免费文献传递   相关文献

Effects of Submersion on Susceptibility of Metasequoia glyptostroboides Seedlings to Drought

水淹对水杉苗木耐旱性的影响


Photosynthetic and growth responses of two-year-old Metasequoia glyptostroboides seedlings to drought following flooding were explored upon simulating water level change in the hydro-fluctuation belt of the Three Gorges Reservoir Area (TGRA). The seedlings were subjected to treatments of six water regimes, including control (C), control followed by drought (CD), continuous half-submersion (HS), half-submersion followed by drought (HSD), continuous full-submersion (FS) and full-submersion followed by drought (FSD). Results showed that net photosynthetic rate (Pn) of M. glyptostroboides seedlings in the HS group (submersion for 60-day) was significantly higher than that in C group. Conversely, a submersion for 120 d, the Pn in HS, and root and total biomass were significantly lower than that in C. However, under drought treatment, the Pn and stomatal conductance (Sc) in CD and HSD were significantly decreased as compared to that in C, while there were no significant differences in Pn and Sc between FSD and C. Similarly, the root and total biomass significantly declined in all of the three drought conditions compared to C. By the end of the recovery period, Pn and Sc of the seedlings under different water stresses were increased to a comparable level as that of C, respectively, except for the Pn in HSD and FS. These results indicated previous flooding had no detectable effect on subsequent sensitivity of M. glyptostroboides seedlings to drought. The M. glyptostroboides showed certain adaptation to the flooding and drought, and thus can be considered as a candidate for the restoration in the hydro-fluctuation belt of the TGRA.


全 文 :第 50 卷 第 11 期
2 0 1 4 年 11 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 50,No. 11
Nov.,2 0 1 4
doi:10.11707 / j.1001-7488.20141122
收稿日期: 2014 - 01 - 20; 修回日期: 2014 - 04 - 21。
基金项目: 重庆市基础与前沿研究计划重点项目(CSTC2013JJB00004) ; 国家林业公益性行业科研专项(201004039) ; 留学回国人员科研
启动基金(教外司留[2010 - 1561]) ; 中央高校基本科研业务费专项资金(XDJK2013A011)。
* 李昌晓为通讯作者。
水淹对水杉苗木耐旱性的影响*
白林利 李昌晓
(西南大学生命科学学院 三峡库区生态环境教育部重点实验室 重庆 400715)
关键词: 水分胁迫; 水杉; 光合作用; 生物量; 三峡库区
中图分类号: S718. 43 文献标识码: A 文章编号: 1001 - 7488(2014)11 - 0166 - 09
Effects of Submersion on Susceptibility of Metasequoia glyptostroboides
Seedlings to Drought
Bai Linli Li Changxiao
(Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of Ministry of Education
College of Life Sciences,Southwest University Chongqing 400715)
Abstract: Photosynthetic and growth responses of two-year-old Metasequoia glyptostroboides seedlings to drought
following flooding were explored upon simulating water level change in the hydro-fluctuation belt of the Three Gorges
Reservoir Area (TGRA) . The seedlings were subjected to treatments of six water regimes,including control (C),control
followed by drought (CD),continuous half-submersion (HS),half-submersion followed by drought (HSD),continuous
full-submersion (FS) and full-submersion followed by drought (FSD) . Results showed that net photosynthetic rate (P n)
of M. glyptostroboides seedlings in the HS group ( submersion for 60-day) was significantly higher than that in C group.
Conversely,a submersion for 120 d,the P n in HS,and root and total biomass were significantly lower than that in C.
However,under drought treatment,the P n and stomatal conductance (S c) in CD and HSD were significantly decreased as
compared to that in C,while there were no significant differences in P n and S c between FSD and C. Similarly,the root and
total biomass significantly declined in all of the three drought conditions compared to C. By the end of the recovery period,
P n and S c of the seedlings under different water stresses were increased to a comparable level as that of C,respectively,
except for the P n in HSD and FS. These results indicated previous flooding had no detectable effect on subsequent
sensitivity of M. glyptostroboides seedlings to drought. The M. glyptostroboides showed certain adaptation to the flooding
and drought,and thus can be considered as a candidate for the restoration in the hydro-fluctuation belt of the TGRA.
Key words: water stress; Metasequoia glyptostroboides; photosynthesis; biomass; the Three Gorges Reservoir Area
三峡水库“冬蓄夏排”的反季节水位调度管理
方式,使库区水位(在海拔 145 ~ 175 m 之间)呈现
周期性消涨变化,这导致消落带岸生树种处于水淹
与陆生的周期性交替变化环境之中,受到相应的水
分胁迫(Li et al.,2006; Jiang et al.,2006)。研究岸
生树种对消落带多种水分逆境条件的生长与生理响
应,对于建设和保护消落带生态植被具有重要意义。
然而,目前有关三峡库区岸生树种对消落带多种水
分胁迫的响应的研究报道还较少。
目前国内外针对周期性水分胁迫的研究主要集
中于枫杨 (Pterocarya stenoptera) (王朝英等,2013;
王振夏等,2013)、湿地松(Pinus elliottii) (张晔等,
2011; 王振夏等,2012)、黑柳 ( Salix nigra) ( Li et
al.,2005; Carpenter et al.,2008 )、细柱柳 ( Salix
gracilistyla)(Nakai et al.,2011)、落羽杉( Taxodium
distichum) ( Anderson et al.,2000; Anderson et al.,
2001; Elcan et al.,2002)、纳塔栎(Quercus nuttallii)
与沼生栗栎 ( Quercus michauxii) ( Anderson et al.,
2000; Anderson et al.,2001)等树种的光合与生长特
性,以及水稻 (郭相平等,2013 )、香蒲 ( Typha
latifolia)( Li et al.,2004)等植物的生长特性等方
面。有关水杉(Metasequoia glyptostroboides) 对周期
第 11 期 白林利等: 水淹对水杉苗木耐旱性的影响
性水分胁迫的响应的研究报道较少。
水杉是三峡库区库岸带典型的乡土树种,属杉
科( Taxodiaceae)水杉属,中国特有孑遗珍贵树种;
其根系发达,耐寒与耐受多种水分逆境的能力较强,
具有极其重要的经济价值和观赏价值 (白祯等,
2011)。目前,关于水杉的研究主要集中在基因结
构(杨星宇等,2011; Chen et al.,2003; Ahuja,
2009; Cui et al.,2010; Zhao et al.,2013)、遗传变异
(Du et al.,2013)、无性繁殖 (Kolasinski,2012)、化
学组成及其特性 ( Bajpai et al.,2007; Mou et al.,
2007; Bajpai et al.,2010; Dong et al.,2011; Zeng et
al.,2012) 和种群变化 ( Tang et al.,2011)等方面。
本研究模拟三峡库区消落带土壤水分变化格局,旨
在从生理生态学的角度深入了解水杉树苗对水淹 -
干旱逆境胁迫的响应机制,以便为三峡库区消落带
植被保护与建设提供理论支撑。
1 材料与方法
1. 1 材料 考虑到三峡库区库岸防护林体系建设
多采用 2 年生苗木,本试验以 2 年生水杉树苗为试
验材料。2012 年 11 月 20 日将生长基本一致的 90
株树苗带土盆栽(土壤性质见表 1),每盆 1 株(盆中
央内径 20 cm,盆高 17 cm),置于西南大学三峡库区
生态环境教育部重点试验室实验基地大棚 (海拔
249 m)进行培养。2013 年 1 月 18 日正式开始试验
(处理开始时,苗高 97. 05 ± 1. 53 cm)。
表 1 供试土壤营养元素含量初始值①
Tab. 1 Baseline data of the nutrient contents in experimental soils
pH
有机质
Organic matter /
( g·kg - 1 )
全氮
Total nitrogen /
( g·kg - 1 )
全磷
Total
phosphorus /
( g·kg - 1 )
全钾
Total
potassium /
( g·kg - 1 )
碱解氮
Alkali hydrolysable
nitrogen /
(mg·kg - 1 )
有效磷
Available
phosphorus /
(mg·kg - 1 )
速效钾
Available
potassium /
(mg·kg - 1 )
8. 26 ± 0. 04 11. 62 ± 0. 56 1. 11 ± 0. 04 1. 11 ± 0. 10 53. 61 ± 5. 24 76. 70 ± 3. 78 0. 85 ± 0. 16 161. 02 ± 4. 08
①表中数据为平均值和标准误( n = 6)。Data in the table 1 are means ± standard error from 6 duplicates.
1. 2 试验设计 结合三峡库区消落带水位变化实
际情况,试验分为 3 个阶段。第 1 阶段( phase I)为
淹水处理期,共设 3 个处理组,分别为对照组
( control,C)、半淹组 ( half-submersion,HS) 和全淹
组( full-submersion,FS)3 组,每组试验苗木 30 株,
共 90 株。其中,C 为常规供水组,保持土壤含水量
为田间持水量的 75% ~ 80% (李昌晓等,2010 );
HS 组苗盆放入水池中,池水保持淹没植物中段; FS
组苗盆也放入水池中,但池水保持淹没至植物顶端
20 cm。60 天后,每组各取 6 株水杉用于光合和生
物量测定,其余 24 株用于后续试验。
第 2 阶段( phase Ⅱ)为干旱处理期,将第 1 阶
段每组剩余的 24 株苗木再随机均分为 2 组,其中一
组进行轻度干旱胁迫处理,另一组则继续保持第 1
阶段的水分处理。故第 2 阶段共有对照 - 干旱组
( control followed by drought,CD)、半淹 - 干旱组
(half-submersion followed by drought,HSD)、全淹 -
干旱组 ( full-submersion followed by drought,FSD),
以及对照组(C)、半淹组 (HS)、全淹组( FS)6 个处
理组,每组 12 株,共 72 株。轻度干旱处理组土壤含
水量为田间持水量的 47% ~ 50% (Li et al.,2010)。
为监测轻度干旱处理的效果,清晨(6:00—7:00)测
定水杉树苗上部成熟叶水势(以美国 Wescor 公司生
产的露点水势仪 Psypro 测定),以小于 - 0. 5 MPa 为
标准(图 1)。60 天后,每组各取 6 株水杉用于光合
和生物量测定,其余 6 株用于后续试验。
第 3 阶段(Phase Ⅲ)为恢复处理阶段,将 HS 与
FS 处理组苗盆从水池中取出,所有处理组均参照对
照组 C 进行常规供水,时间为 21 天。
图 1 轻度干旱阶段水杉清晨叶水势
Fig. 1 Changes of predawn leaf water potential of
M. glyptostroboides during drought stress(phase Ⅱ)
1. 3 数据测定 1) 光合测定 采用 Li-Cor 6400 便
携式光合分析系统(Li-Cor Inc.,USA)测定叶片光合
参数。经预备试验,采用晴天 9:00—12:00 测定,CO2
浓度 400 μmol·mol - 1,饱和光强 1 200 μmol·m - 2 s - 1,
以红蓝光为光源,叶室 6 cm2。参考 Anderson 等
(2001)的测定方法,选取苗木从上往下数的第 3 至
第 4 片叶,每个处理测定 6 株。测定指标包括净光
合速率 ( net photosynthetic rate,P n )、气 孔 导 度
761
林 业 科 学 50 卷
( stomatal conductance,S c )、蒸腾速率 ( transpiration
rate, Tr ) 与 胞 间 CO2 浓 度 ( intercellular CO2
concentration,C i)。
2) 生物量测定 将试验盆钵中的苗木小心挖
出,用自来水冲净根系,然后将根(收集断根,并用
吸水纸吸干根表面水分)、茎、叶分别放置在 80 ℃
烘箱中烘干至恒质量,用分析天平称量,计算根
冠比。
1. 4 统计分析 利用 SPSS16. 0 软件,进行单因素
方差分析(One-way ANOVA)揭示水分处理对水杉
光合与生长的影响,并用 Tukey 检验法对各个光合
与生长指标进行多重比较,检验每个指标在同一阶
段不同处理间(α = 0. 05)的差异显著性。
2 结果与分析
2. 1 水杉对水淹的光合与生长响应(阶段 1) 第
1 阶段末,与 C 组相比,HS 组的 P n显著增加,而 S c,
Tr,C i则显著降低(图 2)。因 FS 组叶呈未展开的叶
芽形式,无法测定其光合参数,该组叶生物量显著低
于 C 与 HS 组,但茎、根生物量以及总生物量却均显
著高于 C 与 HS 组(表 2)。同时,FS 组的根冠比显
著高于 C 组,但与 HS 组之间并无显著差异。此外,
各个处理组水杉树苗存活率都达 100%,即水淹未
影响水杉树苗存活率。
图 2 第 1 阶段末各处理组光合指标比较
Fig. 2 Comparison of photosynthetic indexes among
treatment groups at the end of phase I
图中数据为 6 株水杉叶片的光合平均值和标准误; 不同字母表
示各指标在 P = 0. 05 水平差异显著。下同。Data shown are
means ± standard error ( n = 6 ), and different letters show
significant differences at P = 0. 05. The same below.
2. 2 水杉对干旱的光合与生长响应(阶段 2) 干
旱阶段结束时,与 C 组相比,CD,HS,HSD 组的 P n,
S c,Tr 均显著降低。就 P n而言,CD 与 HSD 组之间
无显著性差异,这与 FSD 显著高于 CD 与 HSD 组形
成鲜明对照,而 FSD 与 C 组间则差异不显著。CD,
HS,HSD,FSD 各组与 C 组间的 C i均无显著性差异;
但 HSD 组的 C i则显著高于 CD 与 HS 组,而与 FSD
组无显著差异(图 3)。
表 2 水杉第 1 阶段处理后各组生物量①
Tab. 2 Biomass of M. glyptostroboides of
different groups after phase I( flood stage)
项目 Index 对照组 C 半淹组 HS 全淹组 FS
叶 Leaf /
( g·plant - 1 DW)
2. 99 ± 0. 53a 2. 56 ± 0. 35a 0. 76 ± 0. 18b
茎 Stem /
( g·plant - 1 DW)
16. 15 ± 1. 20b 16. 01 ± 1. 56b 22. 41 ± 3. 71a
根 Root /
( g·plant - 1 DW)
5. 71 ± 0. 82c 7. 36 ± 0. 60b 9. 66 ± 2. 09a
总量 Total /
( g·plant - 1 DW)
24. 85 ± 2. 36b 25. 93 ± 2. 16b 32. 83 ± 4. 33a
根冠比 Root-
shoot ratio
0. 35 ± 0. 04b 0. 47 ± 0. 04a 0. 48 ± 0. 13a
①表中数据为 6 株水杉的生物量平均值和标准误 (以干质量
计); 不同字母表示各指标在 P = 0. 05 水平差异显著。DW refers to
dry mass. Data shown are means ± standard error ( n = 6),and different
letters show significant differences at P = 0. 05. 下同 The same below.
与 C 组相比,FS,FSD 组的叶、茎、根生物量、总生
物量显著降低,并且叶生物量、总生物量还均显著低于
CD,HS,HSD 处理组。不同的是,CD,HS,HSD 组叶、茎
生物量与 C 组间均无显著性差异,但其根生物量、总生
物量均显著低于 C 组。对于根冠比而言,HS 组显著低
于其余各个处理组,而且各处理组(HS 组除外)相互之
间均无显著性差异(表 3)。
图 3 第 2 阶段末各处理组光合指标比较
Fig. 3 Comparison of photosynthetic indexes among
treatment groups at the end of phase Ⅱ
FS 组叶片未完全展开,未能获得光合数据。 Photosynthetic
parameter of the FS group was unavailable due to the unopened
leaves of the seedlings.
861
第 11 期 白林利等: 水淹对水杉苗木耐旱性的影响
表 3 水杉第 2 阶段处理后各组生物量
Tab. 3 Biomass of M. glyptostroboides of different groups after phase Ⅱ(drought stage)
项目 Index 对照组 C 对照 -干旱组 CD 半淹组 HS 半淹 -干旱组 HSD 全淹组 FS 全淹 -干旱组 FSD
叶 Leaf /
( g·plant - 1 DW)
6. 07 ± 0. 56a 4. 87 ± 0. 29a 4. 68 ± 0. 86a 4. 69 ± 0. 60a 1. 31 ± 0. 34c 2. 94 ± 0. 20b
茎 Stem /
( g·plant - 1 DW)
23. 68 ± 1. 92a 20. 45 ± 2. 20ab 25. 83 ± 3. 15a 22. 43 ± 2. 16ab 15. 00 ± 1. 15c 16. 70 ± 1. 61bc
根 Root /
( g·plant - 1 DW)
12. 98 ± 1. 06a 8. 37 ± 0. 56bc 6. 24 ± 1. 13c 10. 28 ± 0. 83b 7. 27 ± 0. 68c 7. 78 ± 0. 64bc
总量 Total /
( g·plant - 1 DW)
42. 72 ± 3. 31a 33. 68 ± 2. 14b 36. 75 ± 4. 61b 37. 40 ± 1. 96b 23. 59 ± 1. 64c 27. 41 ± 1. 64c
根冠比
Root-shoot ratio
0. 44 ± 0. 02a 0. 34 ± 0. 04a 0. 20 ± 0. 02b 0. 40 ± 0. 06a 0. 45 ± 0. 03a 0. 41 ± 0. 04a
2. 3 水杉对复水的光合与生长响应(阶段 3) 与
干旱阶段相比,在恢复正常供水之后,各个处理组
的 P n,S c,Tr,C i都有一定程度的恢复,有的甚至显
著高于对照水平。就 P n而言,CD,FSD 组显著高
于 C 组,HS 组与 C,HSD 组间均无显著差异。FSD
组的 S c在所有处理组中最高,且显著高于其余各
处理组; 与之相反,CD,HS,HSD 组的 S c则与 C 组
无显著差异。各个处理组的 Tr 均显著高于 C 组。
HSD 组的 C i显著高于 C 组,这与 CD 组显著低于 C
组形成对照(图 4)。
同样,各个处理组的叶、茎、根生物量及总生物
量也有一定程度的恢复,FSD 组与 CD 组之间分别
均无显著差异,而 HSD 则分别高于 CD 组。HS 组
的根冠比在所有处理组中居于最低,CD,HSD 组与
C 组的根冠比相互之间均无显著差异,FSD 组与 FS
组间的根冠比也无显著差异(表 4)。
图 4 第 3 阶段末各处理组光合指标比较
Fig. 4 Comparison of photosynthetic indexes among
treatment groups at the end of phase Ⅲ
FS 组因落叶,未能获得光合数据,但经检测,苗木仍然处于存
活状态。Photosynthetic parameter of the seedlings in the FS group
was unavailable due to leaf abscission. However,the seedlings were
alive upon examination.
表 4 水杉第 3 阶段处理后各组生物量
Tab. 4 Biomass of M. glyptostroboides of different groups after phase Ⅲ( recovery stage)
项目 Index 对照组 C 对照 -干旱组 CD 半淹组 HS 半淹 -干旱组 HSD 全淹组 FS 全淹 -干旱组 FSD
叶 Leaf /
( g·plant - 1 DW)
6. 94 ± 0. 30a 4. 05 ± 0. 49c 4. 84 ± 0. 73bc 5. 65 ± 0. 39ab — 3. 63 ± 0. 42c
茎 Stem /
( g·plant - 1 DW)
29. 27 ± 1. 69a 17. 85 ± 2. 02b 23. 64 ± 2. 52ab 23. 76 ± 2. 17ab 17. 48 ± 2. 60b 20. 01 ± 3. 34ab
根 Root /
( g·plant - 1 DW)
18. 53 ± 1. 09a 10. 90 ± 1. 28c 6. 54 ± 0. 99d 14. 08 ± 0. 66b 6. 45 ± 0. 68d 9. 02 ± 1. 54cd
总量 Total /
( g·plant - 1 DW)
54. 74 ± 1. 66a 32. 79 ± 3. 02c 32. 60 ± 3. 74c 43. 49 ± 2. 80b 23. 92 ± 3. 27d 32. 66 ± 5. 07c
根冠比
Root-shoot ratio
0. 52 ± 0. 04a 0. 51 ± 0. 07a 0. 24 ± 0. 02c 0. 49 ± 0. 04a 0. 38 ± 0. 03b 0. 38 ± 0. 03b
3 讨论
三峡工程建成蓄水后,水库消落区某些区域淹
没时间长达 6 个月,水淹深度达 30 m。由于水库实
行以年度为周期的水位调节方式,库岸两边部分区
域会处于被淹没与出水暴露的周期性更替之中(类
淑桐等,2009)。三峡库区消落带的水位变化使得
原有植被大量退化,景观质量和环境健康受到威胁
(New et al.,2008)。在消落带内构建人工植被是保
护三峡库区消落带生态环境的重要措施之一。消落
961
林 业 科 学 50 卷
带水分条件的周期性变化,要求所栽种的植物不仅
具有适应水分饱和与过剩的能力,还要具有适应水
分亏缺与干旱的能力。
3. 1 水杉对水淹胁迫的响应 罗芳丽等(2006)认
为水淹导致植株部分叶组织无法进行光合作用而使
植株的整体光合受到影响,植株未被水淹的叶组织
光合可能会增强。在水淹 60 天后,水杉 HS 组 P n显
著高于 C 组(图 2),其原因可能是植物光合能力受
到对光合产物需求的负反馈调节 ( Jeschke et al.,
1997; Bragina et al.,2004),且与水杉叶片在水淹期
间具有较高羧化能力有关 ( Gimeno et al.,2012 )。
短期水淹下植物保持较高的光合速率可能是植物能
耐受水淹的重要特征之一(Chen et al.,2005)。
半淹 60 天后,与对照组 C 相比,水杉 P n增加
33%,高于相同处理后耐淹物种水翁 ( Cleistocalyx
operculatus) ( Jing et al.,1999) 和落羽杉( Taxodium
distichum)(Li et al.,2006),这说明短期水淹对水杉
光合能力影响较小; 但半淹 120 天后,水杉 P n显著
降低(图 3),这说明长期水淹显著影响了水杉树苗
的光合作用,水杉树苗 P n对长期水淹具有很强的负
向响应能力(李昌晓等,2005)。
植物叶片气孔变小甚至关闭是植物对水淹胁迫
的通常响应方式之一( Syvertsen et al.,1983),气孔
导度是控制蒸腾速率的一个有效方式 (Hessini et
al.,2008 )。Mielke 等 ( 2003 ) 对美洲 格尼帕树
(Genipa americana) 的研究发现,在水淹胁迫下,Tr
随着气孔导度的降低而降低,本研究中水淹下水杉
树苗的 Tr 与 S c也表现出相同的变化趋势。本研究
还发现,水淹下 HS 组水杉的 C i在第 1 阶段末显著
低于 C 组,而在第 2,3 阶段末却与 C 组并未出现显
著差异,这与 P n在第 1 阶段末显著高于 C 组,在第 2
阶段末显著降低,第 3 阶段末基本恢复到 C 组的水
平变化趋势存在一致性,这也许是水杉对水淹胁迫
的一种光合生理适应机制。第 1 阶段水杉树苗 P n
升高可能是在短期水淹胁迫下水杉树苗的光合酶活
性和利用 CO2 能力增强所致(Gimeno et al.,2012);
第 2 阶段水杉树苗 P n降低是由 S c降低所引起,也可
能与长期水淹产生的超氧根离子影响到正常的光合
功能有关(Yordanova et al.,2007);第 3 阶段 P n,S c,
Tr,C i的恢复说明水杉树苗可以适应较长时间(120
天)的水淹胁迫而存活。
水淹根部产生不定根和肥大的皮孔也是耐水淹
植物的适应特性 ( Gibberd et al.,2001; Simova-
Stoilova et al.,2012),本研究也发现类似的现象,这
是许多树种应对水淹胁迫的有效方式之一(Pimenta
et al.,2010; Calvo-Polanco et al.,2012)。
植物生物量的积累与其生长发育、营养物质的
形成密切相关,对其所处的生长环境的综合表征作
用明显(靖元孝等,2001; 杨静等,2008; 张晔等,
2011; Tang et al.,1983)。在第 1 阶段末,HS 组水杉
树苗 Pn显著升高,根生物量升高,根冠比显著增加,
说明水杉在水淹下根部分配生物量较多,以有效应对
水淹胁迫逆境条件 (Ye et al.,2003; Larre et al.,
2013)。在第 2 阶段末,即水淹 120 天后,HS 组水杉
树苗 P n显著降低,根生物量显著降低,根冠比降低,
说明水杉树苗地上部分分配能量较多,以适应逆境
胁迫,也有可能是水淹胁迫下产生的自由基对根造
成了损害,导致根对水淹胁迫更为敏感(Peng et al.,
2013)。在第 3 阶段末,即恢复阶段,水杉树苗 P n基
本恢复到 C 组的水平,但生物量的响应有一定的后
滞效应,生物量有一定程度的恢复但未达对照水平。
经过 3 个阶段的锻炼,水杉树苗形成了一套应对水
分胁迫的生理机制,即从忍耐到逃避,最终 P n基本
恢复到 C 组的水平,存活率达 100%。
3. 2 水杉对干旱胁迫的响应 干旱是另一个限制
植物生长和光合的重要非生物因子 ( Parida et al.,
2007; Hamayun et al.,2010; Riaz et al.,2010)。一
般而言,干旱胁迫会导致树木的气孔关闭(Eclan et
al.,2002),净光合速率降低(De Simone et al.,2003;
Nemani et al.,2003; Jackson et al.,2005; Haldimann
et al.,2008),进而导致光合产物积累减少,使树木
的生 长 发 育 受 到 影 响 ( Johari-Pireivatlou et al.,
2010)。在干旱处理阶段,2 年生水杉树苗光合过程
受到显著的影响( CD,HSD 组的 P n,S c显著下降)
(图 3 ),这与 Li 等 ( 2010 ) 对落羽杉 ( Taxodium
distichum) 与池杉 ( Taxodium ascendens)、Doupis 等
(2013)对橄榄(Olea europaea)的研究结果相似。
在干旱胁迫条件下,净光合速率的降低与气体
交换受到限制有关。气体交换限制包括气孔限制和
非气孔限制 2 种(Lawlor,2002)。植物在胁迫环境
条件下,气孔限制是一种很好的适应 (Duan et al.,
2005; Musila et al.,2009 )。Farquhar 等 (1982 )认
为,气孔限制引起的净光合速率降低是因为气孔导
度下降,阻止了 CO2 的供应; 而非气孔限制则是因
为叶肉细胞光合能力下降,导致叶肉细胞利用 CO2
的能力降低,进而使胞间 CO2 浓度升高所致。在干
旱胁迫下,水杉 CD 与 HSD 组的 P n,S c均显著下降,
此为许多树种对干旱胁迫的典型响应(Ngugi et al.,
2004; Fan et al.,2008; Liu et al.,2011)。然而,S c
的下降并未引起 C i的显著变化(图 3)。由此表明本
071
第 11 期 白林利等: 水淹对水杉苗木耐旱性的影响
研究中 2 年生水杉 P n降低可能是由非气孔限制引
起,即干旱胁迫影响了卡尔文循环中的电子传递和
生物化学反应(Yordanova et al.,2003; Cechin et al.,
2007; Wolkerstorfer et al.,2011)。
蒸腾速率在估测植物的耐旱性方面是一个很重
要的指标,通过气孔散失较少水分的物种应该是较
为耐旱的物种(Riaz et al.,2013)。植物处于逆境胁
迫下,气孔调节对植物的适应性是至关重要的(Dos
Santos et al.,2013)。本研究中,在干旱阶段水杉树
苗 C i下降,并与 S c表现出相同的变化趋势,这表明
在干旱胁迫下,Tr 下降的部分原因是气孔关闭
(Baquedano et al.,2006; Silva et al.,2010)。
植物生物量的积累,对于其维持正常的生理活
动、完成全部生活史至关重要。Xiao 等(2005)对中
间锦鸡儿(Caragana intermedia)的研究表明:中度干
旱降低中间锦鸡儿根、茎、叶的生物量,这与本研究
结果相似,但 CD 与 HSD 组之间无显著性差异,说
明前期的水淹并未增加水杉树苗对后期干旱胁迫的
敏感性。根冠比可以帮助评价植物是否处于健康生
长状态,以及估测植物忍耐胁迫的潜力(Riaz et al.,
2013)。干旱胁迫下,盆栽千层(Callistemon citrinus)
的根冠比升高(Alvarez et al.,2013),以维持较高的
根表面积,吸收更多的水分; 然而,在本研究中,干
旱胁迫下,与 C 组相比,水杉根冠比并未出现显著
变化(表 3),这表明 2 年生水杉具有一定的耐受干
旱胁迫的能力。
本研究发现,在干旱胁迫下,CD 与 HSD 组水杉
P n以及生物量均没有显著差异,由此说明前期的水
淹并未影响水杉树苗对后期干旱胁迫的光合生理响
应。本研究还发现,FSD 组水杉树苗的 P n,S c,C i与
C 组间无显著差异,这可能是水杉树苗从水淹胁迫
进入干旱胁迫,充足的气体供应以及光照加快了水
杉树苗的光合同化,从而进一步证实水杉树苗前期
的水淹并未影响其在后期干旱胁迫条件下的光合生
理响应。这些均反映出水杉树苗具有应对水淹 -干
旱胁迫的有效策略及较强的适应能力 ( Striker,
2012)。
3. 3 移除干旱胁迫后的响应 在自然条件下,一个
物种对胁迫的忍耐性取决于其在移除胁迫后短期内
恢复生长的表现( Fini et al.,2013),这个过程对于
物种缓解前期胁迫的影响至关重要。本试验第 3 阶
段,移除水分胁迫后,CD,HSD,FSD 组水杉树苗的
P n显著上升,与毛竹栎(Quercus pubescens) (Galle et
al.,2007 ) 和麻疯树 ( Jatropha curcas) ( Fini et al.,
2013)等表现相似,这表明在干旱阶段水杉能够维
持光合机构的功能完整性(Arend et al.,2013),表现
出对干旱胁迫的良好适应能力; CD,HSD 组水杉的
S c显著上升,表明干旱胁迫对水杉光合结构的生化
限制是不显著的(Mottonen et al.,2005; Avila et al.,
2012)。
干旱胁迫去除后,恢复的程度及幅度取决于干
旱的强度、持续时间以及受胁迫的物种种类(Xu et
al.,2010)。在干旱胁迫下,CD,HSD 组的 P n显著下
降,但其存活率却是 100%。在移除胁迫后,不同水
分处理下的水杉树苗生物量虽然得到一定程度的恢
复,但未达对照水平,其原因可能是前期的干旱时间
过长或是恢复时间不够(Galle et al.,2007),这是否
是由于干旱胁迫导致水杉的生理过程出现滞后效
应,以及该效应影响程度如何,还有待于进一步
研究。
4 结论
本研究发现前期的水淹并未影响水杉树苗对后
期干旱胁迫的光合生理响应。水杉不仅表现出耐水
湿的特点,还表征出一定程度的耐旱性,可以将其适
当置于轻度干旱环境条件下,但应注意浇水抗旱,使
水杉保持正常的净光合速率。从试验研究结果来
看,水杉可以作为三峡库区消落带植被建设的候选
树种之一。
参 考 文 献
白 祯,黄建国 . 2011. 三峡库区护岸林主要树种的耐湿性和营养
特性 . 贵州农业科学,39(6) : 166 - 169.
郭相平,甄 博,王振昌 . 2013. 旱涝交替胁迫增强水稻抗倒伏性
能 . 农业工程学报,29(12) : 130 - 135.
靖元孝,程惠青,彭建宗,等 . 2001. 水翁幼苗对淹水的反应初报 .
生态学报,21(5) : 810 - 813.
类淑桐,曾 波,徐少君,等 . 2009. 水淹对三峡库区秋华柳抗性生
理的影响 . 重庆师范大学学报,26(3) : 30 - 33.
李昌晓,魏 虹,吕 茜,等 . 2010. 不同水分处理对湿地松幼苗生
长与根部次生代谢物含量的影响 . 生 态 学 报,30 ( 22 ) :
6154 - 6162.
李昌晓,钟章成 . 2005. 三峡库区消落带土壤水分变化条件下池杉
幼苗光合生理响应的模拟研究 . 水生生物学报,29 ( 6 ) :
712 - 716.
罗芳丽,王 玲,曾 波,等 . 2006. 三峡库区岸生植物野古草
(Arundinella anomala Steud. ) 光合作用对水淹的响应 . 生态学
报,26(11) : 3602 - 3609.
王朝英,李昌晓,张 晔 . 2013. 水淹对枫杨幼苗光合生理特征的
影响 . 应用生态学报,24(3) : 675 - 682.
王振夏,魏 虹,李昌晓,等 . 2012. 土壤水分交替变化对湿地松幼
苗光合特性的影响 . 西北植物学报,32(5) : 980 - 987.
王振夏,魏 虹,吕 茜,等 . 2013. 枫杨幼苗对土壤水分“湿 -
171
林 业 科 学 50 卷
干”交替变化光合及叶绿素荧光的响应 . 生态学报,33 ( 3 ) :
888 - 897.
杨 静,何开跃,李晓储,等 . 2008. 淹水胁迫对两种栎树生长的影
响 . 林业科技开发,22(4) : 34 - 37.
杨星宇,杨路路,余志伟,等 . 2011. 水杉木材 DNA 提取及条形码
分子鉴定 . 湖北大学学报: 自然科学版,33(4) : 397 - 403.
张 晔,李昌晓 . 2011. 水淹与干旱交替胁迫对湿地松幼苗光合与
生长的影响 . 林业科学,47(12) : 158 - 164.
Ahuja M R. 2009. Genetic constitution and diversity in four narrow
endemic redwoods from the family Cupressaceae. Euphytica,
165(1) : 5 - 19.
Alvarez S,Sanchez-Blanco M J. 2013. Changes in growth rate,root
morphology and water use efficiency of potted Callistemon citrinus
plants in response to different levels of water deficit. Scientia
Horticulturae,156(8) : 54 - 62.
Anderson P H,Pezeshki S R. 2000. The effects of intermittent flooding
on seedlings of three forest species. Photosynthetica,37 ( 4 ) :
543 - 552.
Anderson P H,Pezeshki S R. 2001. Effects of flood pre-conditioning on
responses of three bottomland tree species to soil waterlogging.
Journal of Plant Physiology,158(2) : 227 - 233.
Arend M,Brem A,Kuster T M,et al. 2013. Seasonal photosynthetic
responses of European oaks to drought and elevated daytime
temperature. Plant Biology,15(1) : 169 - 176.
Avila C, Guardiola J L, Nebauer S G. 2012. Response of the
photosynthetic apparatus to a flowering-inductive period by water
stress in Citrus. Trees,26(3) : 833 - 840.
Bajpai V K,Na M,Kang S C. 2010. The role of bioactive substances in
controlling foodborne pathogens derived from Metasequoia
glyptostroboides Miki ex Hu. Food and Chemical Toxicology,
48(7) : 1945 - 1949.
Bajpai V K,Rahman A,Kang S C. 2007. Chemical composition and
anti-fungal properties of the essential oil and crude extracts of
Metasequoia glyptostroboides Miki ex Hu. Industrial Crops and
Products,26(1) : 28 - 35.
Baquedano F J,Castillo F J. 2006. Comparative ecophysiological effects
of drought on seedlings of the Mediterranean water-saver Pinus
halepensis and water-spenders Quercus coccifera and Quercus ilex.
Trees,20(6) : 689 - 700.
Bragina T V, Ponomareva Y V, Drozdova I S, et al. 2004.
Photosynthesis and dark respiration in leaves of different ages of
partly flooded maize seedlings. Russian Journal of Plant Physiology,
51(3) : 342 - 347.
Calvo-Polanco M,Senorans J,Zwiazek J J. 2012. Role of adventitious
roots in water relations of tamarack ( Larix laricina ) seedlings
exposed to flooding. BMC Plant Biology,12(1) : 99.
Carpenter L T,Pezeshki S R,Shields Jr F D. 2008. Responses of
nonstructural carbohydrates to shoot removal and soil moisture
treatments in Salix nigra. Trees,22(5) : 737 - 748.
Cechin I,Fumis T F,Dokkedal A L. 2007. Growth and physiological
responses of sunflower plants exposed to ultraviolet-B radiation.
Ciencia Rural,37(1) : 85 - 90.
Chen H J,Qualls R G,Blank R R. 2005. Effect of soil flooding on
photosynthesis,carbohydrate partitioning and nutrient uptake in the
invasive exotic Lepidium latifolium. Aquatic Botany, 82 ( 4 ) :
250 - 268.
Chen X Y,Li Y Y,Wu T Y,et al. 2003. Size-class differences in
genetic structure of Metasequoia glyptostroboides Hu et Cheng
( Taxodiaceae) plantations in Shanghai. Silvae Genetica,52(3 /4) :
107 - 109.
Cui M Y,Yu S,Liu M,et al. 2010. Isolation and characterization of
polymorphic microsatellite markers in Metasequoia glyptostroboides
(Taxodiaceae) . Conservation Genetics Resources,2(1) : 19 - 21.
De Simone O,Junk W J,Schmidt W. 2003. Central Amazon floodplain
forests: root adaptations to prolonged flooding. Russian Journal of
Plant Physiology,50(6) : 848 - 855.
Dong L B,He J,Wang Y Y,et al. 2011. Terpenoids and Norlignans
from Metasequoia glyptostroboides. Journal of Natural Products,
74(2) : 234 - 239.
dos Santos C M,Verissimo V,de Lins Wanderley Filho H C,et al.
2013. Seasonal variations of photosynthesis,gas exchange,quantum
efficiency of photosystem Ⅱ and biochemical responses of Jatropha
curcas L. grown in semi-humid and semi-arid areas subject to water
stress. Industrial Crops and Products,41(1) : 203 - 213.
Doupis G, Bertaki M, Psarras G, et al. 2013. Water relations,
physiological behavior and antioxidant defence mechanism of olive
plants subjected to different irrigation regimes. Scientia
Horticulturae,153(5) : 150 - 156.
Du K B,Xu L,Li M H,et al. 2013. Genetic variation in progenies of
23 relic trees of Metasequoia glyptostroboides in their original habitat.
Forest Science and Practice,15(1) : 1 - 12.
Duan B,Lu Y,Yin C,et al. 2005. Physiological responses to drought
and shade in two contrasting Picea asperata populations. Physiologia
Plantarum,124(4) : 476 - 484.
Elcan J M,Pezeshki S R. 2002. Effects of flooding on susceptibility of
Taxodium distichum L. seedlings to drought. Photosynthetica,
40(2) : 177 - 182.
Fan S, Grossnickle S C, Russell J H. 2008. Morphological and
physiological variation in western redcedar ( Thuja plicata )
populations under contrasting soil water conditions. Trees,22(5) :
671 - 683.
Farquhar G D, Sharkey T D. 1982. Stomatal conductance and
photosynthesis. Annual Review Plant Physiology, 33 ( 1 ) :
317 - 345.
Finin A,Bellasio C,Pollastri S,et al. 2013. Water relations,growth,
and leaf gas exchange as affected by water stress in Jatropha curcas.
Journal of Arid Environments,89(2) : 21 - 29.
Galle A,Haldimann P,Feller U. 2007. Photosynthetic performance and
water relations in young pubescent oak ( Quercus pubescens) trees
during drought stress and recovery. New Phytologist,174 ( 4 ) :
799 - 810.
Gibberd M R,Gray J D,Cocks P S,et al. 2001. Waterlogging tolerance
among a diverse range of Trifolium accessions is related to root
porosity,lateral root formation and aerotropic rooting. Annals of
Botany,88(4) : 579 - 589.
Gimeno V,Syvertsen J P,Simon I, et al. 2012. Physiological and
271
第 11 期 白林利等: 水淹对水杉苗木耐旱性的影响
morphological responses to flooding with fresh or saline water in
Jatropha curcas. Environmental and Experimental Botany,78 (2) :
47 - 55.
Haldimann P,Galle A,Feller U. 2008. Impact of exceptionally severe
summer stress conditions on photosynthetic traits in oak ( Quercus
pubescens) leaves. Tree Physiology,28(5) : 785 - 795.
Hamayun M,Sohn E Y,Khan S A,et al. 2010. Silicon alleviates the
adverse effects of salinity and drought stress on growth and
endogenous plant growth hormones of soybean ( Glycine max L. ) .
Pakistan Journal of Botany,42(3) : 1713 - 1722.
Hessini K,Ghandour M,Albouchi A,et al. 2008. Biomass production,
photosynthesis,and leaf water relations of Spartina alterniflora under
moderate water stress. Journal of Plant Research, 121 ( 3 ) :
311 - 318.
Jackson M B,Colmer T D. 2005. Response and adaptation by plants to
flooding stress. Annals of Botany,96(4) : 501 - 505.
Jeschke W D,Hilpert A. 1997. Sink-stimulated photosynthesis and sink-
dependent increase in nitrate uptake: nitrogen and carbon relations
of the parasitic association Cuscuta reflexa-Ricinus communis.
Plant,Cell and Environment,20(1) : 47 - 56.
Jiang H T,Xu F F,Cai Y,et al. 2006. Weathering characteristics of
sloping fields in the Three Gorges Reservoir area, China.
Pedosphere,16 (1) : 50 - 55.
Jing Y X,Chen Z P,Cheng H Q,et al. 1999. The relationship between
photosynthetic character and adventitious roots in flooded Cleistocalyx
operculatus seedlings. Journal of Tropical and Subtropical Botany,
8(4) : 361 - 364.
Johari-Pireivatlou M,Qasimov N,Maralian H. 2010. Effect of soil water
stress on yield and proline content of four wheat lines. African
Journal of Biotechnology,9(1) : 36 - 40.
Kolasinski M. 2012. How can we propagate the Metasequoia
glyptostroboides Hu et Cheng? Horticulture,15(2) : 1 - 7.
Larre C F,Fernando J A,Marini P,et al. 2013. Growth and chlorophyll
a fluorescence in Erythrina crista-galli L. plants under flooding
conditions. Acta Physiologiae Plantarum,35(5) : 1463 - 1471.
Lawlor D W. 2002. Limitation to photosynthesis in water-stressed leaves:
stomata vs. metabolism and the role of ATP. Annals of Botany,
89(7) : 871 - 885.
Li C M,Zhang S,Liu J H,et al. 2006. Distribution of nutrients and
chlorophyll a in the Three-Gorges Reservoir,China. Chinese Journal
of Geochemistry,25 (3) : 295 - 300.
Li C X,Zhong Z C,Geng Y,et al. 2010. Comparative studies on
physiological and biochemical adaptation of Taxodium distichum and
Taxodium ascendens seedlings to different soil water regimes. Plant
and Soil,329(1 /2) : 481 - 494.
Li C X,Zhong Z C,Liu Y. 2006. Effect of soil water changes on
photosynthetic characteristics of Taxodium distichum seedlings in the
hydro-fluctuation belt of the Three Gorges Reservoir area. Frontiers
of Forestry in China,1(2) : 163 - 169.
Li S,Martin L T,Pezeshki S R,et al. 2005. Responses of black willow
Salix nigra cuttings to simulated herbivory and flooding. Acta
Oecologica,28(2) : 173 - 180.
Li S,Pezeshki S R,Goodwin S. 2004. Effects of soil moisture regimes
on photosynthesis and growth in cattail ( Typha latifolia ) . Acta
Oecologica,25(1) : 17 - 22.
Liu C C,Liu Y G,Guo K,et al. 2011. Comparative ecophysiological
responses to drought of two shrub and four tree species from karst
habitats of southwestern China. Trees,25(3) : 537 - 549.
Mielke M S,De Almeida A A F,Gomes F P,et al. 2003. Leaf gas
exchange,chlorophyll fluorescence and growth responses of Genipa
americana seedlings to soil flooding. Environmental and
Experimental Botany,50(3) : 221 - 231.
Mottonen M,Lehto T,Rita H,et al. 2005. Recovery of Norway spruce
(Picea abies) seedlings from repeated drought as affected by boron
nutrition. Trees,19(2) : 213 - 223.
Mou X L,Fu C,Wu H K,et al. 2007. Composition of essential oil from
seeds of Metasequoia glyptostroboides growing in China. Chemistry of
Natural Compounds,43(3) : 334 - 335.
Musila C F,Arnolds J L,Van Heerden P D R,et al. 2009. Mechanisms
of photosynthetic and growth inhibition of a southern African
geophyte Tritonia crocata (L. ) Ker. Gawl. by an invasive European
annual gras Lolium multiflorum Lam. Environmental and
Experimental Botany,66(1) : 38 - 45.
Nakai A,Kisanuki H. 2011. Stress responses of Salix gracilistyla and
Salix subfragilis cuttings to repeated flooding and drought. Journal of
Forest Research,16(6) : 465 - 472.
Nemani R R,Keeling C D,Hashimoto H,et al. 2003. Climate-driven
increases in global terrestrial net primary production from 1982 to
1999. Science,300(5625) : 1560 - 1563.
New T,Xie Z. 2008. Impacts of large dams on riparian vegetation:
applying global experience to the case of China’s Three Gorges
Dam. Biodiversity and Conservation,17(13) : 3149 - 3163.
Ngugi M R,Doley D,Hunt M A,et al. 2004. Physiological responses to
water stress in Eucalyptus cloeziana and E. argophloia seedlings.
Trees,18(4) : 381 - 389.
Parida A K,Dagaonkar V S,Phalak M S,et al. 2007. Alterations in
photosynthetic pigments,protein and osmotic components in cotton
genotypes subjected to short-term drought stress followed by
recovery. Plant Biotechnology Reports,1(1) : 37 - 48.
Peng Y,Dong Y,Tu B,et al. 2013. Roots play a vital role in flood-
tolerance of poplar demonstrated by reciprocal grafting. Flora-
Morphology,Distribution,Functional Ecology of Plants,208 (8 ) :
479 - 487.
Pimenta J A,Bianchini E,Medri M E. 2010. Adaptations to flooding by
tropical trees: morphological and anatomical modifications.
Oecologia Australis,4(1) : 157 - 176.
Riaz A, Younis A, Hameed M, et al. 2010. Morphological and
biochemical responses of turf grasses to water deficit conditions.
Pakistan Journal of Botany,42(5) : 3441 - 3448.
Riaz A,Younis A,Taj A R,et al. 2013. Effect of drought stress on
growth and flowering of marigold ( Tagetes erecta L. ) . Pakistan
Journal of Botany,45(1) : 123 - 131.
Silva E N,Ribeiro R V,Ferreira-Silva S L,et al. 2010. Comparative
effects of salinity and water stress on photosynthesis,water relations
and growth of Jatropha curcas plants. Journal of Arid Environments,
74(10) : 1130 - 1137.
371
林 业 科 学 50 卷
Simova-Stoilova L,Demirevska K,Kingston-Smith A, et al. 2012.
Involvement of the leaf antioxidant system in the response to soil
flooding in two Trifolium genotypes differing in their tolerance to
waterlogging. Plant Science,183(2) : 43 - 49.
Striker G G. 2012. Time is on our side: the importance of considering a
recovery period when assessing flooding tolerance in plants.
Ecological Research,27(5) : 983 - 987.
Syvertsen J P,Zablotowicz R M,Smith Jr M L. 1983. Soil temperature
and flooding effects on two species of citrus. Plant and Soil,72(1) :
3 - 12.
Tang C Q,Yang Y,Ohsawa M,et al. 2011. Population structure of
relict Metasequoia glyptostroboides and its habitat fragmentation and
degradation in south-central China. Biological Conservation,
144(1) : 279 - 289.
Tang Z C,Kozlowski T T. 1983. Responses of Pinus banksiana and
Pinus resinosa seedlings to flooding. Canadian Journal of Forest
Research,13(4) : 633 - 639.
Wolkerstorfer S V,Wonisch A,Stankova T, et al. 2011. Seasonal
variations of gas exchange, photosynthetic pigments, and
antioxidants in Turkey oak (Quercus cerris L. ) and Hungarian oak
( Quercus frainetto Ten. ) of different age. Trees, 25 ( 6 ) :
1043 - 1052.
Xiao C W,Sun O J,Zhou G S,et al. 2005. Interactive effects of
elevated CO2 and drought stress on leaf water potential and growth in
Caragana intermedia. Trees,19(6) : 712 - 721.
Xu Z,Zhou G, Shimizu H. 2010. Plant responses to drought and
rewatering. Plant Signaling and Behavior,5(6) : 649 - 654.
Ye Y,Tam N F,Wong Y S,et al. 2003. Growth and physiological
responses of two mangrove species Bruguiera gymnorrhiza and
Kandelia candel to waterlogging. Environmental and Experimental
Botany,49(3) : 209 - 221.
Yordanova R Y,Alexieva V S,Popova L P. 2003. Influence of root
oxygen deficiency on photosynthesis and antioxidant status in barley
plants. Russian Journal of Plant Physiology,50(2) : 163 - 167.
Yordanova R Y, Popova L P. 2007. Flooding-induced changes in
photosynthesis and oxidative status in maize plants. Acta
Physiologiae Plantarum,29(6) : 535 - 541.
Zeng Q, Cheng X R, Qin J J, et al. 2012. Norlignans and
phenylpropanoids from Metasequoia glyptostroboides Hu et Cheng.
Helvetica Chimica Acta,95(4) : 606 - 612.
Zhao Y,Thammannagowda S,Staton M,et al. 2013. An EST dataset for
Metasequoia glyptostroboides buds: the first EST resource for
molecular genomics studies in Metasequoia. Planta, 237 ( 3 ) :
755 - 770.
(责任编辑 郭广荣)
471