免费文献传递   相关文献

Progresses in Study of Cross Protection Against Citrus tristeza virus

交叉保护防治柑橘衰退病研究进展



全 文 :园 艺 学 报 2014,41(9):1793–1801 http: // www. ahs. ac. cn
Acta Horticulturae Sinica E-mail: yuanyixuebao@126.com
收稿日期:2014–06–23;修回日期:2014–09–02
基金项目:国家公益性行业(农业)科研专项(201203076-01);重庆市自然科学基金项目(CSTC2012jjA80029);重庆市应用开发计
划项目(CSTC2014yykfA8005);柑橘学重庆市市级重点实验室开放基金项目(CKLC201101);中央高校基本科研业务费项目(XDJK2014C027,
XDJK2014A001)
* E-mail:zybook1@163.com
交叉保护防治柑橘衰退病研究进展
周 彦*
(西南大学柑橘研究所国家柑橘工程技术研究中心,重庆 400712)
摘 要:柑橘衰退病毒引起的茎陷点型和速衰型衰退病对世界柑橘产业造成了严重损失。目前交叉
保护是防治茎陷点型衰退病最有效的方法,也用于酸橙砧木速衰型衰退病的防治。从各国防治经验、弱
毒株筛选方法、防治机理等方面对交叉保护防治柑橘衰退病的最新研究进展作出综述,同时就现有交叉
保护防治技术的不足和解决途径进行讨论和展望,旨在为更好地防治柑橘衰退病提供借鉴。
关键词:柑橘衰退病;交叉保护;弱毒株筛选;研究进展
中图分类号:S 666 文献标志码:A 文章编号:0513-353X(2014)09-1793-09

Progresses in Study of Cross Protection Against Citrus tristeza virus
ZHOU Yan *
(National Citrus Engineering Research Center,Citrus Research Institute,Southwest University,Chongqing 400712,
China)
Abstract:Citrus tristeza virus(CTV)causes stem pitting and quick decline that have caused
devastating losses in global citrus production. At present,the best means to protect commercial citrus
against endemic stem pitting isolates of CTV has been cross-protection with appropriate mild CTV isolates.
Research was directed towards the selection and screening of mild strains of CTV which could protect
against sour orange decline strains. In this paper,progress in cross protection against CTV,the screening
of mild strains of CTV and the mechanism of cross protection were reviewed. Furthermore,the possible
disadvantages for using cross protection against CTV were also discussed in order to lay a sound
foundation for better control of the damage caused by CTV.
Key words:Citrus tristeza virus;cross protection;screening of mild strains;research advance

柑橘衰退病毒(Citrus tristeza virus,CTV)引起的茎陷点型和速衰型衰退病是世界性柑橘病害,
已毁灭了超过 1 亿株柑橘,并仍然严重威胁着世界上以酸橙作砧木的柑橘和对茎陷点型衰退病敏感
的柚类、葡萄柚和某些甜橙的安全(Muniz et al.,2014)。中国广泛分布着 CTV 的各种强毒株和强
力媒介褐色橘蚜(Toxoptera citricida),但由于历史上长期使用抗病/耐病砧木,并主要种植耐病的
宽皮柑橘,因此以往生产上没有出现显著危害(赵学源 等,1979;Ke et al.,1984)。随着 20 世纪
80 年代后期中国进行柑橘产业结构调整,茎陷点型衰退病在柚类、甜橙和杂柑等敏感品种上的为害

1794 园 艺 学 报 41 卷
变得日益严重(Zhou et al.,1996;周彦 等,2008)。由于 CTV 在田间以蚜虫传播为主,且蚜虫发
生世代多、传毒率高,因此通过使用无病毒苗木或防治蚜虫来防治柑橘衰退病效果不明显。目前的
研究证明,运用交叉保护技术,即在无病毒柑橘上预免疫接种有保护作用的弱毒株,是防治茎陷点
型衰退病最有效的方法。此外,为延长酸橙砧木的使用寿命,交叉保护也用于酸橙砧木上速衰型衰
退病的防治研究。关于交叉保护技术防治柑橘衰退病的综述文章较少(Moreno et al.,2008;
Folimonova,2013;傅翠娜 等,2013;Lee & Keremane,2013),其内容主要集中于弱毒株筛选、
田间监控以及防效评估等。本文中对交叉保护防治柑橘衰退病的作用机理、存在的问题和解决途径
进一步综述,突出了该研究领域的最新研究进展,并对中国的相关研究进行了总结,旨在为更好地
防治柑橘衰退病提供借鉴。
1 柑橘衰退病的类型
CTV 为长线型病毒属(Closterovirus)成员,能感染绝大多数柑橘种、杂种及近缘种,主要通
过蚜虫和带毒苗木(接穗)传播(Broadbent et al.,1996)。CTV 存在复杂的株系分化现象,主要引
起 3 种类型的衰退病。(1)茎陷点型衰退病:与砧木品种无关,引起莱檬、葡萄柚和某些甜橙、柚
类、杂柑上的茎陷点症状,造成果实品质降低,产量减少,失去经济价值。(2)速衰型衰退病:引
起以酸橙作砧木的植株树势衰退,直至死亡。(3)苗黄型衰退病:主要引起酸橙、‘尤力克’柠檬、
葡萄柚和柚的幼龄实生苗的黄化、矮缩(Bar-Joseph et al.,1989;Garnsey et al.,1991)。
2 弱毒株筛选方法
2.1 指示植物鉴定和血清学检测
弱毒株筛选是交叉保护的关键。传统的方法是通过指示植物鉴定和血清学检测。
指示植物鉴定虽然鉴定周期较长,且需要一定的隔离条件,但目前仍是 CTV 弱毒株筛选的重要
手段。在鉴定 CTV 的致病力时常同时使用‘摩洛哥’酸橙、‘赛蒙斯’甜橙、‘邓肯’葡萄柚、‘墨
西哥’来檬,以及用酸橙作砧木的甜橙等 5 种指示植物(Garnsey et al.,1991;Broadbent et al.,1996)。
目前有 50 余种单克隆抗体被用于 CTV 株系鉴定研究,其中单克隆抗体 MCA13 因可特异性识
别速衰型 CTV 在衣壳蛋白第 124 位点氨基酸发生的变异,因此被广泛应用于速衰型 CTV 的检测
(Pappu et al.,1993;Wu et al.,2014)。此外,近年来还有多个单克隆抗体被尝试用于鉴定茎陷点
型 CTV(Peroni et al.,2009;Wu et al.,2014)。
2.2 RFLP 分析
Gillings 等(1993)根据 CTVp25 基因经限制性内切酶 HinfⅠ酶切后产生的谱型差异将 CTV 分
为了 7 个组群,其中组群 4 和组群 5 的分离株与弱毒系相关联,其它组群的分离株与强毒系相关联。
在此基础上,Corazza 等(2012)使用限制性内切酶 RsaⅠ和 HinfⅠ对 p25 基因进行双酶切,从而将
CTV 进一步分为 12 个组群,提高了该方法对 CTV 强弱株系的识别能力。
2.3 特异性 RT-PCR 及相关技术
根据 CTV 在 5′末端非编码区(UTR)、k17、POL 区域,以及 p23、p25 基因的序列差异建立的
特异性 RT-PCR 检测体系可快速区分 CTV 的强弱毒株(Sambade et al.,2003;Hilf et al.,2005;Matos
et al.,2013)。近年来,随着实时 PCR 技术的发展,分别以 SYBR greenⅠ和 TaqMAN 探针为基础建
9 期 周 彦:交叉保护防治柑橘衰退病研究进展 1795

立的特异性实时 RT-PCR 检测体系也已运用于 CTV 强弱毒株的鉴定(Ruiz-Ruiz et al.,2009;
Ananthakrishnan et al.,2010;Yokomi et al.,2010),监测预免疫植株中强弱毒株含量的时空变化规
律(邹勤 等,2011)。
3 茎陷点型衰退病的防治
3.1 巴西茎陷点型衰退病防治进展
从 20 世纪 50 年代起,研究人员就开始尝试运用交叉保护技术防治酸莱檬上的茎陷点型衰退病,
但所有预免疫植株在田间生长 5 年后都陆续表现出严重的茎陷点症状(Balaraman & Ramakrishnan,
1980)。20 世纪 60 年代,巴西最重要的柑橘品种‘佩拉’甜橙上爆发了极其严重的茎陷点型衰退病。
为挽救巴西柑橘产业,研究人员从重病果园中幸存的且不表现明显症状的‘佩拉’甜橙、‘Galego’
莱檬,以及葡萄柚中筛选出 100 余个 CTV 弱毒株,根据网室拮抗接种试验的筛选结果,从中选取了
13 个分别来自‘佩拉’甜橙和‘Galego’莱檬,且具有较好保护效果的 CTV 弱毒株开展田间防治
试验,经过多年的田间防效评价,最终获得了对莱檬和甜橙茎陷点型衰退病具有显著持久防治效果
的 CTV 弱毒株#66,该弱毒株的大规模使用,拯救了濒临崩溃的巴西柑橘产业(Müller & Costa,1968;
Costa & Müller,1980;Müller et al.,1988,2000)。随后又陆续从‘Galego’莱檬上获得了多个用
于防治茎陷点型衰退病的 CTV 弱毒株(Müller et al.,2000)。如今巴西所有的‘佩拉’甜橙都必须
预免疫接种 CTV 弱毒株,共计已有 800 余万株‘佩拉’甜橙采用了该技术,这些预免疫植株在田间
生长 40 年后仍未感染茎陷点型衰退病强毒株(Zanutto et al.,2013)。此外,巴西多年来还一直运用
单链构象多态性(SSCP)、RFLP 和序列分析等方法对田间使用 CTV 弱毒株的稳定性、防治效果,
以及可能出现的外来强毒株进行监控,同时不断筛选新的弱毒株用于防治茎陷点型衰退病(Costa et
al.,2010;Zanutto et al.,2013)。
3.2 南非茎陷点型衰退病防治进展
20 世纪 40 年代,南非数百万株葡萄柚和莱檬因感染茎陷点型衰退病造成品质和产量急剧下降,
大量植株失去经济价值(van Vuuren et al.,1993)。为此,从 70 年代起,南非开始进行交叉保护防
治茎陷点型衰退病的研究。von Broembsen 和 da Graça(1988)从田间筛选出 50 余个 CTV 弱毒株,
并在网室中通过棉蚜(Aphis gossypii)拮抗接种强毒株的方式,最终获得了 3 个具有显著保护效果
的弱毒株。其中来源于‘墨西哥’莱檬的 CTV 弱毒株 LMS6 可用于保护莱檬和甜橙,来源于葡萄
柚的弱毒株 GFMS35 和 GFMS12 均能保护葡萄柚,且 GFMS12 的保护能力更强(van Vuuren et al.,
1993;Luttig et al.,2002)。弱毒株 GFMS12 在田间使用 30 多年后,对‘马叙’葡萄柚仍具有较好
的保护效果(Scott et al.,2013)。
3.3 中国茎陷点型衰退病防治进展
作者所在实验室从 20 世纪 70 年代开始利用指示植物对中国 CTV 的构成进行鉴定(赵学源 等,
1979)。近年来通过综合运用 p25/HinfⅠRFLP 组群分析、SSCP 分析、p23/BD-PCR、多重分子标记
和基因序列分析等方法,对采自中国各柑橘主产区的 3 000 余份 CTV 分离株进行了初筛,结合指示
植物鉴定,从中获得了 50 余个 CTV 弱毒株,然后采用单蚜传毒的方式对其进行分离纯化(周彦 等,
2005a,2005b;宋震 等,2006;Zhou et al.,2007),并在此基础上开展褐色橘蚜接种强毒株的拮抗
试验,初步筛选出了 8 个具有潜在保护效果的弱毒株(周彦 等,2008)。目前本实验室针对‘纽荷
尔’脐橙、‘北碚–447’甜橙、‘琯溪’蜜柚、‘不知火’等优良柑橘品种,在重庆多地开展了田间
1796 园 艺 学 报 41 卷
防效试验。此外,也有研究人员通过指示植物鉴定、p23/BD-PCR 和 RFLP 分析等方法从田间筛选
出少量弱毒株,并在‘本地早’和‘墨西哥’莱檬上进行了接种强毒株的拮抗试验(崔伯法 等,2005;
Jiang et al.,2008;李芳 等,2010)。
3.4 其它国家茎陷点型衰退病防治进展
除在重病果园中幸存的健康植株上获得弱毒株外,在秘鲁等国还通过棉蚜将苗黄型或茎陷点型
CTV 强毒株经西番莲(Passiflora),再传回‘墨西哥’莱檬的方式来降低强毒株的致病力。通过这
种方法,Roistacher 等(1988)和 Bederski 等(2005,2010)获得了多个弱毒株,其中 Code 37A 对
‘福本’脐橙、‘卡拉卡拉’脐橙、‘晚棱’脐橙和‘奈维林娜’脐橙均有很好的保护效果;Code
37B 对‘马叙’葡萄柚的保护效果极佳;Code 37C 可保护‘星路比’葡萄柚、‘马叙’葡萄柚、‘火
焰’葡萄柚和‘奥朗布朗克’葡萄柚。此外,澳大利亚、日本等国也已成功运用交叉保护技术防治
本国的茎陷点型衰退病(Broadbent et al.,1991;Ieki et al.,1997;Zhou,2001;Zhou et al.,2002)。
4 速衰型衰退病的防治
虽然使用枳、枳橙等抗病品种作为砧木可有效防治速衰型衰退病的危害,但由于酸橙砧木具有
土壤适应性强、嫁接亲和性高、抗脚腐病、产量稳定以及果实品质好等优点,所以尽管其对速衰型
衰退病敏感,但目前仍是美国、中美洲等地区重要的砧木品种(Hifny et al.,2012;Lee & Keremane,
2013)。为保护酸橙砧木免受速衰型衰退病的为害,延长其使用寿命,研究人员一直在开展交叉保
护防治速衰型衰退病的研究。
在早期研究中,Wallace 和 Drake(1976)和 van Vuuren 等(1991)从感染苗黄型衰退病后又症
状消失的植株中获得了数十个 CTV 弱毒株,并将其用于防治速衰型衰退病,但未能成功。随后,在
美国(佛罗里达)、巴西、委内瑞拉等也开展了类似研究,但绝大多数 CTV 弱毒株仅能在接种后
1 ~ 3 年内延缓速衰症状的发生(Ochoa et al.,1993;Roistacher & Dodds,1993;Lee & Keremane,
2013)。虽然 Powell 等(1999)筛选出的 CTV 弱毒株 DD 102bb,Guettler HS 和 DPI 1-12-5-X-E 能
分别保护以酸橙作砧木的甜橙和‘红宝石’葡萄柚长达 8 年和 16 年以上,但由于 20 世纪 90 年代后
期褐色橘蚜侵入美国佛罗里达,同时引入了新的速衰型强毒株,从而导致原有弱毒株的保护效果迅
速丧失。在褐色橘蚜侵入佛罗里达 5 年后,仅有不到 1/3 的预免疫酸橙砧‘红宝石’葡萄柚未感染
速衰型衰退病(Powell et al.,2003)。截止目前虽然已有数百个 CTV 弱毒株被用于了田间试验,但
均不能对速衰型衰退病产生持久的防治效果(Roistacher & Dodds,1993;Albiach-Martí et al.,2010;
Lee & Keremane,2013)。
5 交叉保护机理研究
在早期研究中发现,交叉保护对柑橘衰退病的防治效果主要依赖于强弱毒株间基因序列同源性
程度,由此推测转录后基因沉默(PTGS)与交叉保护防治柑橘衰退病的机理有关(Zhou et al.,2002)。
随后,Fagoaga 等(2006)和 Ruiz-Ruiz 等(2011)观察到‘墨西哥’莱檬在感染 CTV 后会产生大
量来源于 CTV 的特异性小 RNA,以及转录区甲基化等现象。此外,在预免疫植株中虽然 CTV 弱毒
株仅分布于不足 1/3 的寄主细胞,但所有的寄主细胞都会对随后拮抗接种的基因型相同的 CTV 强毒
株具有免疫能力,由此推测在交叉保护防治柑橘衰退病的过程中存在类似 PTGS 中的信号传递
(Folimonova et al.,2008,2010)。上述研究结果都进一步表明,PTGS 是交叉保护防治柑橘衰退病
9 期 周 彦:交叉保护防治柑橘衰退病研究进展 1797

的重要机理。
虽然 PTGS 可以解释交叉保护防治柑橘衰退病过程中出现的许多现象,但也有研究显示,即使
CTV 强弱毒株间的序列相似性超过 90%,弱毒株也不能阻止强毒株的为害(Ruiz-Ruiz et al.,2006)。
此外,在对 CTV 具有高抗或免疫能力的转基因植株中,由 CTV 诱导产生的特异性小 RNA 的拷贝
数远低于其在敏感植株中产生特异性小 RNA 的拷贝数,由此推测除 PTGS 外,还有其它抗病机理
参与了交叉保护防治柑橘衰退病的过程,并且可能存在控制交叉保护防治效果的关键基因或位点
(Fagoaga et al.,2006;López et al.,2010;Ruiz-Ruiz et al.,2011)。为此,Folimonova 等(2010)
通过用不同 CTV 的 p27、p25、p18、p13、p20 和 p23 基因分别替换 T36 分离株中相应基因的方式
构建重组 CTV,结果显示,只有替换的基因来自与 T36 分离株基因型相同的重组 CTV 才能阻止 T36
分离株感染柑橘。Folimonova(2012)进一步将 CTV pCTV9 中 p33 基因的启动子进行移码突变或
敲除,获得的突变体与 CTV 全长侵染性克隆 CTV9 + GFP 之间不再发生拮抗反应,并且该突变体在
替换了来自其它基因型 CTV 的完整 p33 基因后,仍无法恢复拮抗 CTV9 + GFP 的能力。该研究结果
首次证明蛋白介导的抗性在交叉保护防治柑橘衰退病中也发挥了重要作用,并且基因型相同的 CTV
编码的同源 p33 蛋白可能是其中的关键因子。
此外,Febres 等(2008)在转基因抗 CTV 的研究中还发现,虽然大部分转基因抗病植株都出现
了 PTGS 的特征,但是在对 CTV 抗性最强的转基因植株中并没有发现特异性小 RNA 积累,以及转
录区甲基化等现象,反而表现出启动子序列中胞嘧啶甲基化等转录水平基因沉默(TGS)的特点。
因此交叉保护防治柑橘衰退病是一个十分复杂的过程,除 PTGS 外,蛋白介导的抗性、TGS 等抗病
机理可能分别在不同的抗病阶段发挥了各自的作用(Febres et al.,2008;Folimonova,2012,2013)。
6 存在的困难与解决对策
6.1 弱毒株筛选技术
目前筛选有保护作用的弱毒株仍主要依靠经验,且很难成功(Müller et al.,2000)。由于只有在
相同基因型的CTV之间才会发生交叉保护现象,因此今后可首先运用多重分子标记或深度测序技术,
明确当地强毒株的基因型,从而有针对性地选择相同基因型的弱毒株开展防治研究(Folimonova et
al.,2010;Olivier & Pietersen,2014)。此外,混合使用不同基因型的CTV弱毒株可提高交叉保护的
防治效果(Scott et al.,2013)。
6.2 弱毒株获得途径
前期研究显示,自然界中保护效果显著的弱毒株数量极少,且可能混有通过单蚜传毒也难以分
离的强毒株,当环境或栽培条件改变时,弱毒株会因此丧失保护效果(Bederski et al.,2005;Scott et
al.,2013)。为解决这些难题,今后应在进一步明确同源 p33 蛋白等控制交叉保护效果关键因子的基
础上,通过基因重组技术对现有弱毒株进行改造,从而获得具有良好保护效果的重组 CTV 弱毒疫苗
(Satyanarayana & Dawson,2012;Dawson et al.,2013)。此外,随着对交叉保护防治柑橘衰退病
机理研究的深入,PTGS 技术也应用于抗柑橘衰退病研究。通过在植株中表达由 CTV 编码的沉默抑
制子 p23、p20 和 p25 基因,以及 3′末端 UTR 序列构成的发夹结构,可提高‘墨西哥’莱檬、‘大翼’
莱檬、‘伏令’夏橙和‘哈姆林’甜橙等对 CTV 强毒株的抗性(López et al.,2010;Muniz et al.,
2012;Soler et al.,2012)。该方法将在主栽柑橘品种上进行进一步验证。
虽然交叉保护防治柑橘衰退病的研究还面临着一些问题,但因其具有其它防治方法所无法比拟
1798 园 艺 学 报 41 卷
的优点,因此仍将是今后柑橘衰退病防治的重要研究内容。

References
Albiach-Marti M R,Robertson C,Gowda S,Tatineni S,Belliure B,Garnsey S M,Folimonova S Y,Moreno P,Dawson W O. 2010. The
pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3-terminal region of the viral genome.
Molecular Plant Pathology,11 (1):55–67.
Ananthakrishnan G,Venkataprasanna T,Roy A,Brlansky R H. 2010. Characterization of the mixture of genotypes of a Citrus tristeza virus isolate
by reverse transcription-quantitative real-time PCR. Journal of Virological Methods,164 (1–2):75–82.
Balaraman K,Ramakrishnan K. 1980. Strain variation and cross protection in Citrus tristeza virus on acid lime//Calavan E C,Garnsey S M,Timmer
L W. Proceedings of the 8th international organization of citrus virologists. California:University of California,Riverside Press:60–68.
Bar-Joseph M,Marcus R,Lee R F. 1989. The continuous challenge of Citrus tristeza virus control. Annual Review of Phytopathology,27:291–
316.
Bederski K,Roistacher C N,Müller G W. 2005. Cross protection against the severe Citrus tristeza virus stem pitting in Peru//Hilf M E,Duran-Vila
N,Rocha-Peña M A. Proceedings of the 16th international organization of citrus virologists. California:University of California,Riverside
Press:117–126.
Bederski K,Roistacher C N,Müller G W,Silvestre O P. 2010. Incidence of long-term cross protection in the evolution of Citrus tristeza virus
symptoms in Peru//Duran-Vila N. Proceedings of the 17th conference of the international organization of citrus virologists. California:University
of California,Riverside Press:1–13.
Broadbent P,Bevington K B,CooteB G. 1991. Control of stem pitting of grapefruit in Australia by mild strain cross protection//Brlansky R H,Lee
R F,Timmer L W. Proceedings of the 11th conference of the international organization of citrus virologists. California:University of California,
Riverside Press:64–70.
Broadbent P,Brlansky R H,Indsto J. 1996. Biological characterization of Australian isolates of Citrus tristeza virus and separation of subisolates by
single aphid transmission. Plant Disease,80 (3):329–333.
Corazza M J,Zanutto C A,Zanineli-RéM L,Müller G W,de Carvalho N W M. 2012. Comparison of Citrus tristeza virus(CTV)isolates by RFLP
analysis of the coat protein nucleotide sequences and by the severity of the symptoms. Tropical Plant Pathology,37 (3):179–184.
Costa A S,Müller G W. 1980. Tristeza controlled by cross protection. A U. S.-Brazil cooperative success. Plant Disease,64:538–541.
Costa A T,de Carvalho N W M,Zanutto C A,Mülle G W. 2010. Stability of Citrus tristeza virus protective isolates in field conditions. Pesquisa
Agropecuaria Brasileira,45 (7):693–700.
Cui Bo-fa,Cui Sheng-wei,Wang Hong-xiang,Weng Fa-ling,Gong Ji-qiang. 2010. Study of cross protection of Citrus tristeza virus disease on
Bendizao mandarin(Citrus succosa). Journal of Zhejiang University:Agric & Life Sci,31 (4):433–438. (in Chinese)
崔伯法,崔圣为,王洪祥,翁法令,龚吉强. 2005. 本地早柑橘衰退病毒病的交叉保护研究. 浙江大学学报:农业与生命科学版,31 (4) :
433–438.
Dawson W O,Garnsey SM,Tatineni S,Folimonova S Y,Harper S J,Gowda S. 2013. Citrus tristeza virus-host interactions. Frontiers in
Microbiology,4:88–97.
Fagoaga C,López C,de Mendoza A H,Moreno P,Navarro L,Flores R,Peña L. 2006. Post-transcriptional gene silencing of the p23 silencing
suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology,60 (2):153–165.
Febres V J,Lee R F,Moore G A. 2008. Transgenic resistance to Citrus tristeza virus in grapefruit. Plant Cell Reports,27 (1):93–104.
Folimonova S Y,F olimonov A S,Satyanarayana T,Dawson W O. 2008. Citrus tristeza virus:Survival at the edge of the movement continuum.
Journal of Virology,82 (13):6546–6556.
Folimonova S Y,Robertson C J,Shilts T,Folimonov A S,Hilf M E,Garnsey S M,Dawson W O. 2010. Infection with strains of Citrus tristeza
virus does not exclude superinfection by other strains of the virus. Journal of Virology,84 (3):1314–1325.
Folimonova S Y. 2012. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. Journal of Virology,86
(10):5554–5561.
Folimonova S Y. 2013. Developing an understanding of cross-protection by Citrus tristeza virus. Frontiers in Microbiology,4:76–85.
9 期 周 彦:交叉保护防治柑橘衰退病研究进展 1799

Fu Cui-na,Xiao Yuan-hui,Chen Gui-feng. 2013. Progresses in study of cross protection against citrus tristeza. Nanfang Yuanyi,24 (6):52–54. (in
Chinese)
傅翠娜,肖远辉,陈贵峰. 2013. 柑橘衰退病交叉保护研究进展. 南方园艺,24 (6):52–54.
Garnsey S M,Civerolo E L,Gumpf D J,Yokomi R K,Lee R F. 1991. Development of a world wide collection of Citrus tristeza virus//Brlansky R
H,Lee R F,Timmer L W. Proceedings of the 11th conference of the international organization of citrus virologists. California:University of
California,Riverside Press:113–120.
Gillings M,Broadbent P,Indsto J. 1993. Characterization of isolates and strains of Citrus tristeza Closteorvirus using restriction analysis of the coat
protein gene amplified by the polymerase chain reaction. Journal of Virological Methods,44 (2–3):305–317.
Hifny H A,Abd Elrazik A M,Abdrabboh G A,Sultan M Z. 2012. Effect of some citrus rootstocks on fruit quality and storability of Washington
navel orange under cold storage conditions. American-Eurasian Journal of Agricultural & Environmental Sciences,12 (10):1266–1273.
Hilf M E,Mavrodieva V A,Garnsey S M. 2005. Genetic marker analysis of a global collection of isolates of Citrus tristeza virus:Characterization
and distribution of CTV genotypes and association with symptoms. Phytopathology,95 (8):909–917.
Ieki H,Yamaguchi A,Kano T. 1997. Control of stem pitting disease caused by Citrus tristeza virus using protective mild strains in navel orange.
Annual Phytopathology Society of Japanese,63:170–175.
Jiang B,Hong N,Wang G P,Hu J,Zhang J K,Wang C X,Liu Y,Fan XD. 2008. Characterization of Citrus tristeza virus strains from southern
China based on analysis of restriction patterns and sequences of their coat protein genes. Virus Genes,37 (2):185–192.
Ke C,Garnsey S M,Tsai J H. 1984. A survey of Citrus tristeza virus in china by enzyme-linked immunosorbent assay// Garnsey S M,Timmer L W,
Dodds J A. Proceedings of the 9th international organization of citrus virologists. California:University of California,Riverside Press:70–
76.
Lee R F,Keremane M L. 2013. Mild strain cross protection of tristeza:A review of research to protect against decline on sour orange in Florida.
Frontiers in Microbiology,4:259–270.
Li Fang,Deng Zi-niu,Han Jian,Yan Jia-wen,Shu Guang-ping,Dai Su-ming. 2010. Investigation of stem-pitting Citrus tristeza virus and screening
of mild strains in Hunan province. Acta Phytopathologica Sinica,40 (4):442–445. (in Chinese)
李 芳,邓子牛,韩 健,严佳文,舒广平,戴素明. 2010. 湖南柑橘衰退病调查分析及弱毒系筛选. 植物病理学报,40 (4):442–445.
López C,Cervera M,Fagoaga C,Moreno P,Navarro L,Flores R,Peña L. 2010. Accumulation of transgene-derived siRNAs is not sufficient for
RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Molecular Plant Pathology,11 (1):33–41.
Luttig M,van Vuuren S P,van der Vyver J B. 2002. Differentiation of single aphid cultured sub-isolates of two South African Citrus tristeza virus
isolates from grapefruit by single-stranded conformation polymorphism// Duran-Vila N,da Graca J V. Proceedings of the 15th international
organization of citrus virologists. California:University of California,Riverside Press:186–196.
Matos L A,Hilf M E,Cayetano X A,Feliz A O,Harper S J,Folimonova S Y. 2013. Dramatic change in Citrus tristeza virus populations in the
Dominican Republic. Plant Disease,97 (3):339–345.
Moreno P,Ambrós S,Albiach-Martí M R,Guerri J,Peña L. 2008. Citrus tristeza virus:A pathogen that changed the course of the citrus industry.
Molecular Plant Pathology,9 (2):251–268.
Müller G W,Costa A S. 1968. Further evidence on protective interference incitrus tristeza//Garnsey S M,Lee R F. Proceedings of the 4th
international organization of citrus virologists. Florida:University of Florida Press:71–83.
Müller G W,Costa A S,Castro J L,Guarado N. 1988. Results from preimmunized tests to control the Capão Bonito strain of tristeza//Timmer L W,
Garnsey S M,Navarro L. Proceedings of the 10th international organization of citrus virologists. California:University of California,Riverside
Press:82–85.
Müller G W,Targon M L P N,Machado M A. 2000. Thirty years of preimmunized Pera sweet orange in the citriculturein São Paulo State,Brazil//da
Graca J V,Lee R F,Yokomi R K. Proceedings of the 14th international organization of citrus virologists. California:University of California,
Riverside Press:400–402.
Muniz F R,de Souza A J,Stipp L C L,Schinor E,Freitas W,Harakava R,Stach-Machado D R,Rezende J A M,Mourão F A A,B M J Mendes.
2012. Genetic transformation of Citrus sinensis with Citrus tristeza virus(CTV)derived sequences and reaction of transgenic lines to CTV
infection. Biologia Plantarum,56 (1):162–166.
1800 园 艺 学 报 41 卷
Muniz F R,Souza A,Harakava R,de Assis Alves Mourão Filho F,Stach-Machado D R,Rezende J A M,Febres V J,Moore G A,Mendes B
M J. 2014. Reaction of transgenic Citrus sinensis plants to Citrus tristeza virus infection by Toxoptera citricida. European Plant Pathology,139
(1):151–159.
Ochoa F,Carballa O,Trujillo G,Mayoral de Izaquirre M L,Lee R F. 1993. Biological characterization and evaluation of cross protection potential
of Citrus tristeza virusisolates in Venezuela// Moreno P,da Graca,Timmer L W. Proceedings of the 12th international organization of citrus
virologists. California:University of California,Riverside Press:1–7.
Olivier Z,Pietersen G. 2014. Characterization of a novel Citrus tristeza virus genotype within three cross-protecting source GFMS12 sub-isolates in
South Africa by means of Illumina sequencing. Archieves of Virology,159 (8):2133–2139.
Pappu H R,Pappu S,Niblett C. 1993. Comparative sequence analysis of the coat proteins of biologically distinct citrus tristeza Closterovirus isolates.
Virus Genes,7 (3):255–264.
Peroni L A,Lorencini M,dos Reis J R,Machado M A,Stach-Machado D R. 2009. Differential diagnosis of Brazilian strains of Citrus tristeza virus
by epitope mapping of coat protein using monoclonal antibodies. Virus Research,145 (1):18–25.
Powell C A,Pelosi R R,Rundell P A,Stover E,Cohen M. 1999. Cross-protection of grapefruit from decline-inducing isolates of Citrus tristeza virus.
Plant Disease,83 (11):989–991.
Powell C A,Pelosi R R,Rundell P A,Cohen M. 2003. Breakdown of cross-protection of grapefruit from decline-inducing isolates of Citrus tristeza
virus following introduction of the brown citrus aphid. Plant Disease,87 (9):1116–1118.
Roistacher C N,Dodds J A,Bash J A. 1988. Cross protection against citrus tristeza seedling yellows and stem pitting viruses by protective isolates
developed in greenhouse plants//Timmer L W,Garnsey S M,Navarro L. Proceedings of the 10th international organization of citrus virologists.
California:University of California,Riverside Press:91–100.
Roistacher C N,Dodds J A. 1993. Failure of 100 mild Citrus tristeza virus isolates from California to cross protect against a challenge by severe
sweet orange stem pitting isolates//Moreno P,da Graca,Timmer L W. Proceedings of the 12th international organization of citrus virologists.
California:University of California,Riverside Press:100–107.
Ruiz-Ruiz S,Moreno P,Guerri J,Ambroos S. 2006. The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from
Spain:Comparison with isolates from different origins. Archieves of Virology,151 (2):387–398.
Ruiz-Ruiz S,Moreno P,Guerri J,Ambrós S. 2009. Discrimination between mild and severe Citrus tristeza virus isolates with a rapid and highly
specific real-time reverse transcription-polymerase chain reaction method using TaqMan LNA probes. Phytopathology,99 (3):307–315.
Ruiz-Ruiz S,Navarro B,Gisel A,Peña L,Navarro L,Moreno P,Serio F D,Flores R. 2011. Citrus tristeza virus infection induces the accumulation
of viral small RNAs(21–24 nt)mapping preferentially at the 3’-terminal region of the genomic RNA and affects the host small RNA profile.
Plant Molecular Biology,75 (6):607–619.
Sambade A,Lopez C,Rubio L. 2003. Polymorphism of a specific region in gene p23 of Citrus tristeza virus allows discrimination between mild and
severe isolates. Archieves of Virology,148 (12):2325–2340.
Satyanarayana T,Dawsona W O. 2012. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. Journal of Virology,
86 (15):7850–7857.
Scott K A,Hlela Q,Zablocki O,Read D,van Vuuren S,Pietersen G. 2013. Genotype composition of populations of grapefruit cross protecting Citrus
tristeza virus strain GFMS12 in different host plants and aphid-transmitted sub-isolates. Archieves of Virology,158 (1):27–37.
Soler N,Plomer M,Fagoaga C,Moreno P,Navarro L,Flores R,Peńa L. 2012. Transformation of Mexican lime with an intron-hairpin construct
expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to
the virus. Plant Biotechnology Journal,10 (5):597–608.
Song Zhen,Zhou Chang-yong,Zhou Yan,Wang Xue-feng,Tang Ke-zhi. 2006. Molecular identification of Citrus tristeza virus isolates from
pummelos. Chinese Journal of Virology,22 (4):314–319. (in Chinese)
宋 震,周常勇,周 彦,王雪峰,唐科志. 2006. 柑橘衰退病毒柚类分离株的分子鉴定. 病毒学报,22 (4):314–319.
van Vuuren S P,Collins R P,da Graça J V. 1991. The performance of exotic Citrus tristeza virus isolates as preimmunizing agents for sweet orange
on sour orange rootstock under natural disease pressure in South Africa//Brlansky R H,Lee R F,Timmer L W. Proceedings of the 11th
conference of the international organization of citrus virologists. California:University of California,Riverside Press:60–63.
9 期 周 彦:交叉保护防治柑橘衰退病研究进展 1801

van Vuuren S P,Collins R P,da Graça J V.1993. Evaluation of Citrus tristeza virus isolates for cross protection of grapefruit in South Africa. Plant
Disease. 77 (1):24–28.
von Broembsen L A,da Graça J V. 1988. South Africa’s citrus improvement programme//Timmer L W,Garnsey S M,Navarro L. Proceedings of the
10th international organization of citrus virologists. California:University of California,Riverside Press:407–416.
Wallace J M,Drake R J. 1976. Progress report of studies in California on preimmunization against Citrus tristeza virus in budded citrus trees//
Timmer L W,Garnsey S M,Navarro L. Proceedings of the 10th international organization of citrus virologists. California:University of
California,Riverside Press:58–62.
Wu G W,Tang M,Wang G P,Wang C X,Liu Y,Yang F,Hong N. 2014. The epitope structure of Citrus tristeza virus coat protein mapped by
recombinant proteins and monoclonal antibodies. Virology,448 (5):238–246.
Yokomi R K,Saponari M,Sieburth P J. 2010. Rapid differentiation and identification of potential severe strains of Citrus tristeza virus by real-time
reverse transcription-polymerase chain reaction assays. Phytopathology,100 (4):319–327.
Zanutto C A,Corazza M J,de Carvalho Nunes W M,Müller G W. 2013. Evaluation of the protective capacity of new mild Citrus tristeza virus
(CTV)isolates selected for a preimmunization program. Scientia Agricola,70 (2):116–124.
Zhao Xue-yuan,Jiang Yuan-hui,Zhang Quan-bing,Qiu Zhu-shi,Su Wei-fang. 1979. The distribution of yellow-seeding tristeza virus and its reaction
on six kinds of sour orange rootstocks. Acta Phytopathologica Sinica,9 (1):61–63. (in Chinese)
赵学源,蒋元晖,张权炳,邱柱石,苏维芳. 1979. 柑橘苗黄型衰退病毒的分别概括和六种酸橙类砧木对它的反应. 植物病理学报,9 (1):
61–63.
Zhou C Y. 2001. Studies on the mechanism of mild strain cross protection against Citrus tristeza virus[Ph. D. Dissertation]. Sydney:University of
Sydney.
Zhou C Y,Hailstones D,Broadbent P,Connor R,Bowyer J. 2002. Studies on mild strain cross protection against stem-pitting Citrus tristeza virus//
Duran-Vila N,da Graca J V. Proceedings of the 15th international organization of citrus virologists. California:University of California,
Riverside Press:125–157.
Zhou C Y,Zhao X Y,Jiang Y H,Yang F Y,Yang K Z,Li T S,Dai S G. 1996. Characterization of Citrus tristeza virus isolates infecting pummelo
and sweet orange in Sichuan Province,China//da Graca J V,Moreno P,Yokomi R K. Proceedings of the 13th International Organization of
Citrus Virologists. California:University of California,Riverside Press:78–82.
Zhou Yan,Zhou Chang-yong,Li Zhong-an,Wang Xue-feng,Liu Ke-hong. 2008. Mild strains cross protection against stem-pitting tristeza of sweet
orange. Scientia Agricultura Sinica,41 (12):4085–4091. (in Chinese)
周 彦,周常勇,李中安,王雪峰,刘科宏. 2008. 利用弱毒株交叉保护技术防治甜橙茎陷点型衰退病. 中国农业科学,41 (12):
4085–4091.
Zhou Yan,Zhou Chang-yong,Song Zhen,Liu Ke-hong,Yang Fang-yun. 2007. Characterization of Citrus tristeza virus isolates by indicators and
by molecular biology methods. Agricultural Sciences in China,6 (5):101–105.
Zhou Yan,Zhou Chang-yong,Wang Xue-feng,Tang Ke-zhi. 2005a. Study on the polymorphism of Citrus tristeza virus in Chongqing,P. R. China.
Acta Phytophylacica Sinica,32 (2):143–147. (in Chinese)
周 彦,周常勇,王雪峰,唐科志. 2005a. 重庆地区柑橘衰退病毒多态性研究. 植物保护学报,32 (2):143–147.
Zhou Yan,Zhou Chang-yong,Wang Xue-feng,Liu Ke-hong,Li Zhong-an. 2005b. Prelimiliary studies on molecular characterization of 11 isolates
of Citrus tristeza virus. Acta Phytopathologica Sinica,35 (6) (Suppl):147–150. (in Chinese)
周 彦,周常勇,王雪峰,刘科宏,李中安. 2005b. 柑橘衰退病毒分离株分子特征初步研究. 植物病理学报,35 (6) (增刊):147–150.
Zou Qin,Zhou Yan,Li Zhong-an,Zhou Chang-yong,LiuYong-qing,Su Hua-nan. 2011. Monitoring the temporal change of the mild and severe
strain of Citrus tristeza virus by real-time RT-PCR. Acta Horticulturae Sinica,38 (11):2193–2199. (in Chinese)
邹 勤,周 彦,李中安,周常勇,刘永清,苏华楠. 2011. 应用 real-time RT-PCR 监测柑橘衰退病毒强、弱毒株的时序变化. 园艺学
报,38 (11):2193–2199.