[目的] 比较金沙江干热河谷地区7种人工林地表蚂蚁群落的物种组成及多度和多样性,揭示各种人工林生物多样性状况及其对当地生物多样性保护的意义,为云南干热河谷地区的植被恢复和生物多样性保护提供参考。[方法] 在云南省元谋县荒漠化生态系统定位观测站的桉树林、膏桐林、膏桐-新银合欢林、印楝林、印楝-大叶相思林、印楝-苏门答腊金合欢林以及印楝-新银合欢林7种人工林中设置调查样地,分别于2011年4月(旱季)和8月(雨季)运用陷阱法对各样地地表蚂蚁群落进行抽样调查。在样地内设置1条200 m长的样带,每隔10 m布设1个口径80 mm、高150 mm的陷阱,共20个; 以50 mL 50%的丙三醇作为陷阱溶液,陷阱放置5天后取出其内的蚂蚁,用95%酒精保存。每类型样地设2~3 个重复样带。[结果] 1) 物种组成: 金沙江干热河谷人工林地表蚂蚁群落由5亚科17属36种组成,切叶蚁亚科属种最丰富,有6属18种; 蚁亚科次之,有5属10种;臭蚁亚科有4属6种;猛蚁亚科和盲蚁亚科仅1属1种。铺道蚁属种类最丰富,有6种; 其次是小家蚁属,有4种。旱季(4月)采集到地表蚂蚁2 127头18种,个体数量最多的分别是黑头酸臭蚁和中华小家蚁; 雨季(8月)采集到地表蚂蚁1 874头25种,个体数量最多的分别是扁平虹臭蚁和克氏铺道蚁。金沙江干热河谷人工林旱季地表蚂蚁群落组成和雨季不同,雨季蚂蚁群落表现出其物种组成与植被性质趋于一致的特点。2) 多度和多样性: 7种人工林中,印楝林蚂蚁多度最大,无论在旱季还是雨季,都显著大于桉树林和印楝-合欢林; 印楝-大叶相思林蚂蚁多样性最高,桉树林蚂蚁多样性最低。在旱季,所有人工林地表蚂蚁多样性之间无显著差异; 在雨季,印楝-大叶相思林地表蚂蚁多样性显著高于其他6种人工林。7种人工林之间地表蚂蚁群落相似性较低,β多样性较高。[结论] 在金沙江干热河谷元谋段,印楝-大叶相思林具有较高的蚂蚁多样性,对当地生物多样性保护具有积极意义,营造印楝-大叶相思林是很好的植被恢复模式; 其余6种人工林具有不太相似的蚂蚁物种组成,对提高区域生物多样性具有积极作用。
[Objective] Because of the fragile ecological environment in arid-hot valleys of Jinsha River, Yunnan Province, China, the region has been the hot spots of vegetation restoration for which plantation is the main model. To reveal the diversity status of these plantations, and the potential role in biodiversity protection, the ground-dwelling ant community was studied in 7 different plantations in Jinsha River arid-hot valleys, by comparing the difference of ground-dwelling ant community in terms of species composition and diversity. It would be reference for revegetation and biodiversity protection in the arid-hot valleys. [Method] The experimental sites were in the Desert Ecosystem Observation Station of the State Forestry Administration in Yuanmou County. The sampled plots were set in the following tree plantations: Eucalyptus spp.; Jatropha carcas; Jatropha carcas +Leucaena leucocephala; Azadirachta indica; Azadirachta indica+Acacia auriculiformis; Azadirachta indica+Acacia glauca and Azadirachta indica+Leucaena leucocephala. Investigation of ground-dwelling ant community was carried out by pitfall trappings in all 7 plantations in April (dry season) and August (wet season), 2011,respectively. At each plot, two-three 200 m transects were established for ant collection. The 20 pitfall traps with 50ml 50% glycerol were set along each transect at 10 m intervals at ground level. Pitfall traps were made from plastic containers, 8 cm diameter and 15 cm deep, covered by a stone plate to protect the trap from rain. Traps were set for 5 days. The contents of each transect were placed separately in plastic bottles and deposited in 95% alcohol. [Results] The resultswere as follows: 1) Ant community composition: 4001 ant individuals were collected, representing 36 species in 17 genera and 5 subfamilies. The collected Myrmicinae subfamily had the most abundant genus and species, with 18 species in 6 genera, followed by Formicinae with 10 species in 5 genera, then Dolichoderinae with 6 species in 4 genera, and the last groups were Ponerinae and Aenictinae, each only with 1 sepcies and 1 genus. The genus of Tetramorium had the most abundant species with 6 species, followed by genus Monomorium with 4 species. There were 2 127 ant individuals representing 18 species captured in dry season (i.e. in April), among which, Tapinoma melanocephalum and Monomorium chinensis were the most abundant. In wet season (i.e. in August), there were 1 874 ant individuals were captured, among which, Iridmyrmex anceps and Tetramorium cuneinode were the most abundant. There was significant difference of ground-dwelling ant community species composition between dry season and wet season. The ant community in wet season could indicate that the species composition accorded to the features of the vegetations. 2) Ant abundance and diversity: among 7 plantations, the ant abundance in Azadirachta indica plantation was highest regardless the season, and was significantly higher than that in Eucalyptus spp. plantation and Azadirachta indica + Leucaena leucocephala or Acacia glauca plantation. The ant species richness in Azadirachta indica + Acacia auriculiformis plantation was the highest among all plantations, and ant species richness was lowest in Eucalyptus spp. plantation. There was no significant difference in species richness among the plantations in dry season. However, in wet season, the ant species richness in Azadirachta indica + Acacia auriculiformis plantation was significantly higher than that of other 6 plantations. There was low similarity of ant community composition among all selected plantations, which suggested higher β diversity. [Conclusion] The results indicated that Azadirachta indica + Acacia auriculiformis plantation has positive role in local biodiversity protection, and should be selected as a good model in restoration. The other 6 plantations also have certain role in increasing the biodiversity in regional level, owing to their different ant species composition.
全 文 :第 51 卷 第 8 期
2 0 1 5 年 8 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 51,No. 8
Aug.,2 0 1 5
doi:10.11707 / j.1001-7488.20150818
收稿日期: 2014 - 02 - 25; 修回日期: 2014 - 10 - 22。
基金项目: 国家自然科学基金地区科学基金项目(31160131) ;云南省重点学科野生动植物保护与利用项目。
金沙江干热河谷人工林地表的蚂蚁群落
李 巧 卢志兴 张 威 马艳滟 冯 萍
(西南林业大学云南省森林灾害预警与控制重点实验室 昆明 650224)
摘 要: 【目的】比较金沙江干热河谷地区 7 种人工林地表蚂蚁群落的物种组成及多度和多样性,揭示各种人工
林生物多样性状况及其对当地生物多样性保护的意义,为云南干热河谷地区的植被恢复和生物多样性保护提供参
考。【方法】在云南省元谋县荒漠化生态系统定位观测站的桉树林、膏桐林、膏桐 -新银合欢林、印楝林、印楝 -大
叶相思林、印楝 -苏门答腊金合欢林以及印楝 -新银合欢林 7 种人工林中设置调查样地,分别于 2011 年 4 月(旱
季)和 8 月(雨季)运用陷阱法对各样地地表蚂蚁群落进行抽样调查。在样地内设置 1 条 200 m 长的样带,每隔
10 m布设 1 个口径 80 mm、高 150 mm 的陷阱,共 20 个; 以 50 mL 50%的丙三醇作为陷阱溶液,陷阱放置 5 天后取
出其内的蚂蚁,用 95%酒精保存。每类型样地设 2 ~ 3 个重复样带。【结果】1) 物种组成: 金沙江干热河谷人工林
地表蚂蚁群落由 5 亚科 17 属 36 种组成,切叶蚁亚科属种最丰富,有 6 属 18 种; 蚁亚科次之,有 5 属 10 种;臭蚁亚
科有 4 属 6 种;猛蚁亚科和盲蚁亚科仅 1 属 1 种。铺道蚁属种类最丰富,有 6 种; 其次是小家蚁属,有 4 种。旱季
(4 月)采集到地表蚂蚁2 127头 18 种,个体数量最多的分别是黑头酸臭蚁和中华小家蚁; 雨季(8 月)采集到地表蚂
蚁 1 874 头 25 种,个体数量最多的分别是扁平虹臭蚁和克氏铺道蚁。金沙江干热河谷人工林旱季地表蚂蚁群落组
成和雨季不同,雨季蚂蚁群落表现出其物种组成与植被性质趋于一致的特点。2) 多度和多样性: 7 种人工林中,
印楝林蚂蚁多度最大,无论在旱季还是雨季,都显著大于桉树林和印楝 -合欢林; 印楝 -大叶相思林蚂蚁多样性最
高,桉树林蚂蚁多样性最低。在旱季,所有人工林地表蚂蚁多样性之间无显著差异; 在雨季,印楝 -大叶相思林地
表蚂蚁多样性显著高于其他 6 种人工林。7 种人工林之间地表蚂蚁群落相似性较低,β 多样性较高。【结论】在金
沙江干热河谷元谋段,印楝 -大叶相思林具有较高的蚂蚁多样性,对当地生物多样性保护具有积极意义,营造印
楝 -大叶相思林是很好的植被恢复模式; 其余 6 种人工林具有不太相似的蚂蚁物种组成,对提高区域生物多样性
具有积极作用。
关键词: 蚁科; 生物多样性; 物种组成; 生物指示; 人工林
中图分类号: Q968 文献标识码: A 文章编号: 1001 - 7488(2015)08 - 0134 - 09
Communities of Ground-Dwelling Ants in Different Plantation Forests in
Arid-Hot Valleys of Jinsha River,Yunnan Province,China
Li Qiao Lu Zhixing Zhang Wei Ma Yanyan Feng Ping
(Key Laboratory of Forest Disaster Warning and Control in Yunnan Province,Southwest Forestry University Kunming 650224)
Abstract: 【Objective】Because of the fragile ecological environment in arid-hot valleys of Jinsha River,Yunnan
Province,China,the region has been the hot spots of vegetation restoration for which plantation is the main model. To
reveal the diversity status of these plantations,and the potential role in biodiversity protection,the ground-dwelling ant
community was studied in 7 different plantations in Jinsha River arid-hot valleys,by comparing the difference of ground-
dwelling ant community in terms of species composition and diversity. It would be reference for revegetation and
biodiversity protection in the arid-hot valleys.【Method】The experimental sites were in the Desert Ecosystem Observation
Station of the State Forestry Administration in Yuanmou County. The sampled plots were set in the following tree
plantations: Eucalyptus spp. ; Jatropha carcas; Jatropha carcas + Leucaena leucocephala; Azadirachta indica; Azadirachta
indica + Acacia auriculiformis; Azadirachta indica + Acacia glauca and Azadirachta indica + Leucaena leucocephala.
Investigation of ground-dwelling ant community was carried out by pitfall trappings in all 7 plantations in April ( dry
season) and August (wet season),2011,respectively. At each plot,two-three 200 m transects were established for ant
collection. The 20 pitfall traps with 50ml 50% glycerol were set along each transect at 10 m intervals at ground level.
第 8 期 李 巧等: 金沙江干热河谷人工林地表的蚂蚁群落
Pitfall traps were made from plastic containers,8 cm diameter and 15 cm deep,covered by a stone plate to protect the trap
from rain. Traps were set for 5 days. The contents of each transect were placed separately in plastic bottles and deposited
in 95% alcohol.【Results】 The resultswere as follows: 1 ) Ant community composition: 4001 ant individuals were
collected,representing 36 species in 17 genera and 5 subfamilies. The collected Myrmicinae subfamily had the most
abundant genus and species,with 18 species in 6 genera,followed by Formicinae with 10 species in 5 genera,then
Dolichoderinae with 6 species in 4 genera,and the last groups were Ponerinae and Aenictinae,each only with 1 sepcies
and 1 genus. The genus of Tetramorium had the most abundant species with 6 species,followed by genus Monomorium
with 4 species. There were 2 127 ant individuals representing 18 species captured in dry season ( i. e. in April),among
which,Tapinoma melanocephalum and Monomorium chinensis were the most abundant. In wet season ( i. e. in August),
there were 1 874 ant individuals were captured,among which,Iridmyrmex anceps and Tetramorium cuneinode were the
most abundant. There was significant difference of ground-dwelling ant community species composition between dry season
and wet season. The ant community in wet season could indicate that the species composition accorded to the features of
the vegetations. 2) Ant abundance and diversity: among 7 plantations,the ant abundance in Azadirachta indica plantation
was highest regardless the season,and was significantly higher than that in Eucalyptus spp. plantation and Azadirachta
indica + Leucaena leucocephala or Acacia glauca plantation. The ant species richness in Azadirachta indica + Acacia
auriculiformis plantation was the highest among all plantations,and ant species richness was lowest in Eucalyptus spp.
plantation. There was no significant difference in species richness among the plantations in dry season. However,in wet
season,the ant species richness in Azadirachta indica + Acacia auriculiformis plantation was significantly higher than that
of other 6 plantations. There was low similarity of ant community composition among all selected plantations,which
suggested higher β diversity. 【Conclusion】 The results indicated that Azadirachta indica + Acacia auriculiformis
plantation has positive role in local biodiversity protection,and should be selected as a good model in restoration. The
other 6 plantations also have certain role in increasing the biodiversity in regional level,owing to their different ant species
composition.
Key words: Formicidae; biodiversity; species composition; bio-indication; plantations
干热河谷位于云南省境内横断山区干旱及半干
旱河谷地带,主要分布在金沙江、怒江、澜沧江及元
江的中游等河谷区 ( 张荣祖,1992; 金振洲等,
2000)。金沙江干热河谷生态环境极其脆弱 (赵跃
龙,1999),一直是植被恢复实践的热点地区(纪中
华等,2009)。营造人工林是干热河谷地区植被恢
复的 主 要 模 式,桉 树 ( Eucalyptus spp. )、印 楝
(Azadirachta indica)、膏桐 ( Jatropha carcas)等是造
林的主要树种(高洁等,1997; 李昆等,2004; 李国
瑾,2008)。金沙江干热河谷生物多样性研究屡见
报道,主要围绕植物 (方海东等,2005; 李昆等,
2007) 或 昆 虫 (李 昆 等,2006; 李 巧 等,2006,
2008),然而缺乏对不同类型人工林的生物多样性
比较以及人工林对当地生物多样性保护价值探讨的
研究。金沙江干热河谷地区人工林生物多样性水平
如何,对于地区生物多样性保护具有什么意义,是影
响该地区社会经济发展的重要问题。
蚂蚁是地球上分布最广泛、种类和数量最多的
社会性昆虫,其物种组成常被用来评价干扰对蚂蚁
群落的影响; 在世界范围内,蚂蚁已经成为指示生
物多样性和环境变化的重要物种,是使用最广泛的
指示生物(Hoffmann,2010; 李巧等,2011a; Ribas
et al.,2011)。地表蚂蚁容易进行规范化抽样,尤其
受到研究者的青睐(Vasconcelos,2006; Chen et al.,
2011; 李巧等,2011b);然而国内的研究相对薄弱,
规范化抽样及分析有待加强(李巧等,2009)。
本文以金沙江干热河谷地区 7 种人工林地表蚂
蚁群落为研究对象,通过比较人工林地表蚂蚁群落
物种组成及多度和多样性,揭示各人工林生物多样
性状况及其对当地生物多样性保护的意义,为云南
干热河谷地区的植被恢复和生物多样性保护提供
参考。
1 研究区概况
研究区位于金沙江一级支流龙川江河谷中下游
地区的元谋县境内,地理位置 101°35—102°06 E,
25°23—26° 06 N,全县南北长 77. 3 km,东西宽
42 km,面 积 2 021. 47 km2。 境 内 最 高 海 拔
2 835. 9 m、最低海拔 898 m; 年平均气温 21. 5 ℃,
最热月平均气温 27. 1 ℃,最冷月平均气温 14. 9 ℃ ;
531
林 业 科 学 51 卷
≥10 ℃积温 7 996 ℃ ; 无霜期 350 ~ 365 天; 年日照
时数2 550 ~ 2 744 h; 年降水量 623. 1 mm,主要集中
在 6—10 月; 年蒸发量 3 569. 2 mm,为降水量的 5. 8
倍。海拔 1 300 m 以下为燥红土,1 300 ~ 2 200 m 之
间为红壤。干热河谷地区海拔 1 600 m 以下以稀树
灌木草丛为主; 1 600 m 以上主要为灌丛草地,也有
片状森林分布,植被概况见文献 (李巧等,2014a;
2014b)。
在云南省元谋县荒漠化生态系统定位观测站的
7 种人工林内设置调查样地,样地基本概况见表 1,
以撂荒多年的草坡作为对照。
表 1 金沙江干热河谷人工林调查样地基本概况①
Tab. 1 Basic conditions of the sample plots in plantation forests in arid-hot valleys of Jinsha River
样地号
Plot No.
人工林类型
Type of plantation
海拔
Elevation /
m
乔木层 Tree layer 灌木层 Shrub layer 草本层 Herb layer
盖度
Coverage(% )
高度
Height /m
盖度
Coverage(% )
高度
Height /m
盖度
Coverage(% )
高度
Height /m
Ⅰ 桉树 Eucalyptus spp. 1 135 15. 0 3. 85 5. 0 0. 72 21. 4 0. 25
Ⅱ 膏桐 Jatropha carcas 1 161 10. 0 2. 72 10. 0 1. 26 21. 4 0. 20
Ⅲ
膏桐 - 新银合欢 Jatropha carcas-
Leucaena leucocephala
1 150 40. 0 3. 30 10. 0 1. 04 20. 9 0. 30
Ⅳ 印楝 Azadirachta indica 1 187 25. 0 2. 84 5. 0 0. 48 20. 2 0. 30
Ⅴ
印楝 - 大叶相思 Azadirachta indica-
Acacia auriculiformis
1 141 75. 0 5. 35 5. 0 0. 73 3. 8 0. 20
Ⅵ
印楝 -苏门答腊金合欢
Azadirachta indica-Acacia glauca
1 137 80. 0 3. 67 4. 0 0. 70 2. 5 0. 10
Ⅶ
印楝 -新银合欢 Azadirachta
indica-Leucaena leucocephala
1 152 75. 0 5. 25 5. 0 0. 70 1. 4 0. 10
对照
Control 草坡
Grass land 1 157 2. 0 1. 69 15. 0 0. 94 54. 5 0. 40
①部分样地由于面积不足,只选取 1 条样带。各调查样带编号及对应样带名是: 样地Ⅰ桉树林有 2 条样带即 T1 和 T2,样地Ⅱ膏桐林有 3
条样带即 T3,T4 和 T5,样地Ⅲ膏桐 -新银合欢林有 2 条样带即 T6 和 T7,样地Ⅳ印楝林有 3 条样带即 T8,T9 和 T10,样地Ⅴ印楝 -大叶相思林
有 2 条样带即 T11 和 T12,样地Ⅵ印楝 -苏门答腊金合欢林有 1 条样带即 T13,样地Ⅶ印楝 -新银合欢林有 1 条样带即 T14,对照为撂荒多年的
草坡,有 2 条样带即 T15 和 T16。Only one transet was selected in some plots because of limited plantation area. No. of transect and its name were as
follows: 2 transects in Eucalyptus spp. plantations,namely T1 and T2; 3 transects in Jatropha carcas plantation,namely T3,T4 and T5; 2 transects in
Jatropha carcas + Leucaena leucocephala plantation,namely T6 and T7; 3 transects in Azadirachta indica plantation,namely T8,T9 and T10; 2 transects
in Azadirachta indica + Acacia auriculiformis plantation,namely T11 and T12; only 1 transect in Azadirachta indica + Acacia glauca plantation and
Azadirachta indica + Leucaena leucocephala plantation,namely T13,T14,respectively,and 2 transects in the control plot,abandoned grass land for
many years,namely T15 and T16. The same below.
2 研究方法
2. 1 调查方法 调查方法见文献(李巧等,2014a;
2014b)。分别于 2011 年 4 月(旱季)和 8 月(雨季)
运用陷阱法 ( Longino,2000)对各样地地表蚂蚁群
落进行抽样调查。每类型样地设 2 ~ 3 个重复
样带。
2. 2 数据分析 1) 抽样充分性 对调查样地的抽
样充分性进行判断,利用 EstimateS 软件计算物种累
积曲线,并通过 Excel 软件绘制曲线(李巧,2011);
应用 ACE 方法对各样地地表蚂蚁群落物种丰富度
进行估计,比较物种丰富度 S 值 (物种实际值) 与
ACE 值 (物种估计值)的相对大小 (Colwell,2009;
洪伟,2009)。
2) 物种组成 按照文献 (李巧等,2014b)方
法,根据不同物种在各样地的个体数量分布,比较旱
季和雨季各样地地表蚂蚁群落的物种组成相似性。
3) 多度和多样性 按照文献(李巧等,2014b)
方法,采用地表蚂蚁个体数来度量各调查样地地表
蚂蚁多度,采用物种丰富度 S 值、ACE 值、α 指数和
Shannon 指数度量各调查样地地表蚂蚁多样性,利
用 SPSS 中的 One-way ANOVA 程序对不同地表蚂蚁
群落组成进行方差分析及多重比较。
3 结果与分析
3. 1 抽样充分性 金沙江干热河谷人工林旱季及
雨季地表蚂蚁群落物种累积曲线见图 1,各调查样
带地表蚂蚁群落的 S /ACE 见表 2。
图 1 显示,无论是旱季还是雨季,金沙江干热河
谷人工林地表蚂蚁群落物种累积曲线均呈渐进性,急
剧上升后趋于平缓;除旱季 T11、雨季 T12 的 S /ACE
较低外,其余均接近或超过 0. 80(表 2)。显然,此次
研究抽样量充分。
631
第 8 期 李 巧等: 金沙江干热河谷人工林地表的蚂蚁群落
表 2 云南干热河谷人工林调查样带地表蚂蚁群落的 S /ACE①
Tab. 2 S /ACE of ground-dwelling ant communities in sampling transects in arid-hot valleys of Jinsha River
样带号 Transect No. T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16
旱季 In dry season 1 1 0. 88 0. 89 1 0. 87 1 0. 89 1 1 0. 65 1 0. 94 0. 80 1 1
雨季 In wet season 0. 83 1 1 1 1 1 1 0. 89 1 1 0. 79 0. 56 0. 93 — 1 1
①因数据原因无法计算 ACE 值的,以“—”表示其 S /ACE。“—”mean the value which cannot be calculated by software due to the data.
图 1 金沙江干热河谷人工林地表蚂蚁群落
物种累积曲线
Fig. 1 Species accumulation curves of ground-dwelling ant
community arid-hot valleys of Jinsha River
3. 2 物种组成 金沙江干热河谷人工林地表蚂蚁
群落由 5 亚科 17 属 36 种组成(附录),其中猛蚁亚
科(Ponerinae)和盲蚁亚科(Aenictinae) 均为 1 属 1
种; 切叶蚁亚科(Myrmicinae)有 6 属 18 种,是最丰
富的亚科; 臭蚁亚科(Dolichoderinae)有 4 属 6 种,
蚁亚科(Formicinae)有 5 属 10 种。在属级分类单元
中,铺道蚁属(Tetramorium)种类最丰富,有 6 种; 其
次是小家蚁属(Monomorium),有 4 种。旱季地表蚂
蚁有 2 127 头 18 种,个体数量最多的分别是黑头酸
臭蚁 ( Tapinoma melanocephalum ) 和 中 华 小 家 蚁
(Monomorium chinensis); 雨季有 1 874 头 25 种,个
体数量最多的分 别 是 扁 平 虹 臭 蚁 ( Iridmyrmex
anceps)和克氏铺道蚁 ( Tetramorium cuneinode)。旱
季地表蚂蚁群落个体数较多,而雨季地表蚂蚁群落
种类更丰富。
金沙江干热河谷不同季节人工林地表蚂蚁群落
相似性分析见图 2、图 3。旱季地表蚂蚁群落基本分
为 4 类: 样带 8,9,10 和 12 聚为一类,样带 13,14 聚
为一类,样带 7,15 和 16 聚为一类,样带 3,4,5 和 6
聚为一类,其余 3 条样带相距甚远(图 2)。雨季地
表蚂蚁群落也聚为 4 类: 样带 6,7,15 和 16 聚为一
类,样带 8,13 聚为一类,样带 3,4 和 5 聚为一类,样
带 1 和 11 聚为一类,其余 5 条样带相距甚远而未出
现在图中(图 3)。
图 2 金沙江干热河谷人工林旱季地表
蚂蚁群落非度量多维尺度分析
Fig. 2 Nonmetric multidimensional scaling for ground-
dwelling ant communities in dry season in arid-hot
valleys of Jinsha River
T1,T2 未出现在图中。T1 and T2 could not be seen in the figure.
图 3 金沙江干热河谷人工林雨季地表蚂蚁群落
非度量多维尺度分析
Fig. 3 Nonmetric multidimensional scaling for ground-
dwelling ant communities in wet season in
arid-hot valleys of Jinsha River
T2,T9,T10,T12,T14 未出现在图中。
T2,T9,T10,T12,T14 could not be seen in the figure.
上述结果表明,金沙江干热河谷人工林旱季地
表蚂蚁群落组成和雨季不同,一些植物组成相同的
样带彼此接近,如样带 3,4 和样带 5 接近,样带 8,9
731
林 业 科 学 51 卷
和样带 10 接近; 而一些则距离较远,如旱季时样带
6 和 7。
3. 3 多度和多样性 各调查样带不同季节地表蚂
蚁群落多度和多样性见表 3。旱季地表蚂蚁群落
中,样带 5,7 和 14 的物种数最少,其次是样带 1,2
和 15,样带 3,6 和 11 蚂蚁物种数丰富,其余 6 条样
带物种数居中。从抽样效果来看,样带 11 可能是地
表蚂蚁最丰富的。雨季地表蚂蚁群落中,样带 8,11
和 12 的地表蚂蚁物种数丰富,样带 2 和 5 地表蚂蚁
物种很少,其余 11 条样带物种数在 5 ~ 8 之间。从
抽样效果来看,大多数样带抽样充分。α 指数反映
出样带 12 和 11 具有较高的地表蚂蚁多样性,样带
8 和 13 次之,其余样带地表蚂蚁多样性水平较低。
不同林分人工林旱季地表蚂蚁群落多样性比较
见表 4。旱季印楝林具有最高的地表蚂蚁多度,膏
桐林和印楝 -大叶相思林次之,桉树林、膏桐 -新银
合欢林和印楝 -合欢林多度最低,显著低于印楝林,
但与对照相比,所有林分在地表蚂蚁多度上均无显
著差异。各多样性指数在不同林分中的排序不尽相
同,但多重比较的结果显示,无论哪种人工林,其地
表蚂蚁多样性水平与对照相比均无显著差异,各人
工林彼此间亦无显著差异。
表 5 显示,在雨季,对照和印楝林具有最高的蚂
蚁多度,桉树林蚂蚁多度较低,印楝 - 合欢林最低,
多重比较结果显示桉树林和印楝 -合欢林蚂蚁多度
显著低于对照。各多样性指数反映了基本一致的结
果: 印楝 -大叶相思林具有最高的蚂蚁多样性,显
著高于对照及其他人工林,而这些人工林多样性水
平之间无显著差异。
表 3 金沙江干热河谷人工林地表蚂蚁群落多度及多样性①
Tab. 3 Abundances and diversities of ground-dwelling ant communities in different plantation forests in
arid-hot valleys of Jinsha River
样带号
Transect No.
旱季地表蚂蚁群落
Ground-dwelling ant community in dry season
雨季地表蚂蚁群落
Ground-dwelling ant community in wet season
N S ACE α Shannon N S ACE α Shannon
T1 141 6 6. 0 1. 27 0. 94 37 5 6. 0 1. 56 1. 11
T2 42 5 5. 0 1. 48 1. 32 68 4 4. 0 0. 93 1. 01
T3 127 11 12. 5 2. 89 1. 80 124 8 8. 0 1. 91 1. 60
T4 214 8 9. 0 1. 64 0. 77 64 5 5. 0 1. 27 1. 36
T5 29 4 4. 0 1. 26 1. 00 142 4 4. 0 0. 76 0. 83
T6 96 10 11. 5 2. 81 1. 69 166 6 6. 0 1. 22 1. 19
T7 20 4 4. 0 1. 50 0. 98 146 6 6. 0 1. 26 1. 27
T8 374 8 9. 0 1. 44 1. 25 121 12 13. 5 3. 31 2. 03
T9 203 8 8. 0 1. 66 1. 72 117 6 6. 0 1. 34 1. 60
T10 213 8 8. 0 1. 64 1. 76 266 7 7. 0 1. 32 1. 20
T11 134 11 17. 0 2. 84 1. 72 102 14 17. 8 4. 39 1. 94
T12 124 9 9. 0 2. 23 1. 92 125 19 34. 0 6. 24 2. 05
T13 75 8 8. 5 2. 27 1. 53 28 7 7. 5 3. 00 1. 65
T14 34 4 5. 0 1. 18 0. 90 5 5 — — —
T15 147 7 7. 0 1. 53 1. 20 111 5 5. 0 1. 08 1. 26
T16 154 8 8. 0 1. 79 1. 59 252 6 6. 0 1. 10 1. 02
①—:因数据原因导致软件无法计算的值 Value here cannot be calculated by software due to the data.
表 4 金沙江干热河谷人工林旱季地表蚂蚁群落多样性比较
Tab. 4 Comparison of abundances and diversities of ground-dwelling ant communities in dry season in
arid-hot valleys of Jinsha River(mean ± SE)
人工林 Plantation N S ACE α Shannon
桉树 Eucalyptus spp. 9. 20 ± 2. 70b 2. 35 ± 0. 11a 2. 35 ± 0. 11a 1. 38 ± 0. 11a 1. 13 ± 0. 19a
膏桐 Jatropha carcas 10. 43 ± 2. 69ab 2. 72 ± 0. 39a 2. 85 ± 0. 45a 1. 93 ± 0. 49a 1. 19 ± 0. 31a
膏桐 -新银合欢 Jatropha carcas-
Leucaena leucocephala
7. 15 ± 2. 65b 2. 58 ± 0. 58a 2. 70 ± 0. 70a 2. 16 ± 0. 66a 1. 34 ± 0. 36a
印楝 Azadirachta indica 16. 03 ± 1. 64a 2. 83 ± 0. 00a 2. 89 ± 0. 06a 1. 58 ± 0. 07a 1. 58 ± 0. 16a
印楝 -大叶相思 Azadirachta indica-
Acacia auriculiformis
11. 35 ± 0. 25ab 3. 16 ± 0. 16a 3. 56 ± 0. 56a 2. 54 ± 0. 31a 1. 82 ± 0. 10a
印楝 - 合 欢 Azadirachta indica-Acacia glauca or
Leucaena leucocephala
7. 25 ± 1. 45b 2. 42 ± 0. 42a 2. 58 ± 0. 34a 1. 73 ± 0. 55a 1. 22 ± 0. 32a
对照 Control 12. 25 ± 0. 15ab 2. 74 ± 0. 09a 2. 74 ± 0. 09a 1. 66 ± 0. 13a 1. 40 ± 0. 20a
831
第 8 期 李 巧等: 金沙江干热河谷人工林地表的蚂蚁群落
表 5 金沙江干热河谷人工林雨季地表蚂蚁群落多样性比较
Tab. 5 Comparison of abundances and diversities of ground-dwelling ant communities in
wet season in arid-hot valleys of Jinsha River(mean ± SE)
人工林 Plantation N S ACE α Shannon
桉树 Eucalyptus spp. 7. 16 ± 1. 08bc 2. 12 ± 0. 12b 2. 22 ± 0. 22b 1. 25 ± 0. 32bc 1. 06 ± 0. 05b
膏桐 Jatropha carcas 10. 35 ± 1. 20ab 2. 35 ± 0. 25b 2. 35 ± 0. 25b 1. 31 ± 0. 33bc 1. 26 ± 0. 23b
膏桐 -新银合欢 Jatropha carcas-
Leucaena leucocephala
12. 48 ± 0. 40ab 2. 45 ± 0. 00b 2. 45 ± 0. 00b 1. 24 ± 0. 02bc 1. 23 ± 0. 04b
印楝林 Azadirachta indica 12. 71 ± 1. 80a 2. 85 ± 0. 31b 2. 92 ± 0. 38b 1. 99 ± 0. 66bc 1. 61 ± 0. 24ab
印楝 -大叶相思 Azadirachta indica-
Acacia auriculiformis
10. 64 ± 0. 54ab 4. 05 ± 0. 31a 5. 02 ± 0. 81a 5. 32 ± 0. 93a 2. 00 ± 0. 05a
印楝 -合欢 Azadirachta indica-Acacia
glauca or Leucaena leucocephala
3. 76 ± 1. 53c 2. 44 ± 0. 20b 2. 69 ± 0. 05b 2. 85 ± 0. 15b 1. 53 ± 0. 13ab
对照 Control 13. 21 ± 2. 67a 2. 34 ± 0. 11b 2. 34 ± 0. 11b 1. 09 ± 0. 01c 1. 14 ± 0. 12b
4 结论与讨论
本研究发现,金沙江干热河谷元谋段人工林地
表蚂蚁有 36 种,其中旱季有 18 种,雨季有 25 种。
与前期调查(李巧等,2007)相比,此次调查发现的
物种数略少,究其原因可能与 2 次研究的抽样次数
及陷阱溶液不同有关。陷阱法是进行地表昆虫群落
调查的常用抽样方法,在使用陷阱法时,陷阱溶液不
同会导致抽样结果的不同,国内常用糖醋液作为陷
阱溶液,而国外则采用乙二醇或丙三醇作为陷阱溶
液以保证抽样结果的无偏性 (陈又清等,2010 )。
Chen 等(2010)比较了糖醋液和乙二醇作为陷阱溶
液进行地表蚂蚁抽样调查的效果,结果发现,相对于
乙二醇,使用糖醋液作为陷阱溶液时,采集到的蚂蚁
种类和个体数量更多。从干热河谷蚂蚁群落物种组
成来看(李巧等,2007),尽管本研究的抽样量充分,
但仍然漏掉了一些物种。用乙二醇或丙三醇而不用
糖醋液作为陷阱溶液,是与国际通用的地表蚂蚁规
范抽样保持一致,为保证调查数据更充分详实,建议
在以后的调查中增加抽样次数。
本研究首次比较了旱季和雨季干热河谷地表蚂
蚁群落的异同,研究结果与整个地表昆虫群落的调
查结果(李巧等,2014b)有所不同: 旱季与雨季相
比,各调查样带地表蚂蚁群落多度和多样性的变化
并不一致,有的样带在旱季发现更多的蚂蚁个体及
种类,有的样带则相反; 而对地表昆虫群落的调查
(李巧等,2014b)显示,雨季时大多数调查样带地表
昆虫个体及种类增加,其原因是雨季的降水改变了
干热河谷的干旱状况,为动植物提供了优越的生存
环境,因而极大提高了地表昆虫的多度和多样性。
本研究提示,蚂蚁相对其他地表昆虫如甲虫(李巧
等,2014a)而言,更适应干热河谷地区的气候。
金沙江干热河谷 7 种人工林中,印楝 - 大叶相
思林具有最高的蚂蚁多样性,桉树林蚂蚁多样性最
低,该结果与以往的研究(温远光等,2005; 李巧
等,2007; 2008)一致。然而在旱季,所有人工林地
表蚂蚁多样性之间无显著差异;在雨季,印楝 -大叶
相思林地表蚂蚁多样性显著高于其他 6 种人工林,
这 6 种人工林之间无显著差异。不同人工林的蚂蚁
多样性格局形成受到季节的影响,尽管地表蚂蚁更
能适应干热气候,但干旱使得不同人工林的旱季地
表蚂蚁多样性无显著差异,而雨季的到来则改变了
这种多样性格局。雨水在改变干热河谷干旱状况的
同时,促进了植物的生长,而不同的植物多度及多样
性又进一步影响了不同人工林的地表蚂蚁多度和多
样性。金沙江干热河谷大多数人工林地表蚂蚁多样
性无显著差异,这种多样性的格局应该与这些人工
林 具 有 共 同 的 优 势 草 本 植 物———扭 黄 茅
(Heteropogonetea contortus)有关。
从群落间相似性即 β 多样性来看,群落相似性
较高,则其异质性较低,亦即 β 多样性较低(Solow et
al.,1994; Crist et al.,2003)。本研究 7 种人工林地
表蚂蚁群落物种组成的相似性较低,说明它们之间
具有较高的 β 多样性。有研究表明,在有自然植被
分布的样地营造人工林,对自然植被的保护和恢复
具有积极意义; 随着时间的推移,人工林的栖境将
更加复杂,其作为动植物栖境的价值将更加重要
(Brockerhoff et al.,2008);而栖境异质性有助于提
高动物的生物多样性(Tews et al.,2004)。因此,在
金沙江干热河谷元谋段,印楝 - 大叶相思林具有较
高的蚂蚁多样性,对当地生物多样性保护具有积极
意义,营造印楝 -大叶相思林是很好的植被恢复模
式; 其余 6 种人工林地表蚂蚁群落具有不太相似的
物种组成,即它们具有较高的 β 多样性,对提高区
域生物多样性具有积极作用。
高成杰等(2013)研究表明,印楝和大叶相思林
931
林 业 科 学 51 卷
混交后根系的生物量下降,认为该混交方式可能不
适当;而本研究认为,营造印楝 -大叶相思林对金沙
江干热河谷地区生物多样性保护具有积极意义。这
种恢复模式的实际价值和意义何在,还值得进一步
探究。
此外,人工林的后续管理值得重视。随着人口
的快速增长,干热河谷景观已经发生了转变(钟祥
浩,2000),导致环境退化、生产力降低、承载力下降
以及物种消失( Solbrig et al.,1996),而农业上的精
细化管理也会造成蚂蚁多样性的下降(Rizali et al.,
2013)。如何对现有人工林进行科学管理,以提高
其生物多样性水平,在当地生物多样性保护中充分
发挥作用,是研究人员及管理工作者需要共同应对
的问题。
参 考 文 献
陈又清,李 巧,陈彦林,等 . 2010. 糖醋液和乙二醇对地表甲虫
的诱集效率比较 . 昆虫知识,47(1) : 129 - 133.
(Chen Y Q,Li Q,Chen Y L,et al. 2010. Comparison of trapping
efficiency for ground-dwelling beetles by sugar-vinegar mixture and
ethylene glycol. Chinese Bulletin of Entomology,47 ( 1 ) : 129 -
133. [in Chinese])
方海东,纪中华,杨艳鲜,等 . 2005. 金沙江干热河谷新银合欢人工
林物种多样性研究 . 水土保持学报,12(1) : 135 - 137.
(Fang H D,Ji Z H,Yang Y X,et al. 2005. The study on species
diversity of Leucaena leucocephala plantation in Jinsha River hot and
dry valley. Research of Soil and Water Conservation,12 ( 1 ) :
135 - 137. [in Chinese])
高成杰,唐国勇,李 昆,等 . 2013. 干热河谷印楝和大叶相思人工
林根系生物量及其分布特征 . 生态学报,33(6) : 1964 - 1972.
(Gao C J, Tang G Y, Li K, et al. 2013. Root biomass and its
distribution of Azadirachta indica and Acacia auriculiformis
plantations in the dry-hot valley. Acta Ecologica Sinica,33 ( 6 ) :
1964 - 1972.[in Chinese])
高 洁,刘成康,张尚云 . 1997. 元谋干热河谷主要造林植物的耐
旱性评估 . 西南林学院学报,17(2) : 19 - 24.
(Gao J,Liu C K,Zhang S Y. 1997. The estimation on drought tolerance
of main silvicultural species in the dry-hot river valley of Yuanmou.
Journal of Southwest Forestry College,17 ( 2 ) : 19 - 24. [in
Chinese])
洪 伟 . 2009. 试验设计与统计分析 . 北京: 中国农业出版社,1 -
356.
(Hong W. 2009. Experiment Design and Statistical Analysis. Beijing:
China Agriculture Press,1 - 356. [in Chinese])
纪中华,方海东,杨艳鲜,等 . 2009. 金沙江干热河谷退化生态系统
植被恢复生态功能评价———以元谋小流域典型模式为例 . 生态
环境学报,18(4) : 1383 - 1389.
( Ji Z H,Fang H D,Yang Y X,et al. 2009. Assessment of system
functions after vegetation restoration of the degraded ecosystem in
arid-hot valleys of Jinsha River: a case study on small watershed of
Yuanmou. Ecology and Environmental Sciences,18 ( 4 ) : 1383 -
1389.[in Chinese])
金振洲,欧晓昆 . 2000.干热河谷植被 . 昆明: 云南大学出版社,云
南科技出版社,1 - 302.
( Jin Z Z,Ou X K. 2000. Vegetation in Dry-hot Valley. Kunming:
Yunnan University Press & Yunnan Science and Technology Press,
1 - 302.[in Chinese])
李国瑾 . 2008. 云南: 小小膏桐要做大文章 . 中国林业,5 ( 10 ) :
16 - 17.
(Li G J. 2008. Yunnan: small Jatropha carcas will do a great article.
Forestry of China,5(10) : 16 - 17.[in Chinese])
李 昆,李 巧,陈又清,等 . 2007. 放牧对明油子 -扭黄茅灌草丛
生物多样性的影响 . 浙江林学院学报,24(6) : 769 - 774.
(Li K,Li Q,Chen Y Q,et al. 2007. Influence of grazing on diversity of
Dodonaea angustifolia- Heteropogonetea contortus scrub and grass
clump. Journal of Zhejiang Forestry College,24 (6) : 769 - 774.
[in Chinese])
李 昆,罗长维,陈 友,等 . 2006. 元谋干热河谷生态恢复区昆虫
多样性研究 .生态学杂志,25(4) : 417 - 422.
(Li K,Luo C W,Chen Y,et al. 2006. Insect species diversity in
ecologically restored area of Yuanmou dry and hot valley. Chinese
Journal of Ecology,25(4) : 417 - 422. [in Chinese])
李 昆,张春华,崔永忠,等 . 2004. 金沙江干热河谷区退耕还林适
宜造林树种筛选研究 . 林业科学研究,17(5) : 555 - 563.
(Li K,Zhang C H,Cui Y Z,et al. 2004. A Study on the fitting
afforestation tree species during coverting the land for forestry in hot
and arid valley of Jinsha-river. Forest Research,17 ( 5 ) : 555 -
563. [in Chinese])
李 巧 . 2011. 物种累积曲线及其应用 . 应用昆虫学报,48 ( 6 ) :
1882 - 1888.
(Li Q. 2011. Species accumulation curves and its application. Chinese
Journal of Applied Entomology, 48 ( 6 ) : 1882 - 1888. [in
Chinese])
李 巧,陈又清,郭 萧,等 . 2007. 云南元谋干热河谷不同生境地
表蚂蚁多样性 .福建林学院学报,27(3) : 272 - 277.
(Li Q,Chen Y Q,Guo X,et al. 2007. Diversity of ants on the ground
in different habitats in Yuanmou arid-hot valley,Yunnan. Journal of
Fujian College of Forestry,27(3) : 272 - 277.[in Chinese])
李 巧,陈又清,施永泽,等 . 2006. 金沙江干热河谷生态恢复区昆
虫群落多样性 .福建林学院学报,26(1) : 58 - 62.
( Li Q,Chen Y Q,Shi Y Z,et al. 2006. Diversity of insect communities
in the ecological restoration areas in Arid-hot Valleys of the
Jinshajiang River. Journal of Fujian College of Forestry,26 ( 1 ) :
58 - 62. [in Chinese])
李 巧,陈又清,徐正会 . 2009. 蚂蚁群落研究方法 . 生态学杂志,
28(9) : 1862 - 1870.
( Li Q, Chen Y Q, Xu Z H. 2009. Methods of study on ant
communities. Chinese Journal of Ecology,28 (9 ) : 1862 - 1870.
[in Chinese])
李 巧,陈又清,周兴银,等 . 2008. 元谋干热河谷桉树林昆虫群落
初步研究 . 浙江林学院学报,25(4) : 502 - 506.
(Li Q,Chen Y Q,Zhou X Y,et al. 2008. Initial studies on the insect
community in Eucalyptus plantation. Journal of Zhejiang Forestry
041
第 8 期 李 巧等: 金沙江干热河谷人工林地表的蚂蚁群落
College,25(4) : 502 - 506. [in Chinese])
李 巧,涂 璟,熊忠平,等 . 2011a. 节肢动物生物指示研究综述 .
西北林学院学报,26(4) : 155 - 161.
( Li Q,Tu J,Xiong Z P,et al. 2011a. A review on bioindication based
on arthropods. Journal of Northwest Forestry University,26 ( 4 ) :
155 - 161. [in Chinese])
李 巧,涂 璟,张学仕,等 . 2011b. 昆明松花坝水源保护区云南
松林地表蚂蚁多样性 .云南大学学报,33(2) : 210 - 217.
(Li Q,Tu J,Zhang X S,et al. 2011b. Diversity of ground-dwelling ants
in Pinus yunnanensis forest in Songhuaba water protection area,
Kunming. Journal of Yunnan University,33 (2) : 210 - 217. [in
Chinese])
李 巧,卢志兴,张 威,等 . 2014a. 云南干热河谷人工林地表甲虫
群落 . 云南农业大学学报:自然科学版,29(6) :785 - 791.
(Li Q,Lu Z X,Zhang W, et al. 2014a. Communities of ground-
dwelling beetles in plantation forests in arid-hot valleys of Yunnan.
Journal of Yunnan Argricultural University: Natural Science
Edition,29(6) :785 - 791. [in Chinese])
李 巧,张 威,卢志兴,等 . 2014b. 金沙江干热河谷人工林地表
昆虫群落 . 云南大学学报:自然科学版,36(4) : 614 - 622.
(Li Q,Zhang W,Lu Z X,et al. 2014b. Communities of above-ground
insects in plantation forests in arid-hot valleys of Jinsha River,
Yunnan. Journal of Yunnan University: Natural Science Edition,36
(4) : 614 - 622. [in Chinese])
温远光,刘世荣,陈 放,等 . 2005. 桉树工业人工林植物物种多样
性及动态研究 . 北京林业大学学报,27(4) :17 - 22.
(Wen G Y,Liu S R,Chen F,et al. 2005. Plant diversity and dynamics
in industrial plantations of eucalyptus. Journal of Beijing Forestry
University,27 (4) :17 - 22. [in Chinese])
张荣祖 . 1996. 横断山区干旱河谷 . 北京: 科学出版社,1 - 211.
(Zhang R Z. 1996. Dry river valley in Hengduan Mountains Southwest
China. Beijing: Science Press,1 - 211. [in Chinese])
赵跃龙 . 1999. 中国脆弱生态环境类型分布及其综合整治 . 北京:
中国环境出版社,1 - 161.
( Zhao Y L. 1999. Distribution of the category of vulnerable eco-
environment and the comprehensive improvement in China. Beijing:
Chinese Environmental Science Press,1 - 161. [in Chinese])
钟祥浩 . 2000. 干热河谷区生态系统退化及恢复与重建途径 . 长江
流域资源与环境,9(3) : 376 - 383.
( Zhong X H. 2000. Degradation of ecosystem and ways of its
rehabilitation and reconstruction in dry and hot valley: Take
representative area of Jinsha River, Yunnan Province as an
example. Resources and Environment in the Yangtze Basin,9(3) :
376 - 383. [in Chinese])
Brockerhoff E G,Jactel H,Parrotta J A,et al. 2008. Plantation forests
and biodiversity: oxymoron or opportunity?. Biodiversity and
Conservation,17(5) : 925 - 951.
Chen Y,Li Q,Chen Y,et al. 2011. Ant diversity and bio-indicators in
land management of lac insect agroecosystem in Southwestern China.
Biodiversity and Conservation,20(13) : 3017 - 3038.
Chen Y,Li Q,Wang S,et al. 2010. A comparison of pitfall traps with
different liquids for studying ground-dwelling ants ( Hymenoptera:
Formicidae) . Myrmecological News,14: 13 - 19.
Colwell R K. 2009. EstimateS: Statistical estimation of species richness
and shared species from samples. Version 8. 2. http:∥ purl. oclc.
org / estimates.
Crist T O,Veech J A,Gering J C,et al. 2003. Partitioning species
diversity across landscapes and regions: a hierarchical analysis of α,
β,and γ diversity. The American Naturalist,162(6) : 734 - 743.
Hoffmann B D. 2010. Using ants for rangeland monitoring: global
patterns in the responses of ant communities to grazing. Ecological
Indicators,10(2) : 105 - 111.
Longino J T. 2000. What to do with the data∥ Agosti D,Majer J D,
Alonso L E, et al. Ants: Standard Methods for Measuring and
Monitoring Biodiversity. Washington and London: Smithsonian
Institution Press,186 - 203.
Ribas C R,Campos R B,Schmidt F A,et al. 2011. Ants as indicators
in Brazil: a review with suggestions to improve the use of ants in
environmental monitoring programs. Psyche: A Journal of
Entomology,2012: 1 - 23. http:∥ dx. doi. org /10. 1155 /2012 /
636749.
Rizali A,Clough Y,Buchori D,et al. 2013. Long-term change of ant
community structure in cacao agroforestry landscapes in Indonesia.
Insect Conservation and Diversity,6(3) : 328 - 338.
Solbrig O T,Medina E,Silva J F. 1996. Biodiversity and tropical
savanna properties: a global view. Scope-Scientific Committee on
Problems of the Environment International Council of Scientific
Unions,55: 185 - 211.
Solow A R, Polasky S. 1994. Measuring biological diversity.
Environmental and Ecological Statistics,1(2) : 95 - 103.
Tews J,Brose U,Grimm V,et al. 2004. Animal species diversity driven
by habitat heterogeneity / diversity: the importance of keystone
structures. Journal of Biogeography,31(1) : 79 - 92.
Vasconcelos H L. 2006. Patterns of diversity and responses to rorest
disturbance by ground-dwelling ants in Amazonia∥ Moreira F M,
Siqueira J O,Brussaard L. Soil Biodiversity in Amazonian and
Other Brazilian Ecosystems. CABI Publishing,1 - 304.
(责任编辑 朱乾坤)
141
林 业 科 学 51 卷
附录 金沙江干热河谷人工林地表蚂蚁名录
Appendix List of ground-dwelling ant in different plantations in arid-hot valleys of Jinsha River
亚科 Subfamily 属 Genus 种 Species
猛蚁亚科 Ponerinae 厚结猛蚁属 Pachycondyla 拟黑厚结猛蚁 P. melanaria (Emery)
盲蚁亚科 Aenictinae 盲蚁属 Aenictus 红褐盲蚁 A. punensis Forel
切叶蚁亚科 Myrmicinae 举腹蚁属 Crematogaster 亮褐举腹蚁 C. contemta Mayr
罗思尼举腹蚁 C. rothneyi Mayr
小家蚁属 Monomorium 中华小家蚁 M. chinensis Santschi
宽结小家蚁 M. latinode Mayr
东方小家蚁 M. orientale Mayr
法老小家蚁 M. pharaonis (L. )
扁胸蚁属 Vollenhovia 埃氏扁胸蚁 V. emeryi Wheeler
铺道蚁属 Tetramorium 双脊铺道蚁 T. bicarinatum (Nylander)
克氏铺道蚁 T. cuneinode Forel
光颚铺道蚁 T. insolens ( Smith)
拉帕铺道蚁 T. laparum Bolton
日本铺道蚁 T. nipponense Wheeler
沃尔什铺道蚁 T. walshi (Forel)
大头蚁属 Pheidole 卡泼林大头蚁 P. capellini Emery
皮氏大头蚁 P. pieli Santschi
伊大头蚁 P. yeensis Forel
心结蚁属 Cardiocondyla 罗氏心结蚁 C. wroughtonii Forel
裸心结蚁 C. nuda (Mayr)
臭蚁亚科 Dolichoderinae 狡臭蚁属 Technomyrmex 荷氏狡臭蚁 T. horni Forel
酸臭蚁属 Tapinoma 黑头酸臭蚁 T. melanocephalum (F. )
吉氏酸臭蚁 T. geei Wheeler
印度酸臭蚁 T. indicum Forel
臭蚁属 Dolichoderus 费氏臭蚁 D. feae Emery
虹臭蚁属 Iridmyrmex 扁平虹臭蚁 I. anceps Roger
蚁亚科 Formicinae 刺结蚁属 Lepisiotasantschi 开普刺结蚁 L. capensis Mayr
斜结蚁属 Plagiolepis 阿禄斜结蚁 P. alluaudi Emery
罗思尼斜结蚁 P. rothneyi Forel
立毛蚁属 Paratrechina 缅甸立毛蚁 P. birmana Forel
黄足立毛蚁 P. flavipes ( Smith)
长角立毛蚁 P. longicornis (Latreille)
平结蚁属 Prenolepis 那氏平结蚁 Prenolepis naraojii Forel
弓背蚁属 Camponotus 尼科巴弓背蚁 C. nicobarensis Mayr
巴瑞弓背蚁 C. parius Emery
拟哀弓背蚁 C. pseudolendus Wu et Wang
241