 321. 06 36. 43 473. 21 11. 48
Ⅱ 2 115. 34 17. 90 8 559. 12 32. 18 6 655. 40 33. 12 512. 09 12. 42
Ⅲ 3 289. 38 27. 83 3 504. 97 13. 18 2 607. 42 12. 97 1 306. 5 31. 70
Ⅳ 3 441. 79 29. 12 3 949. 10 14. 85 2 906. 76 14. 46 1 591. 34 38. 61
Ⅴ 1 210. 51 10. 24 1 357. 04 5. 10 606. 09 3. 02 238. 37 5. 78
合计 Total 11 819. 6 100. 00 26 599. 70 100. 00 20 096. 70 100. 00 4 121. 51 100. 00
2012
Ⅰ 1 865. 28 15. 78 9 428. 30 35. 45 7 442. 24 37. 03 461. 04 11. 19
Ⅱ 2 407. 65 20. 37 8 761. 22 32. 94 6 789. 96 33. 79 500. 06 12. 13
Ⅲ 3 624. 93 30. 67 4 203. 90 15. 80 2 829. 01 14. 08 1 305. 33 31. 67
Ⅳ 3 081. 32 26. 07 3 268. 68 12. 29 2 522. 16 12. 55 1 601. 54 38. 86
Ⅴ 840. 37 7. 11 937. 59 3. 52 513. 36 2. 55 253. 54 6. 15
合计 Total 11 819. 60 100. 00 26 599. 70 100. 00 20 096. 70 100. 00 4121. 51 100. 00
2. 5 不同坡度带植被覆盖度分布及变化特征
统计数据表明,研究区植被覆盖具有明显的坡
度分异特征,总体呈现出随着坡度增加植被覆盖度
先增加后降低的特征。地面坡度 < 15°的区域以Ⅲ
级和Ⅳ级植被覆盖度为主,其面积比重达 60% 以
上,而Ⅰ级和Ⅱ级植被覆盖区域面积比重不足
25% ; 地面坡度 15° ~ 30°的区域以Ⅱ级、Ⅲ级和Ⅳ
级植被覆盖区域面积比重较大,其面积比重达 79%
以上; 地面坡度 30° ~ 45°和 > 45°的区域以Ⅰ级和
Ⅱ级植被覆盖区域为主,其面积比重达 70% 以上,
而Ⅲ、Ⅳ和Ⅴ级植被覆盖区域面积比重不足 30%
(表 5)。这说明研究区植被覆盖的坡度分异特征较
为明显,地面坡度 < 15°区域地势相对平缓,人口和
工农业分布相对密集,由于受人类活动和工农业发
展的影响,植被覆盖度相对较低;而地面坡度相对较
陡的区域由于受人类活动的影响相对较小,植被覆
盖度相对较高。
1989—2012 年,研究区各坡度带植被覆盖度总
体呈现下降的特征,其中植被覆盖变化最明显的区域
主要集中在坡度小于 30°的地带,植被覆盖度相对较
高的Ⅰ级和Ⅱ级区域面积明显减少,而植被覆盖度相对
较低的Ⅳ级和Ⅴ级区域面积明显增加,其主要原因是
地面坡度较小,地势相对平缓的区域人口分布集中,
地表植被覆盖受人类活动的影响较大。地面坡度 30°
~ 45°和大于 45°的地带,植被覆盖变化不及坡度小于
30°的地带,其原因是地面坡度较陡的地带,地表植被
覆盖受人类活动干扰相对较小。
2. 6 不同坡向植被覆盖度分布及变化特征
在地面高差较大的山区,不同坡向所接受的太
阳辐射和降雨量差异较大,本研究为了解研究区内
坡向对植被覆盖度的影响,分析了不同坡向上植被
覆盖度的变化情况。结果表明,3 个时期植被覆盖
度总体均呈现出半阳坡 >阳坡 >半阴坡 >阴坡的特
征,其原因是研究区地处北半球,阳坡和半阳坡的热
量条件较阴坡和半阴坡优越。半阳坡植被覆盖度相
对较高,其原因是研究区地处四川盆地与青藏高原
过渡地带,地势西高东低,四川盆地的湿热气流向西
移动过程中,受地形抬升的影响,易在东坡(即半阳
坡)形成较丰富的地形雨,而在西坡(阴坡)易形成
干冷的天气。
研究时段内研究区各坡向植被覆盖度均有不同
程度的降低,其中阴坡植被覆盖度下降相对较明显,
Ⅰ级和Ⅱ级植被覆盖区域面积比重分别下降了
1. 32 和 1. 44 个百分点,其次是半阴坡,Ⅰ级和Ⅱ级
植被覆盖区域面积比重分别下降了 1. 42% 和
0. 51%,阳坡和半阳坡变化相对较小(表 6)。
65
第 7 期 胡玉福等: 基于 RS 和 GIS 的大渡河上游植被覆盖时空变化
表 5 1989—2012 年不同坡度带植被覆盖度的变化特征
Tab. 5 Variation characteristics of vegetation coverage in different slope from 1989 to 2012
< 15° 15° ~ 30° 30° ~ 45° > 45°
年份
Year
等级
Grade
面积
Area / hm2
比例
Proportion
(% )
面积
Area / hm2
比例
Proportion
(% )
面积
Area / hm2
比例
Proportion
(% )
面积
Area / hm2
比例
Proportion
(% )
1989
Ⅰ 589. 53 11. 50 2 021. 64 14. 79 12 576. 22 43. 92 4 960. 11 32. 61
Ⅱ 672. 66 13. 13 3 429. 35 25. 09 8 671. 07 30. 28 6 253. 06 41. 11
Ⅲ 1 442. 40 28. 15 3 467. 52 25. 37 3 244. 80 11. 33 2 634. 74 17. 32
Ⅳ 1 793. 70 35. 00 3 991. 49 29. 20 3 582. 23 12. 51 980. 55 6. 45
Ⅴ 626. 03 12. 22 759. 05 5. 55 560. 30 1. 96 381. 03 2. 51
合计 Total 5 124. 32 100. 00 13 669. 05 100. 00 28 634. 62 100. 00 15 209. 49 100. 00
2000
Ⅰ 355. 11 6. 93 1 644. 97 12. 03 11 986. 79 41. 86 4 799. 39 31. 56
Ⅱ 341. 27 6. 66 2 912. 38 21. 31 8 569. 39 29. 93 6 018. 91 39. 57
Ⅲ 1 369. 15 26. 72 3407. 60 24. 93 3 118. 48 10. 89 2 813. 04 18. 50
Ⅳ 2 024. 29 39. 50 4 569. 75 33. 43 4 167. 41 14. 55 1 127. 54 7. 41
Ⅴ 1 034. 50 20. 19 1 134. 35 8. 30 792. 55 2. 77 450. 61 2. 96
合计 Total 5 124. 32 100. 00 13 669. 05 100. 00 28 634. 62 100. 00 15 209. 49 100. 00
2012
Ⅰ 445. 36 8. 69 1 778. 21 13. 01 11 929. 57 41. 66 5 043. 72 33. 16
Ⅱ 567. 54 11. 08 3 111. 87 22. 77 8 508. 33 29. 71 6 271. 15 41. 23
Ⅲ 1 485. 82 29. 00 3 911. 68 28. 62 3 959. 50 13. 83 2 606. 17 17. 14
Ⅳ 1 911. 40 37. 30 4 018. 14 29. 40 3 622. 29 12. 65 921. 87 6. 06
Ⅴ 714. 20 13. 94 849. 15 6. 21 614. 93 2. 15 366. 58 2. 41
合计 Total 5 124. 30 100. 00 13 669. 05 100. 00 28 634. 62 100. 00 15 209. 49 100. 00
表 6 1989—2012 年不同坡向植被覆盖度的变化特征
Tab. 6 Variation characteristics of vegetation coverage in different slope aspect from 1989 to 2012
阳坡 Sunny slope 半阳坡 Semi-sunny slope 阴坡 Shady slope 半阴坡 Semi-shady slope
年份
Year
等级
Grade
面积
Area / hm2
比例
Proportion
(% )
面积
Area / hm2
比例
Proportion
(% )
面积
Area / hm2
比例
Proportion
(% )
面积
Area / hm2
比例
Proportion
(% )
1989
Ⅰ 4 070. 13 32. 59 5 831. 81 35. 78 5 216. 43 29. 87 5 029. 13 30. 69
Ⅱ 3 816. 38 30. 56 5 585. 58 34. 27 4 851. 27 27. 78 4 772. 91 29. 13
Ⅲ 2 116. 36 16. 95 2 462. 17 15. 11 3 349. 45 19. 18 2 861. 48 17. 46
Ⅳ 2 170. 33 17. 38 2 096. 51 12. 86 3 113. 27 17. 83 2 967. 86 18. 11
Ⅴ 315. 92 2. 53 323. 29 1. 98 932. 01 5. 34 755. 19 4. 61
合计 Total 12 489. 12 100. 00 16 299. 36 100. 00 17 462. 43 100. 00 16 386. 57 100. 00
2000
Ⅰ 3 634. 36 29. 10 5 420. 97 33. 26 4 995. 57 28. 61 4 735. 36 28. 90
Ⅱ 3 546. 25 28. 39 5 129. 64 31. 47 4 564. 41 26. 14 4 601. 65 28. 08
Ⅲ 2 299. 46 18. 41 2 576. 46 15. 81 3 298. 58 18. 89 2 533. 77 15. 46
Ⅳ 2 508. 55 20. 09 2 612. 46 16. 03 3 341. 11 19. 13 3 426. 87 20. 91
Ⅴ 500. 50 4. 01 559. 83 3. 43 1 262. 76 7. 23 1 088. 92 6. 65
合计 Total 12 489. 12 100. 00 16 299. 36 100. 00 17 462. 43 100. 00 16 386. 57 100. 00
2012
Ⅰ 3 780. 38 30. 27 5 634. 94 34. 57 4 985. 90 28. 55 4 795. 64 29. 27
Ⅱ 3 779. 11 30. 26 5 290. 80 32. 46 4 699. 68 26. 91 4 689. 30 28. 62
Ⅲ 2 501. 76 20. 03 2 797. 50 17. 16 3 700. 82 21. 19 2 963. 09 18. 08
Ⅳ 2 123. 79 17. 01 2 261. 17 13. 87 3 110. 85 17. 81 2 977. 89 18. 17
Ⅴ 304. 08 2. 43 314. 95 1. 93 965. 18 5. 53 960. 65 5. 86
合计 Total 12 489. 12 100. 00 16 299. 36 100. 00 17 462. 43 100. 00 16 386. 57 100. 00
3 结论
1) 研究区植被覆盖状况总体较好,植被覆盖度
fc≥0. 5 的区域面积比重达 58% 以上。1989—2012
年研究区植被覆盖度总体呈下降趋势,其中,Ⅰ级
( fc≥0. 7)和Ⅱ级(0. 5≤ fc < 0. 7)植被覆盖区域面
积分别减少了 2. 98%和 4. 72%,而Ⅲ级(0. 3≤ fc <
0. 5)、Ⅳ级(0. 15≤fc < 0. 3)和 V 级( fc < 0. 15)植被
覆 盖 区 域 面 积 分 别 增 加 了 10. 88%,1. 22%
和 9. 39%。
2) 不同时段内研究区植被覆盖度呈现出不同的
变化特征。其中,1989—2000 年植被覆盖度整体呈
75
林 业 科 学 51 卷
下降趋势,其原因主要是人为砍伐和过度放牧导致;
2000—2012 年植被覆盖度总体呈上升趋势,其原因主
要是 1998 年后退耕还林及天然林保护工程等措施的
实施使研究区植被得到较好保护,并逐步恢复。
3) 研究区植被覆盖度因海拔、坡度和坡向等地
形因子的差异呈现出不同的分布和变化特征。其
中,海拔 2 500 ~ 4 500 m 和坡度 30° ~ 45°的地带植
被覆盖度相对较高,而海拔 < 2 500 m 及海拔 >
4 500 m和坡度 < 30°的地带,植被覆盖度相对较低;
植被覆盖度随坡向差异呈现出半阳坡 >阳坡 >半阴
坡 >阴坡的特征。植被覆盖变化较为明显区域分布
在海拔 < 2 500 m 和坡度 < 30°的地带,而海拔
> 4 500 m和坡度 > 45°的地带受人为活动影响小,
植被覆盖变化不明显。
4) 本文在 RS 和 GIS 技术支持下,开展植被覆
盖度研究,克服了传统地表调查和实测的局限性,具
有客观、快捷、制图方便等特点,且能够较好地反映
植被覆盖度时空变化特征,但受遥感图像分辨率及
时相的限制,植被覆盖信息提取的精度和准确性还
有待进一步提高。同时限于篇幅和地面数据段缺
乏,未能就研究区植被覆盖变化的原因及生态环境
效应作系统深入的分析研究。因此,从遥感数字图
像处理和信息提取入手,并结合地面数据分析植被
覆盖度时空变化的原因及生态环境效应是本研究有
待进一步开展的工作。
参 考 文 献
戴声佩,张 勃,王海军,等 . 2010.基于 SPOT NDVI 的祁连山草地植
被覆 盖 时 空 变 化 趋 势 分 析 . 地 理 科 学 进 展, 29 ( 9 ) :
1075 - 1080.
(Dai S P,Zhang B,Wang H J,et al. 2010. Analysis on the spatio-
temporal variation of grassland cover using SPOT NDVI in Qilian
Mountains. Progress in Geography,29 ( 9 ) : 1075 - 1080. [in
Chinese])
范建忠,李登科,董金芳 . 2012.陕西省重点生态建设工程区植被恢复
状况遥感监测 .农业工程学报,28(7) :228 - 234.
(Fang J Z,Li D K,Dong J F. 2012. Remote sensing analysis of vegetation
restoration in key ecological construction areas of Shaanxi Province.
Transactions of the Chinese Society for Agricultural Engineering,28
(7) :228 - 234. [in Chinese])
顾晓鹤,韩立建,王纪华,等 . 2012. 中低分辨率小波融合的玉米种植
面积遥感估算 .农业工程学报,28(3) :203 - 209.
(Gu X H,Han L J,Wang J H,et al. 2012. Estimation of maize planting
area based on wavelet fusion of multi-resolution images. Transactions
of the Chinese Society of Agricultural Engineering,28 (3 ) :203 -
209. [in Chinese])
胡玉福,邓良基,张世熔,等 . 2011.基于 RS 和 GIS 的西昌市土地利用
及景观格局变化 .农业工程学报,27(10) :322 - 327.
(Hu Y F,Deng L J,Zhang S R,et al. 2011. Changes of land use and
landscape pattern in Xichang city based on RS and GIS.
Transactions of the Chinese Society for Agricultural Engineering,27
(10) :322 - 327. [in Chinese])
胡玉福,蒋双龙,刘 宇,等 . 2014. 基于 RS 的安宁河上游植被覆
盖时空变化研究 . 农业机械学报,45(5) : 205 - 215.
(Hu Y F,Jiang S L,Liu Y,et al. 2014. Temporal and spatial variation of
vegetation coverage on upper Anning river based on RS.
Transactions of the Chinese Society for Agricultural Machinery,45
(5) : 205 - 215. [in Chinese])
李 娟,龚纯伟 . 2011. 兰州市南北两山植被覆盖度动态变化遥感监
测 .测绘科学,36(2) :175 - 177.
(Li J,Gong C W. RS monitoring on the dynamic change of vegetation
coverage in Lanzhou south-north hills. Science of Surveying and
Mapping,36(2) :175 - 177. [in Chinese])
李 婷,张世熔,黄建元,等 . 2006. 横断山北部土壤钾素的区域分
布特征 .土壤学报,43(2) :337 - 341.
(Li T,Zhang S R,Huang J Y,et al. 2006. Regional distribution
characterristics of soil potassium in the northern part of the Heng
Duan Shan mountains. Acta Pedologica Sinica,43(2) :337 - 341.
[in Chinese])
李军媛,徐维新,程志刚,等 . 2012. 1982—2006 年中国半干旱、干旱
区气候与植被覆盖的时空变化 . 生态环境学报,21 ( 2 ) :
268 - 272.
(Li J Y,Xu W X,Cheng Z G,et al. Spatial-temporal changes of climate
and vegetation cover in the semi-arid and arid regions of China
during 1982—2006. Ecology and Environmental Scien,21 ( 2 ) :
268 - 272. [in Chinese])
李苗苗,吴炳方,颜长珍,等 . 2004. 密云水库上游植被覆盖度的遥感
估算 .资源科学,26(4) : 153 - 159.
(Li M M,Wu B F,Yan C Z,et al. 2004. Estimation of vegetation
fraction in the upper basin of Miyun Reservoir by remote sensing.
Resources Science,26(4) : 153 - 159. [in Chinese])
李双双,延军平,万 佳 . 2012. 近 10 年陕甘宁黄土高原区植被覆盖
时空变化特征 .地理学报,67(7) :960 - 970.
Li S S,Yan J P,Wang J. 2012. The spatial-temporal changes of
vegetation restoration on Loess Plateau in Shaanxi-Gansu-Ningxia
region. Acta Geographica Sinica, 67 ( 7 ) : 960 - 970. [in
Chinese])
李宗省,何元庆,辛惠娟,等 . 2010. 我国横断山区 1960—2008 年气
温和降水时空变化特征 .地理学报,65(5) :563 - 579.
(Li Z S,He Y Q,Xin H J,et al. 2010. Spatio-temporal variations of
temperature and precipitation in Mts Hengduan region during 1960─
2008. Acta Geographica Sinica,65(5) :563 - 579. [in Chinese])
刘 琳,姚 波 . 2010.基于 NDVI 象元二分法的植被覆盖变化监测 .
农业工程学报,26(13) :230 - 234.
( Liu L,Yao B. 2010. Monitoring vegetation-cover changes based on NDVI
dimidiate pixel model. Transactions of the Chinese Society of
Agricultural Engineering,26(13) :230 - 234. [in Chinese])
马 娜,胡云锋,庄大方,等 . 2012. 基于遥感和像元二分模型的内
蒙古正蓝旗植被覆盖度格局和动态变化 . 地理科学,32 ( 2 ) :
251 - 256.
(Ma N,Hu Y F,Zhuang D F,et al. 2012. Vegetation coverage
distribution and its changes in Plan Blue Banner based on remote
sensing data and dimidiate pixel model. Scientia Geographica
Sinica,32(2) :25 - 256. [in Chinese])
毛留喜,侯英雨,钱 拴,等 . 2008. 牧草产量的遥感估算与载畜能力
85
第 7 期 胡玉福等: 基于 RS 和 GIS 的大渡河上游植被覆盖时空变化
研究 .农业工程学报,24(8) :147 ― 151.
(Mao L X,Hou Y Y,Qian S,et al. 2008. Estimation of pasture output and
livestock carrying capacity using remote sensing. Transactions of the
Chinese Society of Agricultural Engineering,24(8) :147 - 151.[in
Chinese])
牛宝茹,刘俊蓉,王政伟 . 2005.干旱半干旱地区植被覆盖度遥感信息
提取研究 .武汉大学学报: 信息科学版,30(1) :27 - 30.
Niu B R,Liu J R,Wang Z W. 2005. Remote sensing information
extraction Based on vegetation fraction in drought and half-drought
area. Geomatics and Information Science of Wuhan University,30
(1) :27 - 30. [in Chinese])
秦 伟,朱清科,张学霞,等 . 2006. 植被覆盖度及其测算方法研究进
展 .西北农林科技大学学报: 自然科学版,34(9) :163 - 170.
(Qin W,Zhu Q K,Zhang X X,et al. 2006. Review of vegetation
covering and its measuring and calculating method. Journal of
Northwest Sci-Tech University of Agriculture and Forestry:Natural
Science Edition,34(9) :163 - 170. [in Chinese])
沈明霞,何瑞银,丛静华,等 . 2007.基于主成分分析与 Brovey 变换的
ETM +影像植被信息提取 .农业机械学报,38(9) :87 - 89.
( Shen M X,He R Y,Cong J H,et al. 2007. Study on extraction of
vegetation information of ETM + by using PCA method and brovey
transform. Transactions of the Chinese Society for Agricultural
Machinery,38(9) :87 - 89.[in Chinese])
孙智辉,雷延鹏,卓 静,等 . 2010. 延安北部丘陵沟壑区退耕还林
(草)成效的遥感监测 .生态学报,30(23) : 6555 - 6562.
( Sun Z H,Lei Y P,Zhuo J,et al. 2010. Remote sensing analysis of the
effectiveness of converting farmland into forest or grass in the hilly
gully region of Northern Yanan. Acta Ecologica Sinic,30 ( 23 ) :
6555 - 6562. [in Chinese])
王 强,张 勃,戴声佩,等 . 2012. 三北防护林工程区植被覆盖变
化与影响因子分析 .中国环境科学,32(7) :1302 - 1308.
(Wang Q,Zhang B,Dai S P,et al. 2012. Anaysis of the vegetation cover
change and its its relationship with factors in the Three-North Shelter
Forest Program. China Environmental Science,32 ( 7 ) : 1302 -
1308. [in Chinese])
王 莺,夏文韬,梁天刚,等 . 2010.基于 MODIS 植被指数的甘南草地
净初级生产力时空变化研究 .草业学报,19(1) : 201 - 210.
(Wang Y,Xia W T,Liang T G, et al. 2010. Spatial and temporal
dynamic changes of net primary product based on MODIS vegetation
index in Gannan grassland. Acta Prataculturae Sinica,19 ( 1 ) :
201 - 210. [in Chinese])
王 智,师庆三,王 涛,等 . 2011. 1982—2006 年新疆山地 - 绿洲 -
荒漠系统植被覆盖变化时空特征 . 自然资源学报,26 ( 4 ) :
609 - 618.
(Wang Z,Shi Q S,Wang T,et al. 2011. Spatial-temporal characteristics
of vegetation cover change in mountain-oasis-desert system of
Xinjiang from 1982 to 2006. Journal of Natural Resources,26(4) :
609 - 618. [in Chinese])
吴昌广,周志翔,肖文发,等 . 2012. 基于 MODISNDVI 的三峡库区植
被覆盖度动态监测 . 林业科学,48(1) : 22 - 28.
(Wu C G,Zhou Z X,Xiao W F,et al. 2012. Dynamic monitoring of
vegetation coverage in Three Gorges Reservoir area based on MODIS
NDVI. Scientia Silvae Sinicae,48(1) : 22 - 28. [in Chinese])
吴门新,钱 拴,侯英雨,等 . 2009. 利用 NDVI 资料估算中国北方草
原区牧草产量 . 农业工程学报,25(13) :149 ― 155.
(Wu M X,Qian S,Hou Y Y,et al. 2009. Estimation of forage yield in
Northern China based on NDVI data. Transactions of the Chinese
Society of Agricultural Engineering, 25 ( 13 ) : 149 - 155. [in
Chinese])
姚永慧,张百平,韩 芳,等 . 2010. 横断山区垂直带谱的分布模式与
坡向效应 .山地学报,28(1) :11 - 20.
(Yao Y H,Zhang B P,Han F,et al. 2010. Spatial pattern and exposure
effect of altitudinal belts in the Hengduan Mountains. Journal of
Mountain Science,28(1) :11 - 20. [in Chinese])
张 飞,塔西甫拉提·特依拜,丁建丽,等 . 2011. 新疆典型盐渍区植
被覆盖度遥感动态监测———以渭干河 - 库车河三角洲绿洲为
例 . 林业科学,47(7) : 27 - 35.
(Zhang F,Tashpolat T,Ding J L,et al. 2011. Dynamically monitoring
vegetation cover by remote sensing in the typical salinization region
of Xinjiang: a case study in delta oasis of Weigan and Kuqa Rivers.
Scientia Silvae Sinicae,47(7) : 27 - 35. [in Chinese])
张宝庆,吴普特,赵西宁 . 2011. 近 30a 黄土高原植被覆盖时空演变
监测与分析 .农业工程学报,27(4) :287 - 293.
(Zhang B Q,Wu P T,Zhao X N. 2011. Detecting and analysis of spatial
and temporal variation of vegetation cover in the Loess Plateau during
1982—2009. Transactions of the Chinese Society of Agricultural
Engineering,27(4) :287 - 293. [in Chinese])
朱 蕾,徐俊锋,黄敬峰,等 . 2008. 作物植被覆盖度的高光谱遥感估
算模型 .光谱学与光谱分析,28(8) :1827 - 1831.
(Zhu L,Xu J F,Huang J F, et al. 2008. Study on hyperspectral
estimation model of crop vegetation cover percentage. Spectroscopy
and Spectral Analysis,28(8) :1827 - 1831. [in Chinese])
Douglas A S,Allen H,David V,et al. 2004. Remote sensing of
vegetation and land—cover change in Arctic Tundra Ecosystems.
Remote Sensing of Environment,89(3) :281 - 308.
Ian O,Darren P. 2010. Treeline vegetation composition and change in
Canada’s western Subarctic from AVHRR and canopy reflectance
modeling. Remote Sensing of Environment,114(4) :805 - 815.
Janssen P H M,Heuberger P S C. 1995. Calibration of process-oriented
models. Ecological Modeling,83(1) :55 - 66.
Kaufman Y J,Tanre D. 1992. Atmospherically resistant vegetation index
(ARVI) for EOS—MODIS. IEEE Transactions on Geoscience and
Remote Sensing,30(2) :261 - 270.
Piao S,Mohammat A,Fang J Y,et al. 2006. NDVI—based increase in
growth of temperate grassland and its response to climate changes in
China. Global Environment Change,16(4) :340 - 348.
Ross S L,Joseph F K,John G L. 2006. Land—cover change detection
using multi— temporal MODIS NDVI data. Remote sensing of
environment,105(2) :142 - 154.
Rundquist B C. 2002. The influence of canopy green vegetation fraction
on spectral measurements over native tall grass prairie. Remote
Sensing of Environment,81(1) :129 - 135.
Toby N C,David A R. 1997. On the relation between NDVI,fractional
vegetation cover, and leaf area index. Remote Sensing of
Environment,62(3) :241 - 252.
Xin Z B, Xu J X, Zheng W. 2008. Spatiotemporal variations of
vegetation cover on the Chinese Loess Plateau ( 1981—2006 ) :
impacts of climate changes and human activities. Science in China
( Series D: Earth Sciences),51(1) :67 - 78.
(责任编辑 石红青)
95