秘鲁番茄是番茄的近缘野生种,对番茄遗传改良具有潜在的应用价值;为了有效地利用秘鲁番茄,本文对秘鲁番茄的起源、分类、生物学特征、分子生物学和克服远缘杂交障碍研究进展加以综述,以期为用秘鲁番茄对番茄遗传改良提供一些信息;同时对用秘鲁番茄改良番茄应采取的策略进行了讨论。
Solanum peruvianum is wild species related to S. lycopersicum, and possesses potential value for genetic improvement of tomato. In order to effectively utilize S.peruvianum and provide available information for tomato genetic improvement, we reviewed origin, taxonomy, biology character, and molecular biology of S.peruvianum, as well as progress in overcoming distant hybridization barriers between S.lycopersicum and S.peruvianum. The strategies of using S. peruvianum for tomato improvement were discussed in this paper.
全 文 :园 艺 学 报 2008,35(8):1233—1240
Acta Horticuhurae Sinica
秘鲁番茄分子生物学研究进展
孟凡娟 一,黄凤兰 ,赵凌侠
( 东北林业大学生命科学学院,哈尔滨 150040; 上海交通大学植物生物技术研究中心,上海 200240;’内蒙古民族
大学生命科学学院,内蒙古通辽 028000; 上海交通大学农业与生物学院,上海 200240)
摘 要:秘鲁番茄是番茄的近缘野生种,对番茄遗传改良具有潜在的应用价值。为了有效地利用秘鲁
番茄.对秘鲁番茄的起源 、分类、生物学特征、分子生物学和克服远缘杂交障碍研究进展加以综述,以期
为用秘鲁番茄对番茄遗传改良提供一些信息;同时对用秘鲁番茄改良番茄应采取的策略进行了讨论。
关键词:秘鲁番茄;分子生物学;不亲和;遗传改良
中图分类号:S 641.2 文献标识码:A 文章编号:0513—353X (2008)08—1233-08
Progress in the M olecular Biology of Solanum peruvianum
MENG Fan-juan 一,HUANG Feng 1an。,and ZHA0 Ling.xia ’
(、Colege ofLife Science,University ofNortheast Forestry,Harbin 150040,China; Plant Biotechnology Research Center,Shang-
hai Jiaotong University.Shanghai 200240,China; Colege of Science,Inner Mongolia Unive~i@for the Nationalities,
iao,Inner Mongolia 028000,China; School Agriculture and Biology,Shanghai Jiaotong University,Shanghai 200240,
China)
Abstract:Solanum peruvianum is wild species related to S.1ycopersicum ,and possesses potential value
for genetic improvement of tomato.In order to efectively utilize S.peruvianum and provide available informa-
tion for tomato genetic improvement,we reviewed origin,taxonomy,biology character,and molecular biology
of S.peruvianum,as wel as progress in overcoming distant hybridization barriers between S. 1ycopersicum
and S.peruvianum.The strategies of using S.peruvianum for tomato improvement were discussed in this paper.
Key words:Solanum peruvianum;molecular biology ;incompatibility;genetic improvement
秘鲁番茄 (Solanum peruvianum,2n=2x:24)起源于秘鲁与智利边界的安第斯山脉西麓沿海地区,
在海拔 100~3 000 m的丘陵和高山地带均有分布,是栽培番茄 (S.1ycopersicum)近缘野生种,对栽培
番茄抗病、抗逆和果实品质遗传改良具有潜在应用价值 (Stommel,1992)。在以往植物学分类中秘鲁番
茄属于茄科番茄属 (Lefrancois et a1.,1993),最近被划人茄属 (Solanum)番茄组,并分成4个种:So-
lanum N peruvianum,S.cal咖n de Huaylas,S.corneliomueleri,S.peruvianum;其中Js.N peruvianum
包括4个地理小种:humifusum,lomas,Marathon和Chotano-Yamaluc。S.corneliomueleri就是传统分类中
的多腺番茄 (Lycopersicon glandulosum)(Peralta&Spooner,2000,2001;Spooner et a1.,2005)。
秘鲁番茄生物学特性
1.1 秘鲁番茄植物学特征和生长发育习性
秘鲁番茄是多年生匍匐性草本植物,茎蔓生;叶缺刻深,表皮被茸毛;总状或卷尾状花序;果实
收稿13期:2008—05—04:修回13期:2008—07一O1
基金项目:上海市科技 攻关重 大项 目 (03DZ19310);国家 ‘863’项 目 (2007AA100503);上海市 国内科技合作 项 目
(073158202);黑龙江省博士后基金项目 (LBH—Z06146)
{通讯作者 Author for corespondence(E—mail:lxzhao@sjtu.edu.el1)
维普资讯 http://www.cqvip.com
园 艺 学 报 35卷
圆形或近圆形,白绿色或紫色,外被茸毛,直径约2 cnl,味酸苦;种子表面光滑,扁平状,灰褐色;
不同地理小种形态上存在较大差异;属于短日、异花授粉植物,长日照和低夜温有利于单性结实;在
干燥、潮湿和土壤瘠薄等极端条件下营养生长不良,开花、结实受到影响;果实成熟前自然脱落,控
制果实成熟的机制有别于其它番茄野生种 (郑光华和沈征言,1989;陈学好 等,2001)。
1.2 秘鲁番茄有性杂交特性
番茄属于由S位点等位基因控制的配子体自交不亲和类型 (Bematzky et a1.,1995),对S等位基
因序列和所编码蛋白功能研究发现,秘鲁番茄的自交不亲和与花柱中S-RNase基因表达有关 (Kowya—
ma et a1.,1994;Rivers&Bematzky,1994);不过,利用混合授粉、不成熟胚培养和处理花蕾等方法
可以克服其自交不亲和 (Young et a1.,1987;Gradziel&Robinson,1989)。
秘鲁番茄与普通番茄种间杂交不亲和主要表现在:幼胚早期死亡无法获得杂交种,即使获得少量
种问杂种,其自交不亲和程度也不亚于秘鲁番茄本身;研究发现,胚败育是由于胚乳细胞发育缓慢或
稀少,而珠被绒毡层细胞迅速增殖所致 (吴鹤鸣 等,1988,1990;吴定华和梁树南,1992)。秘鲁
番茄与栽培番茄、多毛番茄和醋栗番茄无论正、反交均表现为不亲和;而与多腺番茄和智利番茄正、
反交的杂种一代均具有较高的育性 (吴定华和梁树南,1992)。将栽培番茄与野生番茄杂交种作 “桥
梁种”,可以在某种程度上克服秘鲁番茄与醋栗番茄、多毛番茄直接杂交不亲和障碍 (吴定华和李鹏
飞,1964)。DNA水平检测和重组分析结果显示,秘鲁番茄与某些番茄野生种杂交亲和程度与它们的
亲缘关系有关 (Baudry et a1.,2001)。
1.3 秘鲁番茄是番茄遗传改良基因库
研究表明:秘鲁番茄对番茄早疫病 (Alternaria solani)、番茄叶霉病 (Cladosporium f~vum)、番
茄斑枯病 (Septoria lycopersici)、番茄晚疫病 (Phytophthora infestans)、番茄青枯病 (Ralstonia s0一
lanacearum)、番茄斑萎病 (Tomato spoted wilt virus)、烟草花叶病毒病 (Tobacco mosaic virus)、番茄
白粉病 (Oidium neolycopersici)、马铃薯 Y病毒 (Potato virus Y)、番茄根结线虫 (Meloidogyne icogni—
ta)和马铃薯蚜虫 (Macrosiphum euphorbiae)等均表现出较强的抗性或免疫 (Stevens et a1.,1994;
Sandbrink et a1.,1995;Veremis and Robeas,1996a,1996b;Veremis et a1.,1999;Ammiraju et a1.,
2003;Takacs et a1.,2003;Bai et a1.,2004)。
秘鲁番茄对低温、盐和重金属也表现出较强的耐性或抗性。秘鲁番茄能够忍耐4~8℃低温,与栽
培番茄的杂交后代也表现出较强的耐冷性 (Brtiggemann et a1.,1995,1996;Venema et a1.,2005);秘
鲁番茄与栽培番茄的种间杂种耐盐性等同或优于秘鲁番茄 (Jones,1986;Hassan&Wilkins,1988);据
Bennetzen和Adams(1984)报道,秘鲁番茄对重金属镉、铜、锌等也具有一定耐性。
秘鲁番茄果实可溶性固形物含量约是栽培番茄的2倍,干物质为 12.75%,富含维生素C (0.565
~ 1.095 nag·g ),全糖含量为2.46% (单糖为0.96%,双糖为 1.5%),因此,秘鲁番茄在改良番
茄品质方面也具有潜在应用价值 (Stommel,1992)。
2 秘鲁番茄分子生物学研究进展
2.1 系统进化研究 ’
van Ooijen等 (1994)和 Sandbrink 等 (1995)以秘鲁番茄为材料,用 RFLP标记通过遗传作图
将番茄溃疡病抗性基因定位于 1、6、7、8和 1O号染色体上。Kochieva等 (2002a)通过 RAPD分析
包括秘鲁番茄在内的番茄属53份材料显示,秘鲁番茄种内遗传多样性最大,占248个总 RAPD标记
的79%,小花番茄的最小,仅占9%。Kochieva等 (2002b)用 14条 ISSR引物对包括秘鲁番茄在内
的番茄属54份材料扩增,获得 318个微卫星中间片段,遗传多样性表现出种问高于种内的趋势。
Egashira等 (2000)用 1O条随机引物对番茄属9个种的5O份材料进行 PCR扩增,基于所获得435个
维普资讯 http://www.cqvip.com
8期 孟凡娟等:秘鲁番茄分子生物学研究进展 1235
RAPD标记进行聚类分析,将番茄属分成了4个类群:秘鲁番茄复合体 (peruvianum complex,PC)、
自交亲和的普通番茄复合体 (esculentum complex,EC)、潘那利番茄和多毛番茄;其中秘鲁番茄复合
体 (秘鲁番茄和智利番茄)具有丰富的遗传多态性。于拴仓等 (2005)用 RAPD指纹 (2个引物)
确认秘鲁番茄与栽培番茄的杂种之后,又选用 l9个随机引物、2对 RGA引物和 1对 SRAP引物共扩
增获得 319个标记,其中种间杂种230个位点分别有 30.4%和20.9%来 自于栽培番茄和秘鲁番茄,
46.5%是二者共有信息;种间杂种与母本栽培番茄基因组相似性为72.5%,与秘鲁番茄为50.8%。
2.2 功能基因克隆
以秘鲁番茄为材料迄今为止已成功克隆了600多个基因,主要包括与自交不亲和、抗病和蛋白酶
抑制剂有关的基因 (htp:/www.ncbi.nlm.nih.gov)。
Lee等 (1994)通过农杆菌介导法将与自交不亲和相关的Ls3基因及其反义基因分别导入遗传型
5l52和 $2S3的矮牵牛 (Petunia inflata),表达 53蛋白的矮牵牛 (S1S2)的柱头表现出对带有 53基
因花粉的拒绝,而表达反义S3基因的矮牵牛 ($2S3)却表现出拒绝对带 Ls2或 53花粉能力的缺失,
首次为 s蛋白控制花柱 自交不亲和特性提供 了直接证据;随后 Murfet等 (1994)和 Huang等
(1994)研究发现 s位点编码的S.RNase在花柱中有降解花粉管中RNA能力、使之伸长受阻而导致 自
交不亲和。目前从秘鲁番茄中克隆的S—RNase基因约有20个,核酸序列和蛋白质功能的研究也较深
入 (Tsai et a1.,1992;Bernatzky,1993;Chung et a1.,1994;Rivers& Bernatzky,1994;Kim et a1.,
2001)。秘鲁番茄的自交不亲和特性对防止 自交退化和保持遗传多样性具有重要意义,因而 S—RNase
基因的克隆和功能研究不仅有利于其自交不亲和机制的阐明,也为利用其对番茄遗传改良研究提供了
理论依据。
番茄根结线虫抗性是 Bailey(1941)最早在秘鲁番茄中发现的,随后 Smith(1944)通过有性杂
交并利用 “胚拯救”技术将秘鲁番茄 (PI128657)根结线虫抗性基因转育到栽培番茄,目前生产中
所使用的抗根结线虫栽培番茄均含有 PI128657的血统。位于6号染色体短臂的单显抗性 基因赋予
了对3个种根结线虫 (Meloidogyne incognita、 arenaria和 javanica)的抗性。 基因最早由
Miligan等 (1998)通过筛选番茄BAC (bacterial artifcial chromosome)文库而获得,并将最先克隆的
基因指定为Mi一1(Vos et a1.,1998);Mi一1基因成功转育番茄,在生产中改良番茄对根结线虫抗
性发挥了重要作用 (Rossi et a1.,1998;Goggin et a1.,2006)。不过,Mi.1基因的温敏特性 (土壤温
度高于28 qC其功能就会丧失)使其应用受限;而克隆 自秘鲁番茄 (LA2157)的Mi.9基因弥补了
Mi一1温敏的缺陷,即使土壤温度高达32 qC仍具有抗病性,最近在秘鲁番茄发现并成功定位的Mi.3基
因抗性也属温度不敏感型 (Ammiraju et a1.,2003;Yaghoobi et a1.,2005),为番茄抗根结线虫育种
奠定了基础。 基因与植物其他抗性基因一样,也编码着带有亮氨酸拉链和亮氨酸富集区 (LRR)
蛋白 (Miligan et a1.,1998)。研究发现许多携带 的番茄材料,对马铃薯蚜虫和细菌性枯萎病 (青
枯病)也具有抗性,后来证实 基因与马铃薯抗蚜虫基因 Meul是同一基因 (Rossi et a1.1998;
Bhatarai et a1.,2007),与番茄细菌性枯萎病抗性基因紧密连锁 (Miligan et a1.,1998;Deberdt et
a1.,1999)。用秘鲁番茄改良栽培番茄最成功的例子是 Alexander(1963)将 PI128650的 Tm.2 基因
导入番茄中,赋予了栽培番茄抗烟草花叶病毒 (TMV)的特性 (Hal,1980)。
植物中蛋白酶抑制剂 (proteinase inhibitor,PIs) I和Ⅱ基因所编码的蛋白在应答病原菌侵染和
害虫侵害时发挥着重要作用。研究发现,植物发生病害或虫害时叶片中蛋白酶抑制剂 I和 Ⅱ大量合
成,而在未受伤害的植物中却未检测到这两种蛋白的存在 (Pearce et a1.,1988;Wingate et a1.,
1991);现已从秘鲁番茄中成功地克隆了496 bp蛋白酶抑制剂 I基因全长序列 (pDI1-4)(Wingate et
a1.,1989),并在秘鲁番茄果实中检测到了酶抑制剂的存在 (Wingate et a1.,1991)。
此外,从秘鲁番茄中还成功克隆了 3 368 bp Retrolyc1.1转座子 (Costa et a1.,1999;Araujo et
维普资讯 http://www.cqvip.com
1236 园 艺 学 报 35卷
a1.,2001)、凤果花叶病毒病 (PepMV)LP-2001(L6pez et a1.,2005)、1 098 bp的小颗粒淀粉合成
酶基因 (GBSSI)部分序列 (Peralta&Spooner,2001)和番茄缺水正调节转录因子基因Asrl(Frankel
et a1.,2003)。
2.3 系统素研究
系统素 (systemin)是在番茄叶片中发现的一类由18个氨基酸组成的小分子肽,具有诱导蛋白酶
抑制剂 (PIs)和环境应答相关基因表达的功能,在番茄受伤信号传导和防御蛋白诱导表达过程中发
挥着重要作用 (Pearce et a1.,1988,1991)。秘鲁番茄悬浮细胞对系统素的早期应答表现为培养基的
碱性化和促分裂原活化蛋白激酶的激活,这两种反应均可以通过紫外线 一B (UV—B)诱导产生
(Pearce et a1.,199 1)。Yalamanchili和 Stratmann(2002)进一步证实 uV.B具有激活膜受体和逆境共
转导途径中选择信号的功能;秘鲁番茄悬浮细胞不仅是系统素信号转导途径研究的模式系统,也常用
于促分裂原活化蛋白和伸展蛋白功能信号转导研究。苏拉明 (suramin)是一种细胞因子抑制剂,对
秘鲁番茄悬浮细胞的系统素、寡聚糖诱导子和 uV—B所引起的碱化反应均具有阻遏功能 (Link et a1.,
2002;Yalamanchili&Stratmann,2002)。
2.4 热激蛋白研究
高等植物热激蛋白 (heat stress protein,Hsp)包括 Hsp90、Hsp70、Hsp60和小分子量 Hsp家族4
类,其中热诱导后大量表达的小分子量 Hsp近年倍受关注 (Low et a1.,2000);热激因子 (heat stres
factor,Hsf)是 Hsp转录调控因子 (Bharti et a1.,2000)。
目前从秘鲁番茄克隆到的 mf基因有 HsfA1、HsfA2、HsfA3和 HsfBl,其中 HsfA3是 Bharti等
(2000)用酵母双杂交技术克隆自秘鲁番茄 cDNA文库的单拷贝基因,该基因与番茄热激因子基因家
族具有相似的结构特征和功能。Rojas等 (2002)将克隆自秘鲁番茄的2个热激因子Lp—HsfA1和 一
HsfA2基因导人向Ft葵 (Helianthus annu~)和酵母 (Saccharomyces cerevisiae),结果表明热激应答元
件特异的DNA序列是热激因子识别启动子并与之结合所必需的,并且 HsfA2与 HsfA1对 17.6 G1
基因启动子的激活还具有协同作用。最近研究发现,作为分子伴侣的热激蛋白还参与靶蛋白转运、亚
基组装、蛋白复合体解离和胞内分泌过程,并在生物体降解或清除不可修复损伤蛋白的过程中发挥作
用 (Schaf et a1.,1998;Low et a1.,2000;Dougan et a1.,2002;Young et a1.,2003;Port et a1.,
2004),可见热激蛋白通过使 目标蛋白正确折叠在番茄应激外界逆境方面发挥着重要作用。
3 克服有性不亲和障碍策略
秘鲁番茄有性不亲和包括自交不亲和与远缘杂交不亲和两种类型,是秘鲁番茄种内繁殖和种问遗
传物质交换特别是用于栽培番茄改良的主要障碍。Gradziel&Robinson(1989)通过给未成熟柱头授
粉来克服秘鲁番茄花柱 自交不亲和障碍。sm (1944)通过 “胚拯救”技术成功地获得了秘鲁番茄
与栽培番茄种问杂种,并将根结线虫抗性基因转育到栽培番茄。将栽培番茄与秘鲁番茄种间杂种
(胚拯救)作为 “桥梁种”,分别用栽培番茄和秘鲁番茄进行回交,将秘鲁番茄 (PI270435和
PI126443)热稳定性的根结线虫抗性基因转育到了栽培番茄中 (Poysa,1990;Segeren et a1.,1993;
Veremis&Roberts,1996a;Doganlar et a1.,1997;赵泓 等,2004)。Taylor和 A1一Kummer(1982)将
PI127828(S.peruvianum var.‘humifusum’)与 Ailsa Craig(S.1ycopersicum)有性杂交所获得 1粒种
子作为 “遗传桥”实现了秘鲁番茄向栽培番茄基因渗入。Vulkova&Sotirova(1993)将智利番茄
(S.chilense)作为中间种成功地将秘鲁番茄的番茄细菌性溃疡病抗性基因 (Clavibacter michiganensis
subsp.michiganensis,Cm)转育到栽培番茄。Pic6等 (2002)通过 “混合授粉”、 “胚拯救”、 “硼
酸” (H BO )、 “赤霉素” (GA )和 “蕾期授粉”多种技术成功地将秘鲁番茄 (PI126944)的
,I’SwV, rYLcV和 PepMV抗性基因导人栽培番茄。体细胞杂交、原生质体培养、花药培养等技术也
维普资讯 http://www.cqvip.com
8期 孟凡娟等:秘鲁番茄分子生物学研究进展
被尝试用于解决秘鲁番茄向栽培番茄基因渗入的研究 (Cappadocia&Ramulu,1980;Zapata&Sink,
1981;Belini et a1.,1989;Chen&Adachi,1998),其中不对称原生质体杂交技术被认为是替代传统
有性杂交方式的有效途径之一 (Ratushnyak et a1.,1993;Emets&Blium,2003)。基因工程技术已成
为目前实现秘鲁番茄向栽培番茄遗传物质渗入的主流技术之一 (Koornneef et a1.,1986;Rojas et a1.,
2002)。不过,秘鲁番茄有性不亲和障碍迄今尚未得到很好解决,仍有许多工作要做。
4 讨论
为了有效地利用秘鲁番茄对番茄进行遗传改良,作者认为以下几个问题值得考虑。首先,秘鲁番
茄拥有丰富遗传多样性的同时也表现出了复杂的遗传背景,有必要对不同来源的秘鲁番茄抗病 、抗
逆、品质等园艺学特征进行系统地研究和鉴定,以减少工作的盲目性。其次,远缘杂交障碍一直是限
制秘鲁番茄用于栽培番茄遗传改良的瓶颈,尽管通过 “胚拯救”、“胚珠培养”、“桥梁种”、“混合授
粉”和 “体细胞杂交”等复杂技术和艰辛工作可能获得二者种间杂种;不过,种间杂种后代 “颠狂”
分离和不良园艺性状的剔除给后续番茄育种工作带来了意想不到的困难,因而传统 “有性”或 “无
性”杂交技术未必是用秘鲁番茄改良栽培番茄的最佳选择。再次,随着秘鲁番茄分子生物学研究的
不断深入和功能基 因的成功克隆 (Kim et a1.,2001;Ammiraju et a1.,2003;Yaghoobi et a1.,
2005),基因工程技术在植物遗传改良中有准确和快捷的特点,可能成为实现秘鲁番茄向栽培番茄基
因渗入的优先选择;不过利用该技术的先决条件是要完成目标基因定位、克隆和功能鉴定,同时利用
基因工程技术对番茄遗传改良的食用和环境风险依然存在,无选择标记表达载体构建或 “友好”筛
选标记的应用也是必需考虑的问题之一。面对拥有大量优良基因的秘鲁番茄,如何有效地利用它对番
茄进行遗传改良,必须根据生产实际需求和育种条件采取相应的策略。
l ferences
Alexander L J.1963.Transfer of a dominant type of resistance to the four known Ohio pathogenic strains of tobacco mosaic virus(TMV)from
Lycopersicon peruvianum to L.esculentum.Phytopathology,53:869.
Ammimju J S,Veremis J C,Huang P X,Roberts P A,Kaloshian I.2003.The heat—stable root—knot nematede resistance gene Mi-9 from Lycoper-
sicon peruvianum is localized on the short arm of chromosome 6.Theor Appl Genet,106:478—484.
Araujo P G.Casacuberta J M,Costa A P,Hashimoto R Y.Grandbastien M A,van Sluys M A.2001.Retrolycl subfamilies defined by different
U3 LTR regulatory regions in the Lycopesicon genus.Mol Genet Genomics,266:35—41.
Bat Y R.van der Hulst R,Huang C C.Wet L.Stam P.Lindhout P.2004.Mapping 01-4.a gene conferring resistance to Oidium neolycopersiei
and originating from Lycopersicon~mvianum LA2172.requires multi—alelic,sin~e—locus markers.Theor Appl Genet.109:1215—1223.
Bailey D M.1941.The seedling method for root—knot nematode resistance.Proe Am Soc Hort Sci.38:573—575.
Baudry E.Kerdelhu C.1nnml H.Stephan W.2001.Species and recombination efects on DNA variability in the tomato genus.Genetics.1725—1735.
Bellini C.Chupeau M C,Guerche P,Vastra G,Chupeau Y. 1989.Transfommtion ofLycopersiconperuvianum and L3vopersicon esculentum meso-
phyl protoplasts by electroporation.Plant Sci,65 (1):63—75.
Bennetzen J L.Adams T L.1984.Selection and characterization of cadmium—resistant suspension cultures of the wild tomato Lycopersicon peruvia—
nitro.Plant Cell Rep.3:258—261.
Bernatzky R.1993.Genetic mapping and protein product diversity of the self—incompatibility locus in wild tomato(Lycopersicon peruvianum).
Biochem Genet,31(3):173一l84.
Bernatzky R.Glaven R H,Rivers B A.1995.S-related protein can be recombined with self-compatibility in interspecific derivatives of Lycopersi-
con.Biochem Ge net,33 (7):215—225.
Bharti K,Schmidt E.Lyck R,Heerklotz D,Bublak D,Schaf K D.2000.Isolation and characterization of HsfA3,a new heat stress transcription
factor of Lycopersicon peruvianum.Plant J,22 (4):355—365.
Bhatarai K K,Xie Q G.Pourshalimi D,Younglove T,Kaloshian I.2007.Coil—dependent signaling pathway is not required forMi 1一mediated po-
’挑 aphid resistance.Mol Planl Microbe lnleraet.20 (3):276—2s2.
维普资讯 http://www.cqvip.com
l238 园 艺 学 报 35卷
Briggemann W.Wenner A.Sakata Y.1995.Long·term chiling of young tomato plants under low light(Ⅶ):Increasing chiling tolerance of
photosynthesis in Lycopersicon esculentum by somatic hybridization with L.peruvianum.Plant Sci,108:23—30.
Briggemann W ,Linger P,Wenner A,Koornneef M.1996.Improvement of post·chilling photosynthesis in tomato by sexual hybridisation with a
Lycopersicon peruvianum line from elevated altitude.Adv Hortic Sci.10:215—218.
Cappadocia M,Ramulu S R.1980 Plant regeneration from in vitro cultures of anthers and stem internodes in aft interspecific hybrid
esculentum L. ×L.peruvianum Mil1.and cytogenetic analysis of the regenerated plants.Plant Sci Let,2O (2):1 57—166.
Chen Xue.hao,Zeng Guang·wen,Can Bei—sheng.2001.Parthenocarpy of horticultural crops and its application.Plant Physiology
tions,37 (6):570—575.(in Chinese)
陈学好,曾广文,曹碚生.2001 园艺作物的单性结实及应用.植物生理学通讯,37(6):570—575.
Lycopersicon
Communica
Chen L Z.Adachi T.1998.Protoplast fusion between Lycopersicon esculentum and L.per~wianum·complex:Somatic embryogenesis,plant regener-
ation and morphology.Plant Cell Rep,17:508—514.
Chung I K.Ito T,Tanaka H,Ohta A,Nan H G,Taka~ M.1994.Molecular diversity of three S-alele cDNAs associated with gametophytic self-
incompatibility in Lycopersicon peruvianum.Plant Mol Biol,26 (2):757—762.
Costa A P,Scortecci K C,Hashimoto R Y,Araujo P G,Grandbastien M A,van Sluys M A.1999.Retrolycl一1,a member of the Tntl retrotrans·
posen super·family in the Lycopersicon per~wianum genome.Genetica,107:65—72.
Deberdt P.Qu n herv P,Darrasse A,Prior P.1999.Increased susceptibility to bacterial wilt in tomatoes by nematode galling and the role of the
Mi gene in resistance to nematodes and bacterial wilt.Plant Patho1.48:408—414.
Doganlar S,Frary A S,Tanksley S D.1997.Production of interspecific Fl hybrids,BCl,BC2 and BC3 populations between Lycopersicon esculen·
turn and two accesions of Lycopersicon peruvianum carying new root·knot nematode resistance genes.Euphytica,95 (2):203—207.
Dougan D A.Mogk A,Bukau B.2002. Protein folding and degradation in bacteria:To degrade or not to degrade?That is the question.Cell Mol
Life Sci.59 (10):1607—1616.
Egashira H.Ishihara H,Takashina T,Imanishi S.2000.Genetic diversity of the‘peruvianum·complex’[Lycopersicon peruvianum(L.)Mil1.
and L.chilense Dun.]revealed by RAPD analysis.Euphytica,116:23—31.
Emets A I.Blium I B.2003.Microprotoplasts as an efficient technique for chromosome transfer between incompatible plant species.Tsitol Ge net.
7 (2):39—48.
Frankel N,Hasson E,lusem N D,Rossi M S.2003.Adaptive evolution of the water stress—induced gene Asr2 in Lycopersicon species dwelling in
arid habitats.Mol Biol Evo1.2O (12):1955—1962.
Goggin F L,Jia L,Shah G,Hebert S,Wiliamson V M.Ulman D E.2006.Hetemlogous expression of the Mi·1.2 gene from tomato crofters re·
sistance against nematodes but not aphids in eggplant.Mol Plant Microbe Interact,19 (4):383—388.
Gradziel T M,Robinson R W.1989.Breakdown of self-incompatibility during pistil development in Lycopersicon peruvianum by modified bud polli.
nation.Sex Plant Reprod,2:38—42.
Hall T J.1 980.Resistance at the TM-2 locus in the tomato to tomato mosaic virus.Euphytica.29:I 89—197.
Hassan N S,Wilkins D A.1988.In vitro selection for salt tolerant lines in Lycopersicon peruvianum.Plant Cell Rep,7:463—466.
Huang S,Lee H S,Karunanandaa B,Kao T H.1994.Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-polen.
Plant Cel1.6 (7):1021—1028.
Jones R A.1986.High salt tolerance potential in Lyeopersicon species during germ ination.Euphytica.35:575—582.
Kim M H,Shin D l,Park H S,Chung I K. 2001.In vitro function ofS RNases in Lyeopersicon peruvianum.Mol Cells
, 12 (3):329—335.
Kochieva E Z,Ryzhova N N,Khrapalova I A,Pukhal’skii V A.2002a.Using RAPD for estimating genetic polymorphism and phylogenetic rela.
tionships among species of the genus Lycopersicon (Toum.)Mil1.Genetika,38 (9):1298—1303.
Kochieva E Z,Ryzhova N N,Khrapalova I A,Pukhalskyi V A.2002b.Genetic diversity and phylogenetic relationships in the genus Lycopersicon
(Tourn.)Mil1.as revealed by inter·simple sequence repeat(ISSR)analysis.Genetika,38(8):958—966.
Kooruneef M,Hanhart C,Jongsma M,Toma 1,Weide R,Zabel P,Hile J.1986.Breeding of a tomato genotype readily accessible to genetic ma.
nipulation.Plant Sci,45 (3):201—208.
Kowyama Y,Kunz C,Lewis I,Newbigin E,Clarke A E,Anderson M A. 1994.Self·compatibility in a Lycopersicon peruvianum variant
(IA2157)is associated with a lack of style S-RNase activity.Theor Appl Genet.88:859—864.
Lee H S,Huang S,Kao T H.1994.S proteins control rejection of incompatible in Petunia inflata.Nature,367:560—563.
Lefrancois C,Chupeau Y,Bourgin J P.1993.Sexual and somatic hybridization in the genus Lycoperslcon.Theor Appl Genet.86:533—546.
Link V L,Hofmann M G,Sinha A K,Ehness R,Strnad M.Roitsch T.2002.Biochemical evidence for the activation of distinct subsets of mit0.
维普资讯 http://www.cqvip.com
8期 孟凡娟等:秘鲁番茄分子生物学研究进展 1239
gen—activated protein kinases by vohage and defense—related stimuli.Plant Physiol,128 (1):271—281
L6pez C,Soler S,Nuez F.2005.Comparison of the complete sequences of three diferent isolates of Pepino mosaic virus:Size variability of the
TGBp3 protein between tomato and£.peruvianum isolates.Arch Viro1.150:619—627.
Low D,Brandle K,Nover L.Forreiter C.2000.Cytosolic heat—stress proteins Hspl 7.7 class I and Hspl 7.3 class II of tomato act as molecular
chaperones in vivo.Planta,21 1(4):575—582.
Milligan S B,Bodeau J,Yaghoobi J,Kaloshian I,Zabel P,Williamson V M.1998.The root knot nematode resistance gene Mi from tomato is a
member of the leucine zipper.nucleotide binding.1eucine-rich repeat family of plant genes.Plant Cel,10 (8):1307—1319.
Murfett J.Atherton T L.Mou B,Gasser C S.McClure B A.1994.S-RNase expressed in transgenic Nicotiamz causes S-allele-specific pollen re-
jection.Nature,367:563—566.
Pearce G,Ryan C A,Liljegren D.1988.Proteinase inhibitors I and I in fruit of a wild tomato species:Transient components of a mechanism for
defense and seed dispersa1.Planta.175:527—531.
Pearce G,Strydom D,Johnson S,Ryan C A.1991.A polypeptide from tomato leaves induces wound—inducible pmteinase inhibitor proteins.Sci—
ence.253:895—897.
Peraha I E.Spooner D M.2000.Classification of wild tomatoes:A review.Kurtziana 28:45—54.
Peraha I E,Spooner D M.2001.Granule—bound starch synthetase(GBSSI)gene phylogeny of wild tomatoes[Solanum L.section Lycopersicon
(Mil1.)Wetst.subsection L)vopersicon].Am J Bot,88:1888—1902.
Pic6 B,Herraiz J,Ruiz J J,Nuez F.2002.Widening the genetic basis of virus resistance in tomato.Sci Hortic,94:73 89.
Poysa V.1990.The development of bridge lines for interspecific gene transfer between L)vopersicon esculentum and£.peruvianum.Theor Appl
Genet,79:187—192,
Port M,Tripp J,Zielinski D,WeberC,HeerklotzD.Winkelhaus S,Bublak D,ScharfKD.2004.Role ofHspl7.4-CII as coregulator and cyto—
plasmic retention factor of tomato heat stress transcription factor HsfA2.Plant Physiol,135:1457—1470.
Ratushnyak Y I,Cherep N N,Zavgorodnyaya A V.Latypov S A,Borozenko I V,Rachkovskaya R I,Gleba Y Y.1993.Fertile asymmetric sonar—
ic hybrids between Lycopersicon esculentum Mil1.and Lycopersicon peruvianum var.dentatum Dun.Mol Gen Genet,236(2):427-432.
Rivers B A.Bernatzky R. 1994.Protein expression of a self-compatible allele from Lycopersicon pemvianum:Intmgression and behavior in a serf-
incompatible background.Sex Plant Reprot.7:357—362.
Rojas A,Almoguera C,Caranco R,ScharfK D,Jordano J.2002.Selective activation ofthe developmentaUy regulatedHa hspl7.6 GI promoter
by heat stres transcription factors.Plant Physio1.129:1207一l2l5.
Rossi M,Goggin F L,Milligan S B,Kaloshian I.Ullman DE,Williamson V M.1998.The nematode resistance gene Mi of tomato comeers resist-
ance against the potato aphid.Proc Natl Acad Set USA.95(17):9750—9754.
Sandbrink J M,van Ooijen J W,Purimahua C C,Vrielink M,Verkerk R,Zabel P,Lindhout P.1995.Localization of genes for bacterial canker
resistance in Lycopersicon peruvianum using RFLPs.Theor Appl Genet.90:444-450.
Scharf K D。Heider H,H hfeld 1,Lyck R,Schmidt E.Nover L.1998.The tomato Hsf system:HsfA2 needs interaction with HsfA1 for ef~ient
nuclear import and may be localized in cytoplasmic heat stress granules.Mol Cel Biol,1 8(4):2240—225 1.
Segeren M I,Sondahl M R.Siqueira W J.Medina Filho H P.Nagai H,Lourencao A L.1993.Tomato breeding(I):Embryo rescue of inter—
specifc hybrids between Lycopersicon esculentum Mil1.and£.peruvianum (L.)Mil1.Revista Brasileira de Genetica,16 (2):367—380.
Smith P G.1944.Embryo culture of a tomato species hybrid.Proc Am Soc Hortic Sci,44:413—416.
Spooner D M,Peraha 1 E,Knapp S.2005.Comparison of AFLPs to other markers for phylogenetic inference in wild tomatoes[Solanum L.section
Lycopersicon(Mil1.)Wettst.subsection Lycopersicon].Taxon,54:43—6l
Stevens M R,Scot S J,Gergerich R C.1994.Evaluation of seven Lycopersicon species for resistance to tomato spoted wilt virus(TsWV).Eu—
phytica,80:79—84.
Stommel J R.1992.Enzymic components of sucrose accumulation in the wild tomato species L)vopersicon peruvianum.Plant Physiol,99 (1):
324—328.
Takacs A P。Kazinczi G,Horvath J。Gaborjanyi R.2003.Reaction of Lycopersicon species and varieties to potato virus Y[PVY (NTN)]and to—
mato mosaic virus(ToMV).Commun A c Appl Biol Set,68 (4):561—565.
Taylor I B,AI—Kummer M K.1982.The formation of complex hybrids between L)vopersicon eseulentum and£.peruvianum,and their potential use
in promoting interspecific gene transfer.Theor Appl Genet.61:59—63.
Tsai D S,Lee H S,Post L C,Kreiling K M,Kao T. 1992. Sequence of an S-protein of Lycoperslcon peruvianum and comparison with other so-
lanaceous S-proteins.Sex Plant Reprod.5:256—263.
维普资讯 http://www.cqvip.com
l240 园 艺 学 报 35卷
van Ooijen J W,Sandbrink,J M,Vrielink M,Verkerk R,Zabel P,Lindhout P.1994.An RFLP linkage map of Lycopersicon peruvianum.Theor
Appl Genet.89:1007—1013.
Venema J H.Linger P,van Heusden A W,van Hasselt P R,Brilggemann W.2005.The inheritance of chiling tolerance in tomato(Lycopersicon
spp.).Plant Bio1.7 (2):118~130.
Veremis J C.Roberts P A.1 996a.Diferentiation of Meloidogyne incogn~a and M.arenar/a novel resistance phenotypes in Lycopersicon peruvia-
nttm an d derived bridge lines.Theor Appl Genet.93:960—967.
Veremis J C.Roberts P A.1996b.Identifcation of resistance to Meloidogynejavauica in the Lycopersicon peruvianum complex.Theor Appl Genet,
93:894—901.
Veremis J C.van Heusden A W ,Roberts P A.1999.Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum.Theor
Appl Genet.97:274—280.
Vos P.Simons G,Jesse T,Wijbrandi J.Heinen L,Hogers R,Vrijters A,Groenendijk J,Diergaarde P,Reijans M,Fierens~Onstenk J,de Both
M,Peleman J,Liharska T,Hontelez J,Zabeau M.1998,The tomato Mi-1 gene confers resistan ce to both root-knot nematodes and potato a-
phids.Nat Biotechnol,16(13):1365—1369.
Vulkova Z V.Sotirova V G.1993.Study of the three-genome hybrid Lycopersicon esculentum Mil1.,L.chi&nse Dun.,L.peruviamum var. ‘hu-
mifusum’Mil1.and its use as a source for resistance.Theor Appl Genet,87(3):337—342.
Wingate V P,Broadway R M,Ryan C A.1989.Isolation and characterization of a novel,developmentally regulated pmteinase inhibitor I protein
and cDNA from the fruit of a wild tomato species oftomato.J Biol Chem,264:17734—17738.
Wingate V P.Franceschi V R.Ryan C A.1991.Tissue and celular localization of proteinase inhibitors I and I in the fruit of the wild tomato,
Lycopersicon peruvianum (L.)Mil1.Plant Physiol,97(2):490—495.
Wu Ding—hua,Li Peng-fei.1964 .The first report of interspecifc hybridization.Acta Horticultrae Sinica,3 (4):369—378.(in Chinese)
吴定华,李鹏飞.1964.番茄种问杂交结果初报.园艺学报,3(4):369—378.
Wu Ding-hua,Liang Shu—nan.1992.Interspecifc hybridization in tomato.Acta Horticuhrae Sinica,19 (1):41~46.(in Chinese)
吴定华,梁树南.1992.番茄远缘杂交的研究.园艺学报,19(1):41—46.
Wu He-ming,Lu Wei—zhong.She Jian-ming,Zhou Yang.1988.Cytology observation on embryo and albumen of Lycopersicum esculentum ×L.
peruvianum.Jiangsu Journal of A cultural Sciences,4 (4):45—47.(in Chinese)
吴鹤鸣,陆维忠,佘建明,周 扬.1988.栽培番茄 (Lycopersicum esculentum)×秘鲁番茄 (L.peruvianum)杂种胚、胚乳发育的
细胞学观察.江苏农业学报,4(4):45—47.
Wu He-ming,Lu Wei—zhong,She Jian-ming,Zhou Yang.1990.Embryo development folowing hybridization between Lycopersicon esculentum and
L.peruvianum.Chinese Bulletin of Botany,7 (1):48—52.(in Chinese).
吴鹤呜,陆维忠,佘建明,周 扬.1990.栽培番茄 ×秘鲁番茄杂交后的胚胎发育.植物学通报,7(1):48—52.
Yaghoobi J.Yates J L,Wiliamson V M.2005.Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a
S.1y~ rsicum DNA contig spanning the locus.Mol Gen Genomics.274:60—69.
Yalamanchili R D.Stratmann J W.2002.Ultraviolet-B activates components of the systemin signaling pathway in Lycopen~on peruvianum suspen-
sion-cultured cels.J Biol Chem,277 (32):28424—28430.
Young R.Kaul V.Williams E G.1987.Clonal propagation in vitro from immature embryos and flower buds of Lycopersicon peruvianum and L.∞-
culentum.P1ant Sci,2 (3):237—242.
Young J C,Barral J M,Ulrich Hartl F.2003 More than folding:Localized functions of cytosolic chaperones.Trends Biochem Sci.28:541—547.
Yu Shuan—cang,Chai Min,Zhao Hong.Jiang Li—gang.2005.Fingerprinting identifcation of inter—specifc hybrid from Lycopersicon esculentum ×
L.peruvianum.Molecular Plant Breeding.3 (1):61—65.(in Chinese)
于拴仓,柴 敏,赵 泓,姜立纲.2005.栽培番茄与秘鲁番茄种问杂种的 DNA指纹鉴定.分子植物育种,3(1):61—65.
Zapata F J,Sink K C.1981.Somatic embryogenesis from Lycopersicon peruvianum leafmesophyl protoplasts.Theor Appl Genet.59:265—268.
Zhao Hong,Chai Min,Yu Shuan—cang,Liu Fan,Jiang Li—gang,Mao Ai-jun.2004.Interspecifc Fl hybrids via ovule culture between L.peruvia—
nttm and L. esculeutum introgressed Mi-3 gene,resistance to temperature insensitive root-knot nematode. Molecular Plant Breeding
, 2 (6):
833—838.(in Chinese)
赵 泓,柴 敏,于栓仓,刘 凡,姜立纲,毛爱军.2004.胚珠培养获得秘鲁番茄与栽培番茄种问杂种具有非温敏抗根结线虫
基因Mi-3.分子植物育种,2(6):833—838.
Zheng Guang—hua,Shen Zheng-yan.1989.Tomato.Beijing:Beijing Forestry University Press.(in Chinese)
郑光华,沈征言.1989.番茄.北京:北京林业大学出版社.
维普资讯 http://www.cqvip.com