免费文献传递   相关文献

Advances in Application of Transgenic Breeding Technology in the Traits Improvement of Chrysanthemum

转基因育种技术在菊花性状改良中的应用进展



全 文 :园 艺 学 报 2013,40(9):1813–1825 http: // www. ahs. ac. cn
Acta Horticulturae Sinica E-mail: yuanyixuebao@126.com
收稿日期:2013–06–21;修回日期:2013–08–20
基金项目:北京市园林绿化局计划项目(YLHH201300104)
*通信作者 Author for correspondence(E-mail:hongbo1203@163.com)
转基因育种技术在菊花性状改良中的应用进展
成丽娜,魏 倩,Muhammad Imtiaz,高俊平,洪 波*
(中国农业大学观赏园艺与园林系,北京 100193)
摘 要:自 1989 年发现了菊花对农杆菌浸染的敏感性,农杆菌介导转化法已成功应用于菊花花色、
花期、株形、抗病虫及耐非生物胁迫等性状的改良中。从影响菊花遗传转化效率的农杆菌菌株类型、外
植体选用、辅助添加剂的使用以及抗生素筛选等几方面阐述了菊花遗传转化技术研究的进展和应用现状,
对菊花分子育种性状改良和重要功能基因发掘等研究进展进行综述,并对菊花转化效率改善途径的探索
和环境友好型转基因新技术研发前景提出展望,以期为菊花分子育种提供参考。
关键词:菊花;农杆菌;转基因;分子育种;性状改良
中图分类号:S 682.1+1 文献标志码:A 文章编号:0513-353X(2013)09-1813-13

Advances in Application of Transgenic Breeding Technology in the Traits
Improvement of Chrysanthemum
CHENG Li-na,WEI Qian,Muhammad Imtiaz,GAO Jun-ping,and HONG Bo*
(Department of Ornamental Horticulture,China Agricultural University,Beijing 100193,China)
Abstract:Following the discovery of chrysanthemum sensitivity to Agrobacterium in 1989,the
technique of Agrobacterium-mediated genetic transformation has been successfully used in improvement
of traits such as flower color,plant style,flowering time,disease-insect resistance and abiotic stress
tolerance. In this review,the advances of Agrobacterium-mediated genetic transformation in chrysanthemum
were summarized,including Agrobacterium strains,explants for infection,the addition of chemical
compounds and selection markers. Also,the improvement of traits,exploration of important genes was
reviewed and the perspective of enhancing transformation efficiency and developing environment-friendly
transgenic technology were discussed. The main goal is to provide reference for molecular breeding of
chrysanthemum.
Key words:chrysanthemum;Agrobaterium;transgenic technology;molecular breeding;improvement
of traits

通过常规的杂交育种手段,菊花[Chrysanthemum morifolium(Ramat.)Tzvel)]的品种改良已在
株形、花色、花期、抵抗病虫害和非生物胁迫等方面取得了显著的成绩。但菊花高度杂合的特点使
其在杂交育种中不确定性很强,生殖或地理隔离使其无法充分利用近缘种属植物的优良基因资源,
常规方法育种存在较大的局限性。转基因育种目前已成为菊花新品种培育的重要手段,外源基因的
导入有针对性地改善了目标性状并保留原有优良性状,实现了利用新基因资源改良菊花品种的目标。

1814 园 艺 学 报 40 卷
农杆菌介导的外源基因转化是最为常用的菊花转基因的手段,其转化效率依赖于基因型和外植体的
再生特性。1989 年 Lemieux 利用农杆菌介导法成功获得第一株转基因菊花(Lemieux et al.,1990),
开创了菊花分子育种的新途径。至今分子育种已在花色、花期、抗性等方面取得了极大成就。
1 菊花的遗传转化体系
自 20 世纪 70 年代中期首次发现菊花对农杆菌敏感以来,农杆菌介导法已成为菊花遗传转化中
最常用的方法,但存在转化效率低、外源基因表达量低、嵌合体株率高及再生过程中基因沉默等问
题。外植体的选择、抗生素的确定、易感菌株的选用、共培养条件等对转化效率起着决定性作用。
1.1 菌株的选择
菊花对 LBA4404、EHA105、EHA101、AGL0 和 Ach5 等多种农杆菌菌株都表现出敏感性(Ledger
et al.,1991;Renou et al.,1993;de Jong et al.,1994)。Ledger 等(1991)首次使用农杆菌 LBA4404
转化菊花品种‘Korean’,成功获得转基因菊花,遗传转化率达到 1.7%。Renou 等(1993)利用 EHA101
菌株转化菊花,遗传效率可达到 5% ~ 40%。Shinoyama 等利用 LBA4404 和 EHA101 菌株转化菊花
品种‘Shuho No Chikara’,并对两者遗传效率进行比较,LBA4404 为 5.2%(Shinoyama et al.,2002b),
EHA101 为 4.4%(Shinoyama et al.,2002a)和 8.8%(Shinoyama et al.,2003);利用 EHA101 和 EHA105
两个菌株转化菊花栽培种‘Yamate Shiro’,得到了相对较高的遗传转化效率,EHA101 为 21.7%
(Shinoyama et al.,2002a)和 22.0%(Shinoyama et al.,2008),EHA105 为 23.9%(Shinoyama et al.,
2012b)。此外,Ach5、AGL0、B6S3 等菌株也应用于菊花的转化过程,并成功获得较高的转化效率
(Pavingerová et al.,1994;Urban et al.,1994;Annadana et al.,2002)。
在早期的菊花遗传转化中,对菌株的选择较分散,其中 LBA4404 的使用率较高,其次为 A2002、
A281、Ach5 等菌株。de Jong 等(1994)和 Urban 等(1994)发现使用的菌株不同,转化的效率不
同,AGL0 和 EHA105 相较 LBA4404 的遗传转化效率更高。近些年,随着菊花转化方法的不断改进,
遗传转化率高的菌株的使用表现出集中化,主要为 LBA4404,其次为 EHA101 和 EHA105,再次是
AGL0。综合菊花转基因的成功案例中不同菌株的使用情况(Teixeira et al.,2013),最为常用的
LBA4404 菌株遗传转化率高且较稳定,使用的比例占 32.0%,其次为 EHA105、AGL0 和 C58,分
别占 15.5%、11.7%和 7.8%。
1.2 外植体的选用与辅助试剂的添加处理
外植体的来源和生理活性也是决定转化效率的另一主要因素。迄今为止,叶片是最为常见且效
率较高的农杆菌侵染受体,其次是茎(Teixeira et al.,2013);此外,采用花梗(Lemieux et al.,1990;
de Jong et al.,1995;Annadana et al.,2002)、花瓣(de Jong et al.,1994)和根(Dolgov et al.,1997)
作为受体的遗传转化均获得成功。
外植体与农杆菌共培养过程中,添加乙酰丁香酮或水解酪蛋白等辅助试剂的培养基可以促进提
高农杆菌的侵染效率。在共培养基质中添加 100 μmol · L-1的乙酰丁香酮可以提高农杆菌的侵染性(de
Jong et al.,1994)。Shinoyama 等(1998)发现 50 μmol · L-1 的乙酰丁香酮就足以提高农杆菌的侵染
效率,同时还发现添加水解酪蛋白的共培养基可显著提高侵染效率,及添加 5%(体积比)聚山梨
酸酯后可以增强农杆菌与外植体之间的粘合性。
1.3 阳性植株筛选剂的确定
菊花转化中选择标记基因的使用最早见于 1990 年(Lemieux et al.,1990),该基因为新霉素磷
9 期 成丽娜等:转基因育种技术在菊花性状改良中的应用进展 1815

酸转移酶 II 基因(nptⅡ),卡那霉素在之后的研究中被作为最主要的抗生素。此外,潮霉素、巴龙
霉素、遗传霉素等抗生素均在选择转基因菊花阳性植株中取得了成功,并得到了广泛的应用
(Shinoyama et al.,2002a;Aida et al.,2004;Narumi et al.,2005b;Kubo et al.,2006)。
此外,Xie 等(2012)以磷酸甘露糖异构酶基因(PMI)为选择性标记基因,用甘露糖作为选择
剂,以 PtDHAR 作为目的基因,获得了转化植株。通过甘露糖筛选后,155 株幼嫩植株存活,通过
Southern blot 分析,4 个株系转入了目的基因,这种甘露糖选择标记系统,对阳性植株的选择非常有
效,可以代替抗生素作为安全性非抗生素的阳性植株筛选剂。
2 转基因菊花的优良性状
2.1 观赏性状
转基因技术在观赏性状改良方面主要应用于花色、花形和株形等方面(表 1)。

表 1 菊花观赏性状相关基因的遗传转化
Table 1 Genetic transformation of genes related to ornamental traits in chrysanthemum
基因
Transgene
受体 Cultivars(species)for
genetic transformation
获得性状
Changed traits
参考文献
References
查尔酮合成酶基因 CHS *
Chalcone synthase gene
不详 Not specified 紫罗兰和白色花
Violet and white flowers
Lemieux et al.,1990
菊花查尔酮合成酶基因 CHS
Chrysanthemum chalcone synthase gene
Money Maker 浅粉色花
Pale pink flowers
Courtney et al.,1993
金鱼草查尔酮合成酶基因 CHS
Antirrhinum chalcone synthase gene
Parliament 浅粉色花
Pale pink flowers
Courtney et al.,1994;
Dolgov et al.,1997
F3’,5’H * 紫花野菊;野菊 Dendranthema
zawadskii;Dendranthema indicum
待发表 Unpublished Kim et al.,1998
菊花类胡萝卜素裂解双加氧酶基因
CmCCD4a Chrysanthemum carotenoid
cleavage ioxygenase gene
Sei-Marine 黄色花
Yellow flowers
Ohmiya et al.,2006,2009
玉米花青素调节基因 Lc
Maize Lc regulatory gene
不详 Not specified 深粉色花
Deeper pink flowers
Fukuta et al.,2009
菊花 AGAMOUS 基因 CAG
Chrysanthemum AGAMOUS gene
Sei-Marine 雄蕊和雌蕊表现出花冠状组织
Converte the stamen and pistil into
corolla-like tissues
Aida et al.,2008
章鱼碱合成酶基因 ocs*
Octopine synthase gene
白雪
White Snowdon
植株矮小
Decrease plant height
Pavingerová et al.,1994;
Benetka & Pavingerová,1995
rolC * 白雪 White Snowdon 株形矮小紧凑 Dwarf plant style Mitiouchkina et al.,2000
烟草光敏色素基因 phyB
Tobacco phytochrome B1 gene
Iridon 株形矮小且分枝角变大 Shorter in
stature and larger branch angles
Zheng et al.,2001
拟南芥赤霉素不敏感基因突变型 gai
Arabidopsis gibberellic acid insensitive gene
1581 株形矮小
Dwarf plant style
Petty et al.,2003
甘薯 MADS-box 基因 IbMADS4
Sweet potato MADS-box gene
Subangryeok 株形矮小紧凑
Dwarf plantstyle
Aswath et al.,2004
rolC * Ogura-nishiki 株形矮小 Dwarf plant style Kubo et al.,2006
菊花分枝抑制子类似基因 Ls-like
Chrysanthemum lateral suppressor-like gene
Shuho-no-Chikara 分枝减少
Decreased branches
Han et al.,2007
异戊烯基转移酶基因 Ipt *
Isopentenyl transferase gene
Iridon 增强分枝性
Increase branches
Khodakovskaya et al.,2009
菊花分枝抑制子类似基因 DgLsL
Chrysanthemum lateral Suppressor-Like
gene
精海 Jinghai 分枝增强(正义)或减少(反义)
Branches increase(sense)or
suppress(antisense)
Jiang et al.,2010
TCP3-SRDX * Sei-Marine 指状细长型叶片 Fringed leaves Narumi et al.,2011
* 文章中查找不到基因的来源。* Could not find the gene resources from cited references.
1816 园 艺 学 报 40 卷
查尔酮合成酶(chalcone synthase,CHS)是花青素合成的关键酶,跟花朵成色密切相关,将
CHS 的正义和反义片段导入菊花,抑制内源 CHS 的表达,植株花瓣颜色从粉色变成为浅粉色
(Courtney-Gutterson et al.,1993,1994)。通过 RNAi 技术沉默类胡萝卜素裂解双加氧酶(carotenoid
cleavage dioxygenase,CCD)基因,花色由白色变为黄色,培育出优良的‘Yellow Jinba’新品种(图
1,A、B)(Ohmiya et al.,2006,2009)。F3′,5′H 是花色素苷代谢途径中的一个关键性酶,控制合
成飞燕草素,形成蓝色系花。Kim 等(1998)将 F3′,5′H 基因成功导入野菊(Dendranthema indicum)
和紫花野菊(Dendranthema zawadskii)中,以期培育出蓝色菊花品种。
抑制菊花隐花基因 CAG(chrysanthemum-AGAMOUS),雄蕊和雌蕊表现出花冠状组织(Aida et
al.,2008),改变了花形。外源 rol 基因在菊花中表达,形成了矮小紧凑株型的植株(Mitiouchkina &
Dolgov,2000;Kubo et al.,2006)。赤霉素不敏感 gai 基因的导入也可以获得矮小的植株类型(图 1,
D)(Petty et al.,2003);此外,烟草光敏色素基因 phyB1 转入菊花可以引起植株轻微矮化(Zheng et
al.,2001),甘薯 MADS-box 基因 IbMADS4 的转入也能获得矮小紧凑的株型(Aswath et al.,2004)。
Khodakovskaya 等(2009)发现异戊烯基转移酶基因 IPT 的导入可增强植株的侧枝发生,而分枝抑
制子类似基因 Ls-like 基因的导入则会引起植株分枝的减少(Han et al.,2007;Jiang et al.,2010),
如图 1,C 所示(Jiang et al.,2010)。这些性状的改变为园林绿化的地被小菊提供了矮化多分枝的新
种质。Narumi 等(2011)利用 CRES-T(嵌合抑制子沉默技术)将拟南芥生长发育相关基因 TCP3
与植物特异转录抑制域 SRDX 相融合,而后转入菊花,获得了具有指状细长形叶片的植株。
2.2 花朵开放
菊花是典型的短日照植物,在短日照的秋季开花,之后随温度下降进入休眠状态,开花受光周
期和温度共同影响。转基因技术越来越多地运用于调节菊花开放时间(表 2)。与开花时间相关的基
因有 CO,FT,COL,HY5 和 COP1 等,其中 FT 蛋白具有诱导花芽分化的作用,如将拟南芥 FT
(FLOWERING LOCUS T)基因转入‘神马’菊花中,转基因株系的组培苗在 16 h 光照下分化出花
蕾,说明外源 FT 基因使短日照菊花具有了不依赖光周期控制而开花的特性,通过转 FT 基因来改变
菊花的花期是可行的(图 1,E)(姜丹 等,2010)。Oda 等(2012)从甘野菊中分离出 FT 类似基因
CsFTL1、CsFTL2 和 CsFTL3,其中 CsFTL3 被证实是光周期调控开花的关键调节子,CsFTL3 在菊
花中过表达后,与对照相比,在非诱导光照下可正常开花,推断 CsFTL3 可能诱导菊花提早开花。

表 2 菊花开花相关基因的遗传转化
Table 2 Genetic transformation of genes related to flowering time in chrysanthemum
基因
Transgene
受体品种 Cultivars for
genetic transformation
性状
Traits
资料来源
References
拟南芥 LFY 基因 Arabidopsis LFY gene 不详 Not specified 开花提前或延迟 Early or late flowering 邵寒霜 等,1999
水稻光敏色素基因 phyA Rice phytochrome A gene
拟南芥光敏色素基因 phyB Arabidopsis phytochrome B gene
不详
Not specified
改变植株生长习性
Change life habit of plant
Petty et al.,2000
苹果 MADS-box 基因 MdMADS2
Apple MADS-box gene
神马 Jinba 提前开花或延迟开花
Flower earlier or delay flowering
Han et al.,2009
拟南芥开花基因 FT
Arabidopsis Flowering Gene(FLOWERING LOCUS T)
神马 Jinba 不受光周期调控
Flower early without influence of light
姜丹 等,2010

菊花 MADS 基因 HAM75,HAM92,CDM111
Chrysanthemum MADS genes
白雪 White Snowdon 提早开花 Early-flowering Shulga et al.,2011
菊花乙烯受体基因 mDG-ERS1(etr1-4)Chrysanthemum
mutated ethylene receptor gene
Sei-Marine 提早开花 Early-flowering Morita et al.,2012
菊花 FT 类似基因 CsFTL3
Chrysanthemum FLOWERING LOCUS T-like gene
神马 Jinba 非诱导条件下正常开花
Flower under non-inductive conditions
Oda et al.,2012
9 期 成丽娜等:转基因育种技术在菊花性状改良中的应用进展 1817

在菊花品种‘Sei-Marine’中导入突变的乙烯受体基因 mDGERS1(etr1-4),降低了转基因植株
对乙烯敏感性,使得转基因植株在低温条件下仍能正常开放(Narumi et al.,2005a;Satoh et al.,2008)。
Morita 等(2012)也验证了 etr1-4 突变体转基因菊花植株可以早花并对 FLOWERING LOCUS T-like
的表达量有明显提高。对于一些品种,外源 GA 的施加可以代替短日处理促进花形成,而乙烯或乙
烯利将抑制花朵的开放(Sumitomo et al.,2008),证实了乙烯在花朵开放过程中起负调控的作用。
2.3 抗病性与抗虫性
设施栽培环境下种植的菊花极易感染病害,表现为植株矮化枯萎、叶片斑化、黑茎、植株生长
抑制等,严重影响了菊花的经济价值。菊花的病害主要分为两类:(1)病毒和类病毒,菊花抗病毒
转基因育种主要是将抑制病毒或类病毒发生的病毒本身基因的部分片段导入菊花后筛选抗病植株
(表 3)。如将黄瓜花叶病毒(CMV)外壳蛋白 CP 基因转入菊花‘Kundan’中,转基因植株对 CMV
的敏感性降低,同时延迟了植株的发病时间,表现出对 CMV 的抗性(Kumar et al.,2012)。

表 3 菊花抗病虫性相关基因的遗传转化
Table 3 Genetic transformation of genes related to disease and insect resistance in chrysanthemum
抗性
Resistance
基因
Transgene
受体品种 Cultivars for
genetic transformation
参考文献
References
病毒和类病毒
Virus and viroid
TSWV 病毒核壳蛋白基因 TSWV N
Nucleocapsid(N)gene of TSWV
Polaris,Iridon,Hekla Urban et al.,1994;
Sherman et al.,1998
TSWV 病毒核壳蛋白基因
Nucleocapsid protein gene of TSWV
Blush,Dark Buonze Charm,
Iridon,Tara
Yepes et al.,1995
TSWV、INSV、GRSV 病毒外壳蛋白基因
Nucleocapsid protein genes of TSWV,INSV,GRSV
Polaris,Iridon,Golden Polari Yepes et al.,1999
pacI * Reagan Ishida et al.,2002;Toguri et al.,
2003;Ogawa et al.,2005
CVB 病毒外壳蛋白基因 ORF5
Nucleocapsid protein genes of Chrysanthemum virus B
白雪
White Snowdon
Skachkova et al.,2006
CMV 外壳蛋白基因CP Nucleocapsid protein genes of CMW Kundan Kumar et al.,2012
真菌和细菌 兔防御素 NP-1 基因 NP-1 Rabbit defensin gene 001 傅荣昭 等,1998
Fungus and bacteria 小麦几丁质酶基因 RCC2 Wheat Chitinase gene Yamabiko Takatsu et al.,1999
水稻白叶枯病菌蛋白质激发子 HpaGXoo
Harpin gene from Xanthomonas oryzae pv. oryzae
碧玉台 Biyutai Xu et al.,2010
梅多聚半乳糖醛酸酶抑制蛋白基因 PGIP
Polygalacturonase inhibitor protein gene from P. mume
05-44-2 于淼 等,2010
N–甲基转移酶基因 CaXMT1,CaMXMT1,CaDXMT1*
N-methyltransferases gene
神马 Jinba Kim et al.,2011a
几丁质酶基因 chiⅡ * Chitinase gene Snow Ball Sen et al.,2013
棉铃虫
Cotton bollworm
苏云金杆菌内毒素基因 Bt Ⅱ
Endotoxin gene of Bacillus thuringiens
White Hurricane Hutchinson et al.,1992
苏云金芽杆菌杀虫晶体蛋白基因 cry1Ab Parliament van Wordragen et al.,1993
Crystal protein gene from Bacillus thuringiens Shuno-no-chikara Shinoyama et al.,2002b
Yamate-shiro Shinoyama et al,2008
棉蚜虫和甜菜粘虫
Beet armyworms and
cotton aphids
N–甲基转移酶基因 CaXMT1,CaMXMT1,CaDXMT1*
N-methyltransferases gene
神马 Jinba Kim et al.,2011b
二斑叶螨
Tetranychus urticae
苏云金杆菌 Bt 蛋白基因
Bt gene of Bacillus thuringiens
White Hurricane Dolgov et al.,1995,1997
甜菜夜蛾
Spodoptera exigua
苏云金芽杆菌杀虫晶体蛋白基因 cry1Ca
Crystal protein gene from Bacillus thuringiens
1581 de Jong,1999
菊天牛 Phytoecia
rufiventris Gautier
苏云金芽杆菌杀虫晶体蛋白基因 mBt886Cry3Aa
Crystal protein gene from Bacillus thuringiens 886 strain
不详 Not specified 王沛 等,2011
* 文章中查找不到基因的来源。* Could not find the gene resources from cited references.
1818 园 艺 学 报 40 卷
该手段在菊花中还应用于 TSWV,INSV,GRSV,CVB 等病毒的抗性研究中(Urban et al.,1994;
Sherman et al.,1998;Yepes et al.,1999;Skachkiva et al.,2006)。(2)真菌和细菌,抗真菌和细菌
的转基因育种主要将病菌抑制物基因导入菊花植株。在菊花抗真菌病害转基因育种中,应用最为广
泛的是几丁质酶基因(chitinase gene)。如 Takatsu 等(1999)获得的 11 个转小麦几丁质酶基因 RCC2
的转基因菊花株系对灰霉病表现出不同程度的抗性(图 1,F)。咖啡因作为一种次级代谢产物,针
对真菌病害也具有典型的化学防御作用。如 Kim 等(2011a,2011b)将 3 个 N–甲基转移酶基因
(CaXMT1,CaMXMT1,CaDXMT1)导入到菊花‘Jinba’品种中,其咖啡因水平与烟草相同,具
有灰霉病抗性(图 1,G),同时还具有抵抗食草动物、鳞翅类昆虫和蚜虫侵害的作用。
目前菊花抗虫分子育种中最常见的一类基因是从微生物苏云金杆菌分离出来的苏云金杆菌
(Bacillus thuringiens)杀虫晶体蛋白基因,简称 Bt 基因(表 3)。将苏云金杆菌内毒素基因 BtⅡ转
入菊花‘White Hurricane’将从苏云金杆菌中分离的杀虫蛋白 Cry1A(b)基因分别导入菊花
‘Parliament’、‘Shuno-no-chikara’及‘Yamate-shiro’品种中,均得到抗虫性转化植株(van Wordragen
et al.,1993;Shinoyama et al.,2002a,2008)。
2.4 非生物胁迫耐性
与农作物抗逆相关的基因主要有:(1)编码渗透调节物质和胁迫下细胞保护物质的基因,如果
聚糖蔗糖酶基因,甜菜碱醛脱氢酶基因,水通道蛋白基因等;(2)细胞膜上的离子转运基因,如 Na+/H+
逆向运转体基因;(3)逆境相关的调控基因,如 DREB 转录因子。在菊花上应用最广泛的是逆境相
关的调控基因 DREB。DREB 家族基因是提高植物非生物胁迫抗性的有效基因之一,拟南芥 DREB
转基因植株在干旱、盐胁迫和冷害处理时均表现出逆境耐性的显著增强(表 4)。

表 4 菊花非生物胁迫相关基因的遗传转化
Table 4 Genetic transformation of genes related to abiotic stress tolerance in chrysanthemum
非生物胁迫
Abiotic stress
基因
Transgene
受体品种 Cultivars for
genetic transformation
参考文献
References
干旱 Drought 拟南芥失水响应元件结合蛋白基因 AtDREB1A
Arabidopsis drought-responsive element binding protein gene
Fall Color Hong et al.,2006a,
2006b;
Ma et al.,2010
太行菊 OtMYB 基因 OtMBY gene from Opisthopappus taihangensis 晚粉 Wanfen 张路 等,2011
菊花失水响应元件结合蛋白基因 CgDREBa
Chrysanthemum drought-responsive element binding protein gene
雨花勋章 Yuhuaxunzhang Chen et al.,2011
异色菊 ICE1 基因 CdICE1 gene from Chrysanthemum dichrum 神马 Jinba Chen et al.,2012
低温 Cold 拟南芥失水响应元件结合蛋白基因 AtDREB1A
Arabidopsis drought-responsive element binding protein gene
Fall Color Hong et al.,2006b;
Ma et al.,2010
异色菊 ICE1 基因 CdICE1 gene from Chrysanthemum dichrum 神马 Jinba Chen et al.,2012
盐胁迫 Salt 拟南芥失水响应元件结合蛋白基因 AtDREB1A
Arabidopsis drought-responsive element binding protein gene
Fall Color Hong et al.,2006a
菊花失水响应元件结合蛋白基因 CgDREBa
Chrysanthemum drought-responsive element binding protein gene
雨花勋章 Yuhuaxunzhang Chen et al.,2011
异色菊 ICE1 基因 CdICE1 gene from Chrysanthemum dichrum 神马 Jinba Chen et al.,2012
渍水 Waterlogging 透明颤菌 Vgb 基因 Vgb gene of bacterium Vitreoscilla 粉地毯 Fenditan Wang et al.,2012
高温 Heat 拟南芥失水响应元件结合蛋白基因 AtDREB1A
Arabidopsis drought-responsive element binding protein gene
Fall Color Hong et al.,2009

Hong 等(2006a,2006b,2009)将 35S 和 rd29A 启动子驱动的拟南芥 AtDREB1A 基因转入地
被菊花‘Fall Color’品种中,在干旱和高盐等逆境诱导条件下,AtDREB1A 在 35S 启动子驱动的转
基因植株中为组成型过表达,而在 rd29A 启动子驱动的转基因植株中为诱导型过量表达。在干旱和
盐胁迫条件下,转基因植株相较正常植株表现出更强抗性,且 rd29A︰AtDREB1A 转基因植株比
9 期 成丽娜等:转基因育种技术在菊花性状改良中的应用进展 1819

35S︰AtDREB1A 转基因植株表现出更强的抗性。在 2 ℃冷处理条件下,通过表型分析、电解质渗出
率、SOD 活性和脯氨酸含量分析发现,AtDREB1A 转基因植株表现出更强的抗冷性,且 rd29A 启动
子驱动的转 AtDREB1A 植株抗冷性更为显著。在 45 ℃高温胁迫条件下,70%的 35S︰AtDREB1A 转
基因植株存活,而野生型的植株存活率小于 20%,显示出转化株具有较强的抗高温能力(图 1,H)
(Hong et al.,2009)。
3 菊花重要功能基因的挖掘
近几年,对菊科植物自身基因功能的研究也取得了长足的进展。将从菊科植物分离出的基因导
入拟南芥、烟草等模式植物中进行功能验证,研究这些基因的作用机理。目前该类研究主要集中在
菊花非生物胁迫耐性和侧枝发生等相关基因的功能分析(表 5)。

表 5 菊花改良观赏性状相关基因的遗传转化研究
Table 5 Genetic transformation of genes related to ornamental traits in chrysanthemum
* 文章中查找不到供体品种。* Could not find the cultivars from cited references.
4 环境友好型转基因新技术
转基因农作物可同时具有高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱和抗除草剂
等多重优点,但同时转基因植物对环境和人类都存在潜在的威胁,菊花是一种典型的自交不亲和、
天然异交植物,存在着通过虫媒或风媒授粉与菊科其他植物进行天然杂交的可能性,即存在外源基
因漂移的危险。如野生型的菊科植物接受了转某种抗虫基因的菊花品种的花粉,F1 代的野生植株就
很有可能具有抗虫性。这种异源基因在菊科内的基因漂流现象对环境生态还有植物体本身具有潜在
威胁,从一定程度上限制了转基因菊花的实际应用。然而 Shinoyama 等(2012b)的研究使这种问题
相关基因
Transgenes
基因供体品种(种)
Cultivars(species)used for
transgene isolated
受体 Plants
used for genetic
transformation
作用
Functions
潜在应用价值
Potential values
参考文献
References
DgCCD8 菊花‘神马’Dendranthema ×
grandiflora‘Jinba’
拟南芥
Arabidopsis
独脚金内酯合成酶基因
Strigolactone biosynthesis gene
改变侧枝形成 Alter the
shoot branching habit
Liang et al.,
2010
DgNAC1 菊花‘神马’Dendranthema ×
grandiflora‘Jinba’
烟草
Tobacco
逆境响应转录因子
TFs of stress responses
提高耐盐性 Improve salt
stress tolerance
Liu et al.,
2011
CcSOS1 * 大岛野路菊
Chrysanthemum crassum
酿酒酵母
Saccharomyces
cerevisiae
编码盐诱导质膜 Na+⁄H+反向转运
体 Encode a salinity-inducible plasma
membrane Na+ ⁄H+ antiporter
提高耐盐性
Improve salt stress
tolerance
Song et al.,
2012
DmNHX1 * 菊花
Dendranthema morifolium
烟草,拟南芥
Tobacco,
Arabidopsis
Na+⁄H+反向转运体基因
Na+/H+ antiporter
提高耐盐性
Improve salt stress
tolerance
Zhang et al.,
2012
CmMYB2 ‘钟山紫桂’
Dendranthema morifolium
‘Zhongshan Zigui’
拟南芥
Arabidopsis
R2R3-MYB转录因子 R2R3-MYB
Transcription Factor
提高耐盐性和抗旱性,调
节花期 Improve drought
and salt tolerance and
modulate flowering-time
Shan et al.,
2012
CgZFP1 菊花‘神马’Dendranthema ×
grandiflora‘Jinba’
烟草
Tobacco
逆境响应调节子
A regulator in response to salt stress
提高耐盐性
Improve salt stress tolerance
Liu et al.,
2010
CDM44 * 菊花
Chrysanthemum morifolium
烟草
Tobacco
发育基因
Developmental gene
提早开花
Early flowering
Goloveshkina
et al.,2012
DgMAX2a,b,
and c *
菊花
Dendranthema × grandiflorum
拟南芥
Arabidopsis

独脚金内酯信号传导调节子 A key
regulatory gene in strigolactone
signal transduction
减少分枝
Reduce the shoot
branching
Dong et al.,
2013
DgBRC1/TB1/
FC1
菊花‘神马’
Dendranthema × grandiflora
‘Jinba’
拟南芥
Arabidopsis

抑制侧枝的 TCP 转录因子 TCP
transcriptional factors involved in
local inhibition of shoot branching
抑制分枝
Inhibit branch outgrowth
Chen et al.,
2013
1820 园 艺 学 报 40 卷
的解决成为了可能:使用中间载体 pBIK102H69A 将甜瓜中突变的乙烯受体基因 Cm-ETR1/H69A 导
入菊花‘Yamate Shiro’品种中,在获得的 335 个转基因株系中,有 15 个株系的花粉粒明显减少,
其中 3 个株系在 20 ~ 35 ℃条件下完全观察不到花粉粒,且发现转基因株系也会导致雌蕊不育,表
明 Cm-ETR1/H69A 基因的表达能显著影响转基因植株的雄蕊和雌蕊育性。DMC1 基因涉及减数分裂
的同源重组过程,沉默该基因将导致重组的紊乱。将携带 DMC1 基因片段和 cry1Ab 基因片段的中
间载体转入菊花中,获得的 682 株再生植株中有 149 个株系表现出较强的鳞翅类抗性,其中 7 个在
正常生长温度下表现雄蕊不育性(Shinoyama et al.,2012a),这对控制基因漂移具有重要作用。
除目标基因外,选择性标记基因对于环境和植株体本身也会存在潜在的危害,其合成的蛋白可
能会通过根系进入土壤,对土壤的微生物系统造成影响。Xie 等(2012)以磷酸甘露糖异构酶基因
(PMI)为选择性标记基因,以甘露糖作为选择试剂的选择标记系统可有效选择出阳性植株,这种
无抗生素筛选的基因导入法将有益于提高转基因植物的安全性。Sun等(2009)构建的pCAMBIA 1300
载体具有两个相邻的 T-DNA 区,分别携带潮霉素磷酸转移酶基因(hpt)和 β–葡萄糖醛酸酶基因
(uidA),转入菊花‘Beilinhuang’,获得兼有潮霉素抗性和 GUS 活性的 T0 代植株 17 株,而在继续
筛选的 T1 代中,大约有 15.7%的转基因植株不含有选择标记基因,说明无选择标记基因载体系统也
可应用于阳性植株的筛选同时还可降低抗生素的危害性,这在菊花转基因育种中也具有很好的借鉴性。
5 转基因育种技术在菊花性状改良中的前景展望
5.1 开展菊花转基因育种的优势
与其他观赏植物相比,菊花的遗传转化和分子育种研究较为广泛和深入(图 1),主要原因是菊
花植株的再生对培养条件要求不高,对多种根癌农杆菌敏感,遗传转化受体广泛,已建立了多种基
因型适宜的遗传转化体系等。
菊科植物花期长和抗逆性强等优良性状,为栽培菊花的分子育种提供了丰富的基因资源。在菊
花中不仅重要功能基因的同源转化能够有效改良的目标性状(Han et al.,2007;Jiang et al.,2010;
Chen et al.,2011;Oda et al.,2012),还可以将非同属同科植物的优良基因通过异源转入进行性状
改良(张路 等,2011;Chen et al.,2012),较大程度拓宽了菊花性状改良的空间。菊花转基因研究
进展显示,转基因技术育种具有提高观赏价值、降低生产成本、提高切花品质、提高抗性等优势,因
此,结合常规育种,利用有效安全转基因手段,创造更加丰富的菊花种质资源将具有较好的应用前景。
5.2 菊花重要基因发掘和观赏性状改良的前景展望
尽管菊花转基因研究已经有了长足进展,但大量基因资源未被挖掘和利用。随着菊花遗传转化
体系的日益成熟,需要越来越多的基因资源来满足转基因性状改良的需求,特别是菊科植物中特有
的与抗病虫和抗逆性相关的基因。
经过长期进化和常规育种方法的改良,获得了丰富的菊花花色资源,但蓝色以及纯净度高的红
色等特异花色品种依旧缺乏。充分利用其他植物的花色基因资源,实现菊花花色改良的突破将成为
菊花转基因性状改良的重要内容。目前的切花菊生产中,存在侧枝多的问题,去除侧枝侧蕾耗费大
量人工成本,影响菊花企业的经济收益。已有研究报道将与菊花独脚金内酯信号转导相关基因转入
拟南芥后减少了植株的分枝(Dong et al.,2013),有望将来育成无侧枝或少侧枝的菊花品种。非生
物胁迫是危害菊花品质和产量的重要因素,有关菊花非生物胁迫的转基因育种技术报道较多,但主
要以单基因转入为主,随着可利用遗传转化基因的增多,双价或多价基因的聚合转基因技术是菊花
9 期 成丽娜等:转基因育种技术在菊花性状改良中的应用进展 1821

转基因育种必然的发展方向,菊花的综合非生物胁迫耐性改良将成为菊花育种的重要目标。

图 1 菊花分子育种中性状的改良
Fig. 1 Picture of improved traits in molecular breeding in chrysanthemum.
1822 园 艺 学 报 40 卷
5.3 菊花转基因育种的安全性分析
分子育种在多种作物中得到广泛应用,特别是玉米、棉花、大豆等大田作物。菊花作为一种观
赏植物,相对粮食作物,食品安全隐患小。菊花为异花授粉植物,在田间杂草中,菊科蒿属植物有
和转基因菊花发生遗传物质交换,产生超级杂草的可能性;外源基因在新的遗传背景下会产生何种
新的交互作用还没有精确预测,也存在产生新的有毒代谢产物的可能性。但由于菊科植物间染色体
倍性的差异,菊科属间杂交多不育,高频率发生遗传物质交换的可能性较小,为转基因技术应用于
菊花育种提供了相对安全的保障。随着可用于菊花遗传改良基因的不断发掘,菊花转基因育种成为
必然的发展趋势。对菊科转基因植物对其它物种和环境生态的安全性进行预测和评价势在必行,需
要建立健全科学合理的安全性评价体系,尤其对外源基因漂移引起的超级杂草化、物种的遗传与表
型的改变以及病原遗传物质的表达等植物安全性方面做出评价,从而消除在转基因作物安全性问题
上的疑虑。此外,研发和利用环境友好型转基因新技术,提高菊花分子育种的安全性也是未来转基
因技术研究的新课题。

References
Aida R,Ohira K,Tanaka Y,Yoshida K,Kishimoto S,Shibata M,Ohmiya A. 2004. Efficient transgene expression in chrysanthemum,Dendranthema
grandiflorum(Ramat.)Kitamura,by using the promoter of a gene for chrysanthemum chlorophyll-a/b-binding protein. Breed Sci,54:51–58.
Aida R,Komano M,Saito M,Nakase K,Murai K. 2008. Chrysanthemum flower shape modication by suppression of chrysanthemum-AGAMOUS
gene. Plant Biotechnol 25:55–59.
Annadana S,Kuipers G,Visser P B,de Kogel W J,Udayakumar M,Jongsma M A. 2002. Expression of potato multicystatin in florets of
chrysanthemum and assessment of resistance to western flower thrips,Frankliniella occidentalis. Acta Hortic,572:121–129.
Aswath C R,Mo S Y,Kim S H,Kim D H. 2004. IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum
[Dendranthema grandiora(Ramat.)Kitamura]. Plant Sci,166:847–854.
Benetka V,Pavingerová D. 1995. Phenotypic differences in transgenic plants of chrysanthemum. Plant Breed,114:169–173.
Chen L,Chen Y,Jiang J F,Chen S M,Chen F D,Guan Z Y,Fang W M. 2012. The constitutive expression of Chrysanthemum dichrum ICE1 in
Chrysanthemum grandiflorum improves the level of low temperature,salinity and drought tolerance. Plant Cell Rep,31:1747–1758.
Chen S M ,Cui X L,Chen Y,Gu C S,Miao H B,Gao H S,Chen F D,Liu Z L,Guan Z Y,Fang W M. 2011. CgDREBa transgenic chrysanthemum
confers drought and salinity tolerance. Environ Exp Bot,74:255–260.
Chen X L,Zhou X Y,Xi L,Li J X,Zhao R Y,Ma N,Zhao L J. 2013. Roles of DgBRC1 in regulation of lateral branching in chrysanthemum
(Dendranthema × grandiflora cv. Jinba). PLoS ONE,8,(4):e61717.
Courtney-Gutterson N,Otten A,Firoozababy E,Akerboom M,Lemieux C,Nicholas J,Morgan A,Robinson K. 1993. Production of genetically
engineered color-modied chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta Hortic,336:
57–62.
Courtney-Gutterson N,Napoli C,Lemieux C,Morgan A,Firoozabady E,Robinson KEP. 1994. Modication of flower color in florist’s
chrysanthemum:Production of a white-flowering variety through molecular genetics. Biotechnology,12:268–271.
de Jong J,Mertens M J,Rademaker W. 1994. Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA.
Plant Cell Rep,14:59–64.
de Jong J,Rademaker W,Ohishi K.1995. Agrobacterium-mediated transformation of chrysanthemum. Plant Tissue Cult Biotechnol,1:38–42.
de Jong J. 1999. Genetics,breeding and biotechnology of cut flowers. Acta Horticulture,482:287–290.
Dolgov S V,Mityshkina T U,Rukavtsova E B,Buryanov Y I. 1995. Production of transgenic plants of Chrysanthemum morifolium Ramat. with the
gene of Bacillus thuringiensis δ-endotoxin. Acta Hortic,441:23–28.
Dolgov S V,Mitiouchkina T Y,Skryabin K G. 1997. Agrobacterial transformation of chrysanthemum. Acta Hortic,447:329–333.
Dong L L,Ishak A,Yu J,Zhao R Y,Zhao L J. 2013. Identification and functional analysis of three MAX2 Orthologs in chrysanthemum. Journal of
Integrative Plant Biology,55 (5):434–442.
Fukuta S,Mizukami Y,Yamada M. 2009. Changes of flower color of genetically modified chrysanthemum containing maize Lc regulatory gene.
Research Bulletin of the Aichi Agricultural Research Center,41:7–11.
9 期 成丽娜等:转基因育种技术在菊花性状改良中的应用进展 1823

Goloveshkina E N,Shchennikova A V,Kamionskaya A M,Skryabin K G,Shulga O A. 2012. Influence of ectopic expression of Asteraceae MADS
box genes on plant ontogeny in tobacco. Plant Cell,Tissue and Organ Culture,31 (9):1747–1758 .
Han B H,Suh E J,Lee S Y,Shin H K,Lim Y P. 2007. Selection of non-branching lines induced by introducing Ls-like cDNA into chrysanthemum
[Dendranthema grandiflorum(Ramat.)Kitamura]“Shuho-no-chikara”. Sci Hortic (Amsterdam),115:70–75.
Han B H,Lee S Y,Choi S Y. 2009. MdMADS2-transgenic chrysanthemum[Dendranthema grandiora(Ramat.)Kitamura]showing the reduction of
the days to flowering. Journal of Plant Biotechnology,36 (4):366–372.
Hong B,Tong Z,Ma N,Li J K,Kasuga M,Yiamaguchi-Shinozaki K,Gao J P. 2006a. Heterologous expression of the AtDREB1A gene in
chrysanthemum in creases drought and salt stress tolerance. Science in China Series C:Life Sciences,49 (5):436–445.
Hong B,Tong Z,Ma N. Kasuga M,Yiamaguchi-Shinozaki K,Gao J P. 2006b. Heterologous expression of the AtDREB1A gene in transgenic
chrysanthemum enhances tolerance to low temperature. Journal of Horticultural Science and Biotechnology,81 (6):1002–1008.
Hong B,Ma C,Yang Y J,Wang T,Yamaguchi-Shinozaki,K,Gao J P. 2009. Over-expression of AtDREB1A in chrysanthemum enhances tolerance
to heat stress. Plant Mol Biol,70:231–240.
Hutchinson J F,Kaul V,Maheswaran G,Moran J R,Graham M W,Richards D. 1992. Genetic improvement of floricultural crops using
biotechnology. Australian Journal of Botany,40:765–787.
Ishida I,Tukahara M,Yoshioka M,Ogawa T,Kakitani M,Toguri T. 2002. Production of anti-virus,viroid plants by genetic manipulations. Pest
Manag Sci,58:1132–1136.
Jiang B B,Miao H B,Chen S M,Zhang S M,Chen F D,Fang W M. 2010. The Lateral suppressor-like gene,DgLsL,alternated the axillary branching
in transgenic chrysanthemum(Chrysanthemum × morifolium)by modulating IAA and GA content. Plant Mol Biol Rep,28:144–151.
Jiang Dan,Liang Jian-li,Chen Xiao-li,Hong Bo,Jia Wen-suo,Zhao Liang-jun. 2010.Transformation of Arabidopsis flowering gene FT to from
cut chrysanthemum‘Jinba’by Agrobacterium mediate. Acta Horticulturae Sinica,37 (3):441–448. (in Chinese)
姜 丹,梁建丽,陈晓丽,洪 波,贾文锁,赵梁军. 2010. 拟南芥花期基因 FT 转化切花菊‘神马’. 园艺学报,37 (3):441–448.
Khodakovskaya M,Vanková R,Malbeck J,Li A,Li Y,McAvoy R. 2009. Enhancement of flowering and branching phenotype in chrysanthemum
by expression of ipt under the control of a 0.821kb fragment of the LEACO1 gene promoter. Plant Cell Rep,28:1351–1362.
Kim Y S,Lim S,Yoda H,Choi Y E,Sano H,Sano H. 2011a. Simultaneous activation of salicylate production and fungal resistance in transgenic
chrysanthemum producing caffeine. Plant Signal Behav,6:409–412.
Kim Y S,Lim S,Kang K K,Jung Y J,Lee Y H,Choi T E,Sano H. 2011b. Resistance against beet armyworms and cotton aphids in
caffeine-producing transgenic chrysanthemum. Plant Biotechnol,28:393–395.
Kim M,Kim J,Hee Y,1998. Plant regeneration and flavonoids 3′,5′-hydroxylase gene transformation of Dendranthema indicum and Dendranthema
zawadskii. J Kor Soc Hortic Sci,39:355–359.
Kubo T,Tsuro M,Tsukimori A,Shizukawa Y,Takemoto T,Inaba K,Shiozaki S. 2006. Morphological and physiological changes in transgenic
Chrysanthemum morifolium Ramat.‘Ogura-nishiki’with rolC. J Japan Soc Hortic Sci,75:312–317.
Kumar S,Raj S K,Sharma A K,Varma H N. 2012. Genetic transformation and development of Cucumber mosaic virus resistant transgenic plants of
Chrysanthemum morifolium cv. Kundan. Sci Hortic,134:40–45.
Ledger S E,Deroles S C,Given N K. 1991. Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep,10:195–199.
Lemieux C S,Firoozababy E,Robinson K E P. 1990. Agrobacterium-mediated transformation of chrysanthemum // de Jong J. Proceedings of the
eucarpia symposium on integration of in vitro techniques in ornamental plant breeding. Pudoc,Wageningen,150–155.
Liang J L,Zhao L J,Challis R,Leyser O. 2010. Strigolactone regulation of shoot branching in chrysanthemum(Dendranthema grandiflorum). J
Exp Bot,61 (11):3069–3078.
Liu Q L,Xu K D,Ma N,Zeng L,Zhao L J. 2010. Isolation and functional characterization of DgZFP:A gene encoding a Cys2/His2-type zinc finger
protein in chrysanthemum. Mol Biol Rep,37:1137–1142.
Liu Q L,Xu K D,Zhao L J,Pan Y Z,Jiang B B,Zhang H Q,Liu G L. 2011. Overexpression of a novel chrysanthemum NAC transcription factor
gene enhances salt tolerance in tobacco. Biotechnol Lett,33:2073–2082.
Ma C,Hong B,Wang T,Yang Y J,Tong Z,Zuo Z R,Yamaguchi-Shinozaki K,Gao J P. 2010. DREB1A regulon expression in rd29A:DREB1A
transgenic chrysanthemum under low temperature or dehydration stress. J Hortic Sci Biotechnol,85:503–510.
Mitiouchkina T Y,Dolgov S V. 2000. Modification of chrysanthemum plant and ower architecture by rolC gene from Agrobacterium rhizogenes
introduction. Acta Hortic,508:163–169.
Morita S,Murakoshi Y,Hojo A,Chisaka K,Harada T,Satoh S. 2012. Early flowering and increased expression of a FLOWERING LOCUS T-like
1824 园 艺 学 报 40 卷
gene in chrysanthemum transformed with a mutated ethylene receptor gene mDG-ERS1(etr1-4). J Plant Biol,55:398–405.
Narumi T,Aida R,Ohmiya A,Satoh S. 2005a.Transformation of chrysanthemum with mutated ethylene receptor genes:mDGERS1 transgenes
conferring reduced ethylene sensitivity and characterization of the transformants. Postharvest Biol Technol,37:101–110.
Narumi T,Kanno Y,Suzuki M,Kishimoto S,Ohmiya A,Satoh S. 2005b. Cloning of a cDNA encoding an ethylene receptor(DG-ERS1)from
hrysanthemum and comparison of its mRNA level in ethylene-sensitive and -insensitive cultivars. Postharvest Biol Technol,36:21–30.
Narumi T,Aida R,Koyama T,Yamaguchi H,Sasaki K,Shikata M,Nakayama M,Ohme-Takagi M,Ohtsubo N. 2011. Arabidopsis chimeric
TCP3 repressor produces novel floral traits in Torenia fournieri and Chrysanthemum morifolium. Plant Biotechnol,28:131–140.
Oda A,Narumi T,Li T P,Kando T,Higuchi Y,Sumitomo K,Fukai S,Hisamatsu T. 2012. CsFTL3,a chrysanthemum FLOWERING LOCUS
T-like gene,is a key regulator of photoperiodic flowering in chrysanthemums. Journal of Experimental Botany,63 (3):1461–1477.
Ogawa T,Toguri T,Kudoh H,Okamura M,Momma T,Yoshioka M,Kato K,Hagiwara Y,Sano T. 2005. Double-stranded RNA-specific
ribonuclease confers tolerance against chrysanthemum stunt viroid and tomato spotted wilt virus in transgenic chrysanthemum plants. Breed
Sci,55:49–55.
Ohmiya A,Kishimoto S,Aida R,Yoshioka S,Sumitomo K. 2006. Carotenoid cleavage dioxygenase(CmCCD4a)contributes to white color formation
in chrysanthemum petals. Plant Physiol,142:1193–1201.
Ohmiya A,Sumitomo K,Aida R. 2009. “Yellow Jimba”Suppression of carotenoid cleavage dioxygenase(CmCCD4a)expression turns white
chrysanthemum petals yellow. J Jpn Soc Hortic Sci,78:450–455.
Pavingerová D,Dostal D,Biskova R,Benetka V. 1994. Somatic embryogenesis and Agrobacterium-mediated transformation of chrysanthemum.
Plant Sci,97:95–101.
Petty L M,Thompson A J,Thomas B. 2000. Modifying chrysanthemum(Dendranthema grandiflorum)growth habit by genetic manipulation. Acta
Horticulturae,508:319–321.
Petty L M,Harberd N P,Carre I A,Thomas B,Jackson S D. 2003. Expression of the Arabidopsis gai gene under its own promoter causes a reduction
in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci,164:175–182.
Renou J P,Brochard P,Jalouzot R. 1993. Recovery of transgenic chrysanthemum(Dendranthema grandiflora Tzvelev)after hygromycin resistance
selection. Plant Sci,89:185–197.
Satoh S,Watanabe M,Chisaka K,Narumi T. 2008. Suppressed leaf senescence in chrysanthemum transformed with a mutated ethylene receptor gene
mDG-ERS1(etr1-4). J Plant Biol,51:424–427.
Sen S,Kumar S,Ghani M,Thakur M. 2013. Agrobacterium mediated genetic transformation of chrysanthemum(Dendranthema grandiflora
Tzvelev)with rice chitinase gene for improved resistance against Septorea obesa. Plant Pathology Journal,12 (1):1–10.
Shan H,Chen S M,Jiang J F,Chen F D,Chen Y,Gu C S,Li P L,Song A P,Zhu X R,Gao H S,Zhou G Q,Li T,Yang X. 2012. Heterologous
expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance,increases hypersensitivity
to ABA and delays flowering in Arabidopsis thaliana. Mol Biotech,51:160–173.
Shao Han-shuang,Li Ji-hong,Zheng Xue-qin,Chen Shou-cai. 1999. Cloning of the LFY cDNA from Arabidopsis thaliana and its transformation to
Chrysanthemum morifolium. Acta Botanica Sinica,41 (3):268–271. (in Chinese)
邵寒霜,李继红,郑学琴,陈守才. 1999. 拟南芥 LFY cDNA 的克隆及转化菊花的研究. 植物学报,41 (3):268–271.
Sherman J M,Moyer J W,Daub M E. 1998. Tomato spot wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis
82:407–414.
Shinoyama H,Komano M,Nomura Y,Kazuma T. 1998. Stable Agrobacterium-mediated gene transformation of chrysanthemum [Dendranthema ×
grandiflorum(Ramat.)Kitamura]. Bull Fukui Agric Expt Stn,35:13–21. (in Japanese)
Shinoyama H,Kazuma T,Komano M,Nomura Y,Tsuchiya T. 2002a. An efficient transformation system in chrysanthemum[Dendranthema ×
grandiflorum(Ramat.)Kitamura]for stable and non-chimeric expression of foreign genes. Plant Biotechnol,19:335–343.
Shinoyama H,Komano M,Nomura Y,Nagai T. 2002b. Introduction of delta-endotoxin gene of Bacillus thuringiensis to chrysanthemum
[Dendranthema × grandiflorum(Ramat.)Kitamura]for insect resistance. Breed Sci,52:43–50.
Shinoyama H,Mochizuki A,Komano M,Nomura Y,Nagai T. 2003. Insect resistance in transgenic chrysanthemum [Dendranthema × grandiflorum
(Ramat.)Kitamura] by the introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Breed Sci,53:359–367.
Shinoyama H,Mochizuki A,Nomura Y,Kamada H. 2008. Environmental risk assessment of genetically modified chrysanthemums containing a
modified cry1Ab gene from Bacillus thuringiensis. Plant Biotechnol,25:17–29.
Shinoyama H,Ichikawa H,Saitoh-Nakashima M,Saito M,Aida R,Ezura H,Yamaguchi H,Mochizuki A,Nakase K,Nishibata Y,Nomura
9 期 成丽娜等:转基因育种技术在菊花性状改良中的应用进展 1825

Y,Kamada H. 2012a. Introduction of male sterility to GM chrysanthemum plants to prevent transgene flow. Acta Hortic,937:337–346.
Shinoyama H,Sano T,Saito M,Ezura H,Aida R,Nomura Y,Kamada H. 2012b. Induction of male sterility in transgenic chrysanthemums
(Chrysanthemum morifolium Ramat.)by expression of a mutated ethylene receptor gene,Cm-ETR1/H69A,and the stability of this sterility at
varying growth temperatures. Mol Breed,29:285–295.
Shulga O A,Mitiouchkina T Y,Shchennikova A V,Skryabin K G,Dolgov S V. 2011. Overexpression of AP1-like genes from Asteraceae induces
early-flowering in transgenic chrysanthemum plants. In Vitro Cellular & Developmental Biology-Plant,47 (5):553–560.
Skachkova T S,Mitiouchkina T Y,Taran S A,Dolgov S V. 2006. Molecular biology approach for improving chrysanthemum resistance to virus B.
Acta Hortic,714:185–192.
Song A P,Lu J G,Jiang J F,Chen S M,Guan Z Y,Fang W M,Chen F D. 2012. Isolation and characterisation of Chrysanthemum crassum SOS1,
encoding a putative plasma membrane Na+/H+ antiporter. Plant Biol,14:706–713.
Sumitomo K,Kunitake T,Douzono M,Onozaki T,Shibata M,Hisamatsu T. 2008. Variation in the effects of ethephon on flowering and extension
growth in chrysanthemum as a function of temperature,season,and genetics. J Hort Sci Biotechnol,83:809–815.
Sun L,Zhou L,Lu M,Cai M,Jiang X W,Zhang Q X. 2009. Marker-free transgenic chrysanthemum obtained by Agrobacterium-mediated
transformation with twin T-DNA binary vectors. Plant Mol Biol Rep,27:102–108.
Takatsu Y,Nishizawa Y,Hibi T,Akutsu K. 1999. Transgenic chrysanthemum [Dendranthema grandiflorum(Ramat.)Kitamura] expressing a rice
chitinase gene shows enhanced resistance to gray mold(Botrytis cinerea). Sci Hortic,82:113–123.
Teixeira da Silva J A,Shinoyama H,Aida R,Matsushita Y,Shri Krishna Raj,Chen F D. 2013. Chrysanthemum Biotechnology:Quo vadis? Critical
Reviews in Plant Sciences,32:21–52.
Toguri T,Ogawa T,Kakitani M,Tukahara M,Yoshioka M. 2003. Agrobacterium-mediated transformation of chrysanthemum(Dendranthema
grandiora)plants with a disease resistance gene(pac1). Plant Biotechnol,20:121–127.
Urban L A,Sherman J M,Moyer J W,Daub M E. 1994. High frequency shoot regeneration and Agrobacterium-mediated transformation of
chrysanthemum(Dendranthema grandiora). Plant Sci.,98:69–79 .
van Wordragen M F,Honée G,Dons H J M. 1993. Insectresistant chrysanthemum calluses by introduction of a Bacillus thuringiensis crystal protein
gene. Transgenic Res,2:170–180.
Wang Y,Shi S,Li X,Gao Y,Zhang Q. 2012. Mannose selection system to screen Vgb transgenic chrysanthemum plant. International Eucarpia
Sympodium Section Ornamental:Ornamental:Breeding Worldwide,953:223–230.
Wang Pei,Zhou Zhou,Su Li-juan,Yin Xin-ming. 2011. Transformed mBt886Cry3Aa into chrysanthemum mediated by Agrobacterium tumefaciens
and its resistance to Phytoecia rufiventris Gautier. Scientia Agricultura Sinica,44 (14):2918–2925. (in Chinese)
王 沛,周 洲,苏丽娟,尹新明. 2011. 根癌农杆菌介导 mBt886Cry3Aa 转化菊花及对菊天牛毒杀作用. 中国农业科学,44 (14):2918–2925.
Xie L N,Wang J,Yu L G,Zhang Y,Zhou B,Li Y H,Kawabata S. 2012. Phosphomannose ismerase/mannose selection system to screen transgenic
chrysanthemum plants(Chrysanthemum morifolium). Acta Horticulturae,937:361–368.
Xu G J,Chen S M,Chen F D. 2010. Transgenic chrysanthemum plants expressing a harpinXoo gene demonstrate induced resistance to Alternaria
leaf spot and accelerated development. Russ J Plant Physiol,57:548–553.
Yepes L C,Mittak V,Pang S Z,Gonsalves C,Slightom J L,Gonsalves D. 1995. Biolistic transformation of chrysanthemum with the nucleocapsid
gene of tomato spotted wilt virus. Plant Cell Rep,14:694–698.
Yepes LC,Mittak V,Pang S Z,Gonsalves C,Slightom J L. 1999. Agrobacterium tumefaciens versus biolistic-mediated transformation of the
chrysanthemum cvs. Polaris and Golden Polaris with nucleocapsid protein genes of three Tospovirus species. Acta Hortic,482:209–218.
Yu Miao,Liu Zhao-lei,Chen Su-mei,Chen Fa-di. 2010. Expression of P. mume PGIP gene in transgenic Dendranthema morifolium increased
tolerance to disease resistance. Acta Bot Boreal,30 (6):1111–1116. (in Chinese)
于 淼,刘兆磊,陈素梅,陈发棣. 2010. 转梅 PGIP 基因增强菊花抗病性研究. 西北植物学报,30 (6):1111–1116.
Zhang H,Liu Y X,Xu Y,Chapman S,Andrew J L,Xia T. 2012. A newly isolated Na+/H+ antiporter gene,DmNHX1,confers salt tolerance when
expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana. Plant Cell Tiss Organ Cult,110:189–200.
Zhang Lu,Zhang Qi-xiang,Gao Yi-ke,Lu Miao,Wang Ya. 2011. Study on physiological traits of drought resistance for transgenic chrysanthemum
varieties Wanfen. Acta Agriculturae Boreali-Sinica,26 (5):181–185. (in Chinese)
张 路,张启翔,高亦珂,陆 苗,王 亚. 2011. 转基因地被菊晚粉抗旱生理特性研究. 华北农学报,6 (5):181–185.
Zheng Z L,Yang Z B,Jang J C,Metzger J D. 2001. Modication of plant architecture in chrysanthemum by ectopic expression of the tobacco
phytochrome B1 gene. J Am Soc Hortic Sci,126:19–26.