全 文 :第 49 卷 第 4 期
2 0 1 3 年 4 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 49,No. 4
Apr.,2 0 1 3
doi:10.11707 / j.1001-7488.20130402
收稿日期: 2012 - 03 - 10; 修回日期: 2013 - 03 - 08。
基金项目: 国家林业局林业公益性行业科研专项(20114008) ; 国家林业局林业公益性行业专项(200804001) ; 中国林业科学研究院森林
生态环境与保护研究所专项(CAFIFEEP201006)。
* 程瑞梅为通讯作者。
基于 LPJ-GUESS模型的鸡公山马尾松林生产力
和碳动态*
封晓辉1,2 程瑞梅1 肖文发1 王瑞丽1 王晓荣3 刘泽彬1
(1. 中国林业科学研究院森林生态环境与保护研究所 国家林业局森林生态环境重点实验室 北京 100091;
2. 中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050021; 3. 湖北省林业科学研究院 武汉 470039)
摘 要: 应用 LPJ-GUESS 动态植被模型,模拟未来气候变化条件下河南鸡公山地区马尾松纯林和马尾松阔叶混
交林的生产力和碳动态。结果表明: 在 IPCC 特别排放情景报告 A2 和 B2 情景下,到 2100 年该地区马尾松纯林和
混交林的生产力和生物量都不同程度增加,土壤呼吸速率逐步升高,土壤碳储量逐步减少,生态系统碳交换量基
本保持平衡。LPJ-GUESS 模型可较好地拟合亚热带地区马尾松林的生长动态,未来可以在亚热带其他地区推广使
用。
关键词: 马尾松; LPJ-GUESS 模型; 气候变化; 碳动态
中图分类号: S716. 3 文献标识码: A 文章编号: 1001 - 7488(2013)04 - 0007 - 02
Productivity and Carbon Dynamic of the Masson Pine Stands in
Jigongshan Region Based on LPJ-GUESS Model
Feng Xiaohui1,2 Cheng Ruimei1 Xiao Wenfa1 Wang Ruili1 Wang Xiaorong3 Liu Zebin1
(1. Research Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment,
State Forestry Administration Beijing 100091; 2. Center for Agricultural Resources Research,Institute of Genetics and Developmental Biology,
Chinese Academy of Sciences Shijiazhuang 050021; 3. Hubei Academy of Forestry Wuhan 470039)
Abstract: In this paper,we used the dynamic vegetation model LPJ-GUESS to simulate the carbon dynamic of Masson
pine (Pinus massoniana) pure stands and Masson pine-broadleaf mixed stands in Jigongshan region under different climate
change scenario. Results showed that the simulation was well fitted with the actual results. To 2100,the net primary
productivity and carbon biomass of the two types of Masson pine stands both will increase under the climate change
scenarios of SRES A2 and B2. Meanwhile the soil respiration rate will increase,soil carbon storage will gradually reduce,
and the ecosystem carbon exchange will maintain balance. The simulation of LPJ-GUESS model to the growth dynamic of
Masson pine stands in subtropical region was reasonable,thus the model can be extendedly applied in sub-tropical regions.
Key words: Pinus massoniana; LPJ-GUESS model; climate change; carbon dynamic
马尾松(Pinus massoniana)广泛分布于我国亚
热带地区,是南方地区的主要造林树种,在我国林
业生产中占有重要地位。马尾松林生产力对气候变
化的响应一直备受关注,研究未来气候变化条件下
马尾松林的生产力和碳通量对森林经营具有重要意
义。LPJ-GUESS( lund-potsdam-jena general ecosystem
simulator)是模拟生态系统结构与功能的多尺度动
态过程模型,该模型在全球动态植被模型 LPJ-
DGVM(dynamic global vegetation model)的基础上发
展而来,对物种个体水平的模拟进行了细化,可以
进行物种、群落、生态系统、景观以至全球尺度的模
拟 (Sitch et al.,2003; Smith et al.,2001),在北美和
欧洲得到了广泛应用 (Hickler et al.,2004; Koca et
al.,2006; Rammig et al.,2010; Wolf et al.,2008)。
学者也对该模型在中国的适用性进行了探索: 梁妙
玲等(2006)利用 LPJ-DGVM 模型研究了气候变化
对中国植被分布和净初级生产力的影响; 孙艳玲等
(2007)根据中国气候特点,修正 LPJ-DGVM 模型中
林 业 科 学 49 卷
的生物气候参数,研究了 20 世纪中国潜在植被类
型的分布变化; 孙国栋(2009)利用 LPJ-DGVM 模型
研究了 1981—1998 年中国陆地生态系统碳的通量;
赵东升等(2011)模拟了中国 1991—2080 年自然植
被净初级生产力对气候变化的响应; 刘瑞刚等
(2009)使用 LPJ-GUESS 模型模拟了北京山区未来
100 年内 3 种不同优势树种群落的碳动态对未来气
候情景的响应,结果证明 LPJ-GUESS 模型适合于中
国温带森林生长动态的模拟。但是尚未有研究探索
LPJ-GUESS 模型在亚热带地区的适用性。本研究基
于 LPJ-GUESS 模型在生态系统尺度上模拟河南鸡
公山自然保护区内马尾松纯林和马尾松阔叶混交林
在未来气候变化条件下的生产力和碳动态,以探索
该模型在亚热带地区的适用性和参数的设置,并为
未来马尾松林的碳平衡做出预测,为林业应对气候
变化提供参考。
图 1 信阳气象站的月均气温和月均降水量
Fig. 1 Monthly mean air temperature and monthly mean
precipitation of Xinyang meteorological station
1 研究区概况
鸡 公 山 ( 114° 01—114° 06 E, 31° 46—
31°52N)位于河南信阳境内,是大别山西端的著名
山峰,在 20 世纪 80 年代被列为国家级自然保护
区,素有“青分楚豫”之称,是马尾松水平分布的北
界。该地属于亚热带季风气候,四季分明,冬夏
长,春秋短。年均气温 15. 2 ℃,最冷月 1 月平均气
温 2 ℃,最热月 7 月平均气温 27. 5 ℃,全年无霜期
200 天; 年均降雨1 118. 7 mm,集中于 5—9 月,信
阳气象站累年月均气温和月均降水量见图 1。该区
植被类型为亚热带常绿阔叶林,由于人类活动原始
植被保存很少,现存植被为人工林和次生林,有大
面积的马尾松人工纯林和马尾松阔叶混交林,混交
林的主要阔叶树种为麻栎(Quercus acutissima)和栓
皮栎 ( Q. variabilis )。林 下主要灌木为 白鹃 梅
(Exochorda racemosa)和盐肤木(Rhus chinensis)等,
并有少量的羊胡子草(Carex filipes)等草本植物。
2 研究方法
2. 1 物种参数
依据 Hickler 等(2004)的参数估计方法,对马
尾松纯林和混交林中的马尾松、栎类 (麻栎和栓皮
栎)、灌木和草本等主要物种进行参数设置(表 1)。
马尾松的生理参数根据周政贤 (2000)关于马尾松
生物学特性的研究结果并参考相关树种的生物学特
性和经验值设定。不同的气候型相应的叶寿命、异
速生长系数不同,设置不同的气候型将常绿树种和
落叶树种区别开来。其他参数基于在欧洲、北美和
中国研究的取值和文献资料综合设定。混交林模拟
树种为马尾松、栎类、灌木和草本植物,纯林的模拟
树种为马尾松、灌木和草本植物。
2. 2 环境参数
模型的驱动数据包括月气象数据 (月均气温、
月降水量和月均日照百分率)、年大气 CO2浓度值和
土壤类型。采用信阳气象站(114°03E,32°08N)
的气候资料(1951—2007 年),包括月降水量、月均
气温和月均日照百分率。未来气候情景采用 IPCC
排放 情 景 特 别 报 告 ( special report on emissions
scenarios,SRES)的高排放情景 A2 和中等排放情景
B2 下华中地区气温和降水量的变化(国家气候变化
评估报告编辑委员会,2007),如表 2 所示。气候
参数的设定参照北京东灵山的设置方法(刘瑞刚等
2009)。本研究共设置 100 个板块,即 100 个重复
的模拟样方,每一个板块的面积设为 1 000 m2。模
拟过程分为 3 个阶段: 前 200 年为初始化阶段,以
信阳气象站近 50 年 (1958—2007 年)的气候数据
为环境参数,重复运行 4 次,模拟群落从次生裸地
开始演替至植被、凋落物及土壤碳库达到平衡状态;
第二阶为验证阶段,用 1958—2007 年的气象数据
模拟历史气候条件下的植被动态,检验模拟结果并
修正物种参数,达到模拟结果与实际结果相符; 第
三阶段模拟未来气候变化 SERS A2 和 B2 情景下
2008—2100 年的植被动态。
2. 3 模型验证
鸡公山地区的原始植被已经受到严重破坏,现
有的马尾松林主要为 20 世纪 50—60 年代封山育林
后形成,林分的年龄差异较大。将 1961—1990 年
马尾松纯林和混交林的净初级生产力和碳生物量的
平均值与本区实际研究结果对比,以检验模型在该
地区的适用性。在结果有差异的情况下,根据物种
8
第 4 期 封晓辉等: 基于 LPJ-GUESS 模型的鸡公山马尾松林生产力和碳动态
的生物学特性适当调整物种参数,重复运行最后达 到与实际研究结果最接近时为止。
表 1 物种参数
Tab. 1 Parameters of the simulating species
参数
Parameter
马尾松
Pinus massoniana
栎类
Quercus spp.
灌木
Shrub
草本
Grass
气候型 Phenology
常绿
Evergreen
夏绿
Summer green
夏绿
Summer green
夏绿
Summer green
长满叶 > 5 ℃积温 GDD5 -ramp for phenology /℃ 0 250 250 300
能够光合作用的温度范围 Temperature range for photosynthesis /℃ 6 ~ 38 10 ~ 38 5 ~ 38 5 ~ 38
最适光合作用的温度范围
Temperature range for optimal photosynthesis /℃
20 ~ 28 22 ~ 34 20 ~ 33 20 ~ 30
根在上下 2 层土壤中分布的比例
Fraction of roots in upper / lower soil layer
0. 67 /0. 33 0. 6 /0. 4 0. 9 /0. 1 0. 9 /0. 1
日最大蒸腾速率 Daily max transpiration rate 5 6 5 —
呼吸效率 Respiration efficiency 1 0. 7 0. 4 1
叶碳氮比 Leaf C /N rate 27 29 29 29
根碳氮比 Root C /N rate 27 27 27 27
边材碳氮比 Sapwood C /N rate 330 330 300 —
生产力中分配到再生产比例
Allocation proportion from productivity to reproduction
0. 1 0. 1 0. 05 0. 05
叶更新速率 Leaf turnover rate / a 0. 5 1 1 1
细根更新速率 Fine root turnover rate / a 1 1 1 1
边心材周转速率 Sapwood to heartwood conversion rate / a 0. 2 0. 1 0. 08 —
最大冠幅 Max. crown area / m2 35 35 10 1
异速生长系数 1 Allometry coefficient 1 250 150 50 —
异速生长系数 2 Allometry coefficient 2 50 25 35 —
异速生长系数 3 Allometry coefficient 3 0. 78 0. 67 0. 6 —
叶面积与边材比 Leaf to sapwood area ratio 2 500 6 000 4 000 —
比叶面积 Specific leaf area /(m2·g - 1 C) 21. 7 41. 7 41. 1 41. 1
叶与根的生物量比 Leaf to root biomass rate 1 0. 8 0. 8 1
可存活最冷月最低温度
Min. temperature of coldest month for survival /℃
- 10 - 10 - 5 —
更新最冷月的平均温度
Mean. temperature of coldest month for establishment /℃
- 2 - 2 - 2 —
更新最冷月最高平均温度
Max. temperature of coldest month for establishment /℃
4 9 9 —
更新最热月最低温度
Min. temperature of warmest month for establishment /℃
5 10 10 —
可更新 > 5 ℃积温 Minimum GDD5 for establishment /℃ 2 000 2 000 1 500 —
可更新地表最小光强 Minimum photosynthetically
active radiation at forest floor for establishment /( J·m - 2 d - 1 )
2 000 000 1 200 000 800 000 —
最大幼苗更新速率 Maximum establishment rate 1 0. 5 1 0. 4
无胁迫最大寿命 Maxno-stressed longevity / a 180 250 20 5
叶寿命 Leaf longevity 2 0. 7 0. 6 0. 7
截留系数 Interception coefficient / a 0. 2 0. 02 0. 2 0. 2
表 2 A2 和 B2 情景下华中地区温度和降水量的变化及对应的大气 CO2浓度
Tab. 2 Temperature and precipitation changing,atmosphere CO2 concentration under A2 and B2 of central China
年份
Year
情景 A2 Scenario A2 情景 B2 Scenario B2
温度增量
Temperature
increment /℃
降水增量
Precipitation
increment(% )
CO2浓度
CO2 concentration /
(μmol·mol - 1 )
温度增量
Temperature
increment /℃
降水增量
Precipitation
increment(% )
CO2浓度
CO2 concentration /
(μmol·mol - 1 )
2040 1. 2 - 1 482 1. 3 2 454
2070 2. 7 3 620 2. 4 2 524
2100 4. 5 11 836 3. 3 8 611
2. 4 分析
将模拟结果分为 3 个时段进行对比分析:
1961—1990 年为基准阶段,2041—2070 和 2071—
2100 年为对比阶段。模拟内容包括净初级生产力、
9
林 业 科 学 49 卷
净生态系统碳交换量、碳生物量、土壤碳储量和土壤
异氧呼吸速率。
3 结果与分析
3. 1 模型验证
模拟结果显示 1961—1990 年马尾松纯林的碳
生物量平均为 2. 24 kgC·m - 2,高于严茂超等
(2004) 的研究结果 1. 69 kgC·m - 2,与李海涛等
(2005)的研究结果 2. 78 kg C·m - 2接近,但远低于
程瑞梅等(2011)的研究结果 12. 74 kgC·m - 2,这是
由林龄差异造成的。程瑞梅等 (2011)对老龄马尾
松纯林的乔木层碳生物量进行估测,碳生物量积累
时间长,故碳生物量较高。模拟结果显示,马尾松
纯林的净初级生产力为 0. 514 kgC·m - 2 a - 1,与李海
涛的研究结果 0. 482 kgC·m - 2 a - 1接近,程瑞梅等
(2011)只对马尾松的净初级生产力进行估算而没
有包括灌木和草本植物,故其结果较低,只有
0. 332 kg C·m - 2 a - 1。可见模型对马尾松纯林的模
拟结果较合理。模拟结果显示,马尾松混交林
1961—1990 年的平均碳生物量为 3. 04 kgC·m - 2,
较杨涛(2004)的研究结果 6. 29 kg C·m - 2低,这是
由于本研究的对象是整个保护区,而杨涛(2004)的
研究对象是立地条件较好且年龄较大的林分。马尾
松混交林的碳净初级生产力为 0. 620 kgC·m - 2 a - 1,
较马尾松纯林略高,符合混交林的生物量高于纯林
的规律。由于调查取样的特异性和观测方法的差异,
2 种马尾松林的碳生物量和净初级生产力的平均值
与实际值有一定的差异,但模拟结果的平均值在实
测结果的变化范围内,同样,实测的结果也在单年模
拟结果的变化范围内。可见该模型对 2 种马尾松林
的净初级生产力和碳生物量的模拟结果是合理的。
3. 2 不同气候情景下的净初级生产力
由图 2 和表 3 可知: 2 种马尾松林的净初级生
产力在 A2 和 B2 情景下都逐渐增加; A2 情景下马
尾松纯林的升高幅度最大,2041—2070 年净初级生
产力为 0. 702 kg C·m - 2 a - 1,较 1961—1990 年增长
37. 4%,2071—2100 年达到 0. 798 kg C·m - 2 a - 1,
较 1961—1990 年增长 56. 1% ; B2 情景下的马尾松
混交林的净初级生产力增长最小,与 1961—1990
年相比 2 个对比时间段只分别增加了 18. 5% 和
30. 5% ; 2 种马尾松林的净初级生产力在 A2 情景
下的增幅均高于 B2 情景。总体来看,在不同气候
情景下虽然马尾松混交林的净初级生产力都高于马
尾松纯林,但增幅却低于马尾松纯林。
图 2 1951—2100 年 A2 和 B2 情景下 2 种马尾松林的生产力动态
Fig. 2 NPP dynamic of different masson pine stands under SRES A2 and B2 in 1951—2100
表 3 不同气候情景下的净初级生产力
Tab. 3 NPP of two stands in different climate change scenarios
时期
Period
气候情景
Climate scenario
纯林 Pure stands 混交林 Mixed stands
NPP /( kg C·m - 2 a - 1 ) 增长率 Increment rate (% ) NPP /( kg C·m - 2 a - 1 ) 增长率 Increment rate (% )
1960—1990 — 0. 511 — 0. 620 —
2041—2070 A2 0. 702 37. 4 0. 775 25. 1
B2 0. 661 29. 1 0. 736 18. 5
2071—2100 A2 0. 798 56. 1 0. 866 39. 6
B2 0. 724 41. 4 0. 810 30. 5
3. 3 不同气候情景下的碳生物量
由图 3 和表 4 可以看出,2 种马尾松林在不同
的气候情景下碳生物量都会逐渐升高,且 A2 情景
下的碳生物量都高于 B2,其中 A2 情景下 2071—
2100 年的纯林平均碳生物量较 1961—1990 年增加
幅度最高,达到 107. 14% ; B2 情景下的混交林
01
第 4 期 封晓辉等: 基于 LPJ-GUESS 模型的鸡公山马尾松林生产力和碳动态
图 3 1951—2100 年 A2 和 B2 情景下马尾松林的碳生物量动态
Fig. 3 Carbon biomass dynamic of two masson pine stands under SERS A2 and B2
表 4 不同气候情景下马尾松林的碳生物量
Tab. 4 Carbon biomass in different climate change scenarios
时期
Period
气候情景
Climate scenario
纯林 Pure stands 混交林 Mixed stands
碳生物量
Carbon biomass /( kg C·m - 2 )
增长率
Increment rate(% )
碳生物量
Carbon biomass /( kg C·m - 2 )
增长率
Increment rate(% )
1961—1990 — 2. 24 — 3. 04 —
2041—2070
A2 4. 00 78. 57 5. 51 81. 25
B2 3. 49 58. 64 4. 49 40. 31
2071—2100
A2 4. 64 107. 14 5. 88 93. 42
B2 3. 95 79. 55 4. 33 35. 31
2071—2100 年的平均生物量增加幅度较低,只有
35%。但是混交林的平均生物量高于纯林,A2 情
景下的混交林生物量在 2040 年以后逐渐趋于稳定,
生物量略微下降。碳生物量与净初级生产力的变化
趋势相对应。
3. 4 不同气候情景下的土壤碳储量
由图 4 可以看出,马尾松纯林的土壤碳储量要
明显低于马尾松混交林的土壤碳储量,同时 2 种马
尾松林的土壤碳储量在未来都会逐渐下降。A2 情
景下马尾松纯林土壤碳储量要低于 B2。马尾松混
交林的土壤碳储量下降量和下降幅度均高于纯林,
如表 5 所示。马尾松混交林土壤碳储量的变化趋势
在 2070 年前发生了转折,在此之前碳储量逐渐下
降,但是 2070 年之后碳储量趋于稳定。
图 4 1951—2100 年 A2 和 B2 情景下土壤碳储量动态
Fig. 4 Soil carbon storage dynamic of different masson pine stands under SERS A2 and B2
11
林 业 科 学 49 卷
表 5 不同气候情景下的 2 种马尾松林的土壤碳储量
Tab. 5 Soil carbon storage of two stands in different climate change scenarios
时期
Period
气候情景
Climate scenario
纯林 Pure stands 混交林 Mixed stands
土壤碳储量
Soil carbon storage /( kgC·m - 2 )
增长率
Increment rate(% )
土壤碳储量
Soil carbon storage /( kgC·m - 2 )
增长率
Increment rate(% )
1961—1990 — 5. 92 — 6. 97 —
2041—2070
A2 5. 94 0. 34 6. 72 - 3. 59
B2 5. 88 - 0. 84 6. 65 - 4. 32
2071—2100
A2 5. 88 - 0. 68 6. 62 - 5. 02
B2 5. 84 - 1. 52 6. 71 - 3. 45
3. 5 不同气候情景下的生态系统碳交换
生态系统碳交换量为负值表明生态系统为碳吸
收,正值为碳排放。由图 5 和表 6 可以看出: 在 A2
情景下马尾松纯林在未来 2 个时期都是微弱的碳
汇,而混交林都为微弱的碳源。在 B2 情景下马尾
松纯林和混交林的生态系统碳交换接近于平衡。
图 5 1951—2100 年 A2 和 B2 情景下生态系统碳交换动态
Fig. 5 Net ecosystem carbon exchange dynamic under SRES A2 and B2 in 1951 - 2100
表 6 不同气候变化情景下 2 种马尾松林的生态系统碳交换量
Tab. 6 Net ecosystem carbon exchange of two stands in different climate change scenarios (kg C·m - 2 a - 1 )
时期
Period
气候情景
Climate scenario
纯林 Pure stands 混交林 Mixed stands
生态系统
Ecosystem
植被
Vegetation
土壤
Soil
生态系统
Ecosystem
植被
Vegetation
土壤
Soil
1961—1990 — - 0. 02 - 0. 51 0. 51 - 0. 03 - 0. 62 0. 62
2041—2070
A2 - 0. 01 - 0. 69 0. 71 - 0. 01 - 0. 77 0. 78
B2 0. 00 - 0. 65 0. 68 0. 00 - 0. 73 0. 75
2071—2100
A2 - 0. 01 - 0. 79 0. 81 0. 02 - 0. 85 0. 90
B2 - 0. 01 - 0. 72 0. 74 0. 01 - 0. 80 0. 85
由图 6 可以看出在未来温度升高的情景下马尾
松林的土壤异养呼吸速率逐渐增高。2 种马尾松林
在 A2 情景下的土壤异养呼吸速率都高于 B2 情景。
混交林的土壤异养呼吸速率比纯林略高。
4 结论与讨论
未来 A2 和 B2 情景下该地区的 CO2浓度会逐
渐增加,平均温度将升高,降水量基本持平并略有
21
第 4 期 封晓辉等: 基于 LPJ-GUESS 模型的鸡公山马尾松林生产力和碳动态
图 6 1951—2100 年 A2 和 B2 情景下不同马尾松林的土壤异养呼吸动态
Fig. 6 Soil heterotrophic respiration rate dynamic of two masson pine stands under SERS A2 and B2 in 1951—2100
增加。模拟结果显示,2 种类型马尾松林的初级净
生产力均有升高,且 A2 情景下 2 种马尾松林净初
级生产力的增幅比 B2 情景要高。该地区的研究证
明,温度升高提早了树木在春季生长开始的时间,
延迟了秋季生长结束的时间,增加了生长季的长
度,降水量增加提高了土壤水分的可用性,早春和
晚秋的高温以及生长季的降水量可以显著提高马尾
松林的净初级生产力(程瑞梅等,2011)。同时,大
气中 CO2浓度升高的施肥效应也促进光合作用进而
导致马尾松林初级生产力升高。研究表明在高浓度
CO2条件下马尾松光合作用会显著增强。在 A2 情
景下,CO2浓度、温度和降水量都要高于 B2 情景,
这就不难解释 A2 情景下 2 种马尾松林的净初级生
产力较高的原因。马尾松纯林的净初级生产力增幅
要高于混交林的增幅,可能是 CO2浓度的增高对马
尾松的施肥作用较阔叶树种敏感造成的。2 种马尾
松林对能量的利用效率不同造成净初级生产力之间
存在差异。福建马尾松阔叶混交林的净初级生产力
为 10. 60 ~ 15. 25 t·hm - 2 a - 1,而马尾松纯林的净初
级生产力仅 7. 34 t·hm - 2 a - 1,混交林是纯林的
1. 5 ~ 2 倍(樊后保等,2006a; 2006b)。马尾松和阔
叶树种地上部分生物量的高度分布格局不同,混交
林中阔叶树种的高度低于马尾松,这样的结构提高
了光能利用率,净初级生产力也高于纯林。
刘瑞刚等(2009)在东灵山的研究表明,未来针
叶林的净初级生产力增高幅度要高于阔叶林; 在平
均温度、降水量以及 CO2浓度都升高的情景下,油
松(Pinus tabulaeformis)林的生产力将增加(范敏锐
等,2010); 在未来气候变暖和增湿的情况下浙江
天童山阔叶林净初级生产力将比目前增加 15%,温
度增高和蒸散增加是生产力升高的主要原因(彭舜
磊等,2011); 但赵东升等(2011)预测未来气候变
化条件下中国东部亚热带地区到 2080 年的植被生
产力将持平或有所下降。
与净初级生产力的变化趋势一致,在 A2 和 B2
2 种情景下不同马尾松林的碳生物量都逐渐升高,
这主要是由于未来增温和增湿的条件下,水热条件
更加充裕,净初级生产力升高促进碳生物量的积
累。这与北京山区的变化趋势相同 (刘瑞刚等,
2009)。研究已经证明在北半球处于树种水平分布
北缘 的 群 落 由 于 温 度 的 升 高 生 物 量 会 增 加
(Vucetich et al.,2000),鸡公山处于北亚热带地区
边缘,是马尾松水平分布的北限,未来温度的升高
有利于其生物量增加。
模拟结果显示马尾松纯林土壤碳储量低于混交
林,这与陈亮中等 ( 2007 ) 和 樊后保等 ( 2006a;
2006b)的研究结果一致。土壤碳储量动态主要取
决于土壤异养呼吸速率和凋落物分解速率,马尾松
混交林中林下植物种类丰富,增加了土壤微生物的
种类和细根产量,混合凋落物的分解速率相对增
高,有利于土壤有机质的积累,使混交林的土壤碳
储量高于纯林。在 A2 和 B2 情景下 2 种马尾松林
的土壤碳储量动态随着时间都先小幅度升高再逐渐
降低最后逐渐平衡,总体上还是呈下降趋势。这与
中国东北地区森林土壤碳储量的预测变化趋势相同
(Peng et al.,2009),温度升高且降水增加会促进土
壤中微生物的活动,使土壤异养呼吸速率增加并提
高可溶性有机质的矿化速率,导致土壤碳储量降低
(Peng et al.,2009; 周晓宇等,2010)。对峨眉冷杉
(Abies fabri)林土壤碳动态的研究也显示温度升高
和降水量增加会促进土壤向大气中释放 CO2,土壤
碳储量将减小(Lu et al.,2009)。
31
林 业 科 学 49 卷
本研究中 2 种马尾松林生态系统没有明显的碳
源或碳汇趋向。对其他地区的未来植被碳动态的模
拟也无统一的结论。生态系统碳交换主要受到植被
吸收 CO2的能力和土壤异养呼吸的影响。虽然温度
的升高促进净初级生产力的增加,但温度升高也导
致土壤异氧呼吸速率加快,生态系统的碳交换接近
于平衡。研究表明,中国陆地生态系统在未来 100
年气候变化条件下生态系统的碳交换趋于平衡( Ji
et al.,2008)。
由于土壤异养呼吸主要受到温度和湿度的影
响,温度升高和湿度增大会显著提高土壤异养呼吸
速率。但是温度升高后土壤碳库可分解的底物会产
生变化而造成土壤呼吸速率的减缓,因此温度的升
高不能持久增加土壤异养呼吸速率。
本研究采用多个气候模式的平均值预测中国气
候变化趋势,但任何模式对气候变化的预测都存在
不确定性,气候变化预测的不确定性导致在此基础
上的模拟 结果存在 不 确 定 性 ( Berthelot et al.,
2005)。同时,该模型本身参数的设置和模拟过程
具有不确定性,如不同物种最适合光合作用温度的
范围 (Wramneby et al.,2008)。植被的生产力和土
壤碳动态很大程度上受到养分可用性的影响( Smith
et al.,2001),特别是土壤中速效氮的含量对植物的
生产力和土壤碳库的动态以及生态系统碳循环有重
要影响(Grdens et al.,2011)。但是 LPJ-GUESS 模
型没有考虑土壤的氮循环过程,假定了土壤氮储量
可以满足树木生长的需要,这可能使模拟过程存在
一定的偏差 ( Smith et al.,2001)。另外,人为干扰
是这一地区马尾松纯林的影响因子之一,干扰的不
可预见性会导致马尾松林的碳动态预测存在不确定
性,同时适当的营林措施会增加森林碳储量。未来
可对亚热带地区的物种参数进行敏感性分析,以确
定影响该地模拟结果的主要参数,为更好地预测马
尾松对气候变化的响应提供参考。
LPJ-GUESS 模型是基于普适性生态过程运行
的,其广泛的适用性已经在全球范围内得到了证
明,模型可以在少许参数修正后用于不同生态系统
的模拟。在鸡公山地区对马尾松纯林和马尾松阔叶
混交林净初级生产力和生物量的模拟结果符合该地
区的森林生长动态规律,能与实际研究结果相互印
证。可见,LPJ-GUESS 模型适用于亚热带地区。
参 考 文 献
陈亮中,谢宝元,肖文发,等 . 2007. 三峡库区主要森林植被类型土
壤有机碳贮量研究 . 长江流域资源与环境,16(5) : 640 - 643.
程瑞梅,封晓辉,肖文发,等 . 2011. 北亚热带马尾松林净生产力对
气候变化的响应 . 生态学报,31(8) : 2086 - 2095.
樊后保,李燕燕,黄玉梓,等 . 2006a. 马尾松纯林改造成针阔混交
林后土壤化学性质的变化 . 水土保持学报,20(4) : 77 - 81.
樊后保,李燕燕,苏兵强,等 . 2006b. 马尾松 - 阔叶树混交异龄林
生物量与生产力分配格局 . 生态学报,26(8) : 2463 - 2472.
范敏锐,余新晓,张振明,等 . 2010. 北京山区油松林净初级生产力
对气候变化情景的响应 . 东北林业大学学报,38(11) : 46 - 48.
国家气候变化评估报告编辑委员会 . 2007. 国家气候变化评估报
告 . 北京: 科学出版社 .
李海涛,杨柳春,严茂超,等 . 2005. 鸡公山自然保护区森林生物量
动态模拟及其宏观价值评估 . 资源科学,27(4) : 154 - 159.
梁妙玲,谢正辉 . 2006. 我国气候对植被分布和净初级生产力影响
的数值模拟 . 气候与环境研究,11(5) : 582 - 592.
刘瑞刚,李 娜,苏宏新,等 . 2009. 北京山区 3 种暖温带森林生态
系统未来碳平衡的模拟与分析 . 植物生态学报,33 ( 3 ) : 516
- 534.
彭舜磊,由文辉,郑泽梅,等 . 2011. 近 60 年气候变化对天童地区
常绿阔叶林净初级生产力的影响 . 生态学杂志,30 ( 3 ) : 502
- 507.
孙国栋 . 2009. LPJ 模型对 1981—1998 年中国区域潜在植被分布和
碳通量的模拟 . 气候与环境研究,29(4) : 341 - 351.
孙艳玲,延晓冬,谢德体,等 . 2007. 应用动态植被模型 LPJ 模拟中
国植被变化研究 . 西南大学学报: 自然科学版,29 ( 11 ) : 86
- 92.
严茂超,杨柳春,李海涛,等 . 2004. 鸡公山自然保护区森林植被生
物量及活碳蓄积量研究 . 河南林业科技,24(4) : 1 - 4.
杨 涛 . 2004. 麻栎、马尾松天然次生混交林生物量结构及根系分
布特征调查研究 . 信阳农业高等专科学校学报,14(4) : 4 - 6.
赵东升,吴绍洪,尹云鹤 . 2011. 气候变化情景下中国自然植被净
初级生产力分布 . 应用生态学报,22(04) : 897 - 904.
周晓宇,张称意,郭广芬 . 2010. 气候变化对森林土壤有机碳贮藏
影响的研究进展 . 应用生态学报,21(7) : 1867 - 1874.
周政贤 . 2000. 中国马尾松 .北京: 中国林业出版社 .
Badeck F, Lischke H, Bugmann H, et al. 2001. Tree species
composition in European pristine forests: comparison of stand data to
model predictions. Climatic Change,51(3) : 307.
Berthelot M,Friedlingstein P,Ciais P,et al. 2005. How uncertainties
in future climate change predictions translate into future terrestrial
carbon fluxes. Global Change Biology,11(6) : 959 - 970.
Grdens A I,gren G I,Bird J A,et al. 2011. Knowledge gaps in soil
carbon and nitrogen interactions-from molecular to global scale. Soil
Biology and Biochemistry,43(4) : 702 - 717.
Hickler T,Smith B,Sykes M T, et al. 2004. Using a generalized
vegetation model to simulate vegetation dynamics in northeastern
USA. Ecology,85(2) : 519 - 530.
Ji J,Huang M,Li K. 2008. Prediction of carbon exchanges between
China terrestrial ecosystem and atmosphere in 21st century. Science
in China Series D: Earth Sciences,51(6) : 885.
Koca D,Smith B,Sykes M. 2006. Modellingregional climate change
effects on potential natural ecosystems in Sweden. Climatic Change,
78(2) : 381 - 406.
Lu X,Cheng G. 2009. Climate change effects on soil carbon dynamics
41
第 4 期 封晓辉等: 基于 LPJ-GUESS 模型的鸡公山马尾松林生产力和碳动态
and greenhouse gas emissions inAbies fabri forest of subalpine,
southwest China. Soil Biology and Biochemistry,41 ( 5 ) : 1015
- 1021.
Peng C,Zhou X,Zhao S,et al. 2009. Quantifying the response of forest
carbon balance to future climate change in northeastern China:
model validation and prediction. Global Planet Change,66 (3 /4) :
179 - 194.
Peng S,Piao S,Wang T,et al. 2009. Temperature sensitivity of soil
respiration in different ecosystems in China. Soil Biology and
Biochemistry,41(5) : 1008 - 1014.
Rammig A,Jnsson A M,Hickler T,et al. 2010. Impacts of changing
frost regimes on Swedish forests: incorporating cold hardiness in a
regional ecosystem model. Ecological Modelling,221 ( 2 ) : 303
- 313.
Smith B,Prentice I C,Sykes M T. 2001. Representation of vegetation
dynamics in the modelling of terrestrial ecosystems: comparing two
contrasting approaches within European climate space. Global
Ecology Biogeography,10(6) : 621 - 637.
Sitch S,Smith B,Prentice I C,et al. 2003. Evaluation of ecosystem
dynamics,plant geography and terrestrial carbon cycling in the LPJ
dynamic global vegetation model. Global Change Biology,9 ( 2 ) :
161 - 185.
Vucetich J A,Reed D D,Breymeyer A,et al. 2000. Carbon pools and
ecosystem properties along a latitudinal gradient in northern Scots
pine ( Pinus sylvestris ) forests. Forest Ecology Management,
136(1 - 3) : 135 - 145.
Wolf A,Callaghan T,Larson K. 2008. Future changes in vegetation and
ecosystem function of the Barents Region. Climatic Change,87(1) :
51.
Wramneby A,Smith B,Zaehle S,et al. 2008. Parameter uncertainties
in the modelling of vegetation dynamics-effects on tree community
structure and ecosystem functioning in European forest biomes.
Ecological Modelling,216(3 /4) : 277 - 290.
(责任编辑 于静娴)
51