免费文献传递   相关文献

Effects of Converting Degraded Cropland to Alfalfa (Medicago sativa L.) Grassland on Soil Physicochemical Properties

退化耕地转化为紫花苜蓿草地对土壤理化性质的影响



全 文 :第21卷 第5期
Vol.21 No.5
草 地 学 报
ACTA AGRESTIA SINICA
2013年 9月
Sep. 2013
doi:10.11733/j.issn.1007-0435.2013.05.008
EffectsofConvertingDegradedCroplandtoAlfalfa(MedicagosativaL.)
GrasslandonSoilPhysicochemicalProperties
GUOZhi-bin1,2,3,WANGDao-zhong1,3,LIFeng-min2*
(1.SoilFertilityInstitute,AnhuiAcademyofAgriculturalSciences,Hefei,AnhuiProvince230031,China;2.MOE
KeyLaboratoryofAridAgroecology,SchoolofLifeScience,LanzhouUniversity,Lanzhou,GansuProvince730000,China;
3.KeylaboratoryofNutrientCyclingandResourcesEnvironmentofAnHuiProvince,Hefei,AnhuiProvince230031,China)
Abstract:Tofindanefficientwayofdevelopingsustainableagriculture,theeffectofconverting
degradedcroplandtograsslandonsoilqualitywasinvestigatedwithtwotreatments-natural(NR)
andalfalfa(MedicagosativaL.)(AF)grasslands.ResultsshowedthatbothNRandAFtreat-
mentsimprovedsoillightfractionorganiccarbon(LFOC).TheLFOCsofNRandAFtreatments
in2007increasedby41.00%and30.91%comparedto2003,respectively.Besides,AFtreat-
mentenhancedsoilnitrogencontentandtheeconomicbenefitsoflocalfarmerswereimprovedby
harvestingforage.Theannualaverageabovegroundbiomassofalfalfawasupto1957.1kg·hm-2.
However,long-termgrowthofalfalfaresultedindeepsoilwaterdepletion.Thesoilwatercon-
tentof200~500cmsoillayerin2007was32.6%lowerthanthatin2003forAFtreatment,and
thatwassignificantlylowerthansoilpermanentwiltingpoint.Moreover,alfalfaextractedsoila-
vailablephosphorussogreatlythatanegativecorrelationwasexistedbetweenavailablephosphor-
usandthegrowthyearsofalfalfa(r=-0.735**,P≤0.01).Therefore,plantingalfalfaisanef-
ficientapproachtorestoredegradedcroplandsanddevelopsustainableagriculture,andlessthan
fiveplantingyearsisrecommended.
Keywords:Alfalfa;Soilwatercontent;Soilorganiccarbon;Lightfractionorganiccarbon
退化耕地转化为紫花苜蓿草地对土壤理化性质的影响
郭志彬1,2,3,王道中1,3,李凤民2*
(1.安徽省农业科学院土壤肥料研究所,安徽 合肥 230031;2.兰州大学 干旱与草地教育部重点实验室,
甘肃 兰州 730000;3.安徽省资源环境与养分循环重点实验室,安徽 合肥 230031)
摘要:为探明不同退耕还草方式对土壤质量的影响,有效发展可持续农业,对退化耕地转化为自然草地和紫花苜蓿(Medicago
sativaL.)草地后的土壤物理化学性质进行了分析。结果表明:自然草地和紫花苜蓿草地均能改善土壤轻组有机碳(LFOC)。
与2003年相比,自然草地和苜蓿草地在2007年LFOC分别增加41%和30.91%。此外,苜蓿草地有利于提高土壤氮含量以及通
过生产苜蓿草料增加农户经济收入。试验期间,苜蓿年平均地上干生物量为1957.1kg·hm-2。然而,苜蓿长期生长不利于深层
土壤水分和0~20cm土壤有效磷的提高。相比2003年,2007年苜蓿地200~500cm的土壤水分下降了32.6%,显著低于土壤的
永久萎蔫系数,而0~20cm土壤速效磷含量也与苜蓿生长年限成反比(r=-0.735**,P≤0.01)。总之,相比自然草地,在控制
苜蓿生长年限的条件下,种植紫花苜蓿是改善土壤质量和发展可持续农业的有效途径。建议苜蓿生长的年限不要超过5年。
关键词:紫花苜蓿;土壤水分含量;土壤有机碳;土壤轻组有机碳
中图分类号:S154.4 文献标识码:A 文章编号:1007-0435(2013)05-0888-07
Soilorganicmatter(SOM)isanimportantin-
dicatorforsoilqualityassessment[1].Thequantity
andqualityofSOMgeneralychangegreatlyafter
convertinggrasslandsorforeststocroplands,and
thusaffectsoilstructure,aggregatestabilityand
microbialcommunitystructure[2-4].Astheunpro-
tectedandreadilydegradedpartofSOM,light
fractionorganicmatter(LFOM)mainlyconsistsof
收稿日期:2012-11-18;修回日期:2013-03-01
基金项目:农业部行业专项(201203030);安徽省科技厅重点实验室项目(1206c0805033);安徽省农业科学院院长青年基金(11B1021)资助
作者简介:郭志彬(1983-),男,安徽宿州人,博士,助理研究员,主要从事农业生态学研究,E-mail:guozhibin1450@126.com;*通信作者
Authorforcorrespondence,E-mail:fmli@lzu.cn
第5期
GUOZhi-binetal:EffectsofConvertingDegradedCroplandtoAlfalfa(MedicagosativaL.)
GrasslandonSoilPhysicochemicalProperties
partialydegradedplantmaterials,microbialtis-
suesandproducts,etc[5-6].Therefore,LFOMis
consideredtobeanearlyindicatorofsoilquality
andCsequestration[7-8].
Theecosystemsofsemiaridgrasslandsare
fragileandeasilysufferfromdegradationbecause
ofunreasonableagriculturalmanagementsglobal-
ly[9-10].Forexample,therateofsoillossismore
than50t·hm-2intheuplandareasofthesemiarid
LoessPlateauofChinabecauseofsoilerosion
causedbyintensivetilage[11].Torestorethede-
gradedecosystemanddevelopasustainableagri-
cultureintheWesternRegionofChina,Chinese
governmenthaslaunchedaprojectcaled“National
WesternDevelopmentProgram”,whichrefersto
convertingcroplandstopasturesorforests[12-13].
However,cropproductioninthisregionisaffected
negatively[14].ForChina,itisthemostimportant
thingtomaintainhighcropyieldtosustainitslar-
gestpopulationintheworld.Therefore,asustain-
ableandefficientutilizationofdegradedcroplands
isvitalforthestabilityanddevelopmentofChinese
economyandsociety.Alfalfa (Medicagosativa
L.),animportantfodderforlivestockindustry,is
widelyusedaswindbreakplanttoprotectsoilfrom
waterorwinderosionbecauseofitsdroughtresist-
antandhighforageproductivityinwesternChina.
Theaimofthisresearchistofindanefficientand
economicwaytoutilizedegradedcroplandsinthe
semiaridLoessPlateauofChina.
1 MaterialsandMethods
1.1 Experimentalsites
TheexperimentwasconductedintheYuzhong
countyofGansuprovince,China (N36°02′,E
104°24′and2400mabovesealevel).Theannual
meantemperaturewas6.5℃,rangingfrom -8.0℃
inJanuaryto19℃inJuly.Themeanannualprecipita-
tionwas304mm,ofwhich58.9%occurredfromJune
toSeptember(Fig.1),andtheaverageannualpoten-
tialevaporationwas1300mm.ThesoilwasHeima
soil(CalcicKastanozems,FAOTaxonomy),witha
fieldwaterholdingcapacityof22.9%andapermanent
wiltingcoeficientof6.2% [15].
1.2 Fieldexperimentaldesign
Twotreatmentsweredesigned-natural(NR)
grasslandandalfalfagrasslandwithaseedingden-
sityof22.5kg·hm-2(AF)plantedindegraded
croplandthatusedtoplantspringwheatforseveral
decades.Bothtreatmentswereestablishedwithout
tilage,fertilization,harvestingormanagements,
andarrangedrandomlywiththreereplicates.
1.3 Surveymethods
Plantsampleswiththreereplicatesweretaken
inannualAugustfrom2003to2007usinga0.5m
×0.5mquadratineachplot [16].Eachquadrat
wasrandomlyselectedfarfromtheedgeatleast2
mtoavoidanedgeeffect.Thecolectedplantsam-
plesweredriedinanovenat105℃for1hand
thenat70℃foraminimumof72h,andthenre-
cordedastheabovegroundbiomass(kg·hm-2).
Soilsampleswiththreereplicatesinthe0~20
cmlayerweretakenrandomlyfromeachplotinan-
nualOctoberfrom2003to2007usingacylindrical
steelcorer(diameter80mm),andthendividedin-
totwogroups.Onewasforsoilwatercontenta-
nalysisbymeasuringsoilweightbeforeandafter
dryinginanovenat105℃for8h.Theotherwas
air-dried,sieved(withdiameter<2mm)andana-
lyzedforsoilorganiccarbon(SOC),totalnitrogen
(TN),totalphosphorus(TP)andavailablephos-
phorus(AP).SOCwasmeasuredbytheWalkley-
Blackdichromateoxidationprocedure[17],andTN
wasdeterminedbysemi-microKjeldahldigestion
procedure.TPwasdeterminedcolorimetricalyaf-
terdigestionwithperchloricandsulfuricacids,and
APwasobtainedusingthemethodofOlsen,etal.[18].
Lightfractionorganicmatterwasdeterminedby
densityfractionationmethod [19].Intheprocessof
fractionation,25gofair-driedsoil(<2mm)was
shakenwith50mLofNaIsolution(sp.gr.=1.70
g·cm-3)for1h,andthenpassedthroughaMilipore
filter(0.45μm)tocolectthelightfraction.Thesoil
residueinthecentrifugewasextractedagainwithNaI,
andtheadditionallightfractionwascolected.Thetwo
lightfractioncomponentswerecombined,andweighed
forlightfractionorganicmattercalculationafterdrying
at60℃.Lightfractionorganiccarbon(LFOC)and
soiltotalcarbon(STC)weredeterminedusingCHNS-
analyzer.
1.4 Dataprocessing
ANOVAandREGintheSASpackagewereused
foranalysisofvarianceandlinerregression,respec-
tively.AlgraphswereplottedbyOrigin7.5.
988
草 地 学 报 第21卷
Fig.1 Distributionofprecipitation(mm)attheexperimentalsitefrom2003to2007
2 Results
2.1 Plantabovegroundbiomassandsoilwater
Table1showedthattheplantabovegroundbio-
massofNRtreatmentwasunstable,whereasthatof
AF treatment was positively correlated withthe
growthyearsofalfalfa(r=0.713**,P<0.01),and
significantlyhigherthanthatofNRtreatment(P<
0.05).TheannualaveragebiomassofAFtreatment
was97.78%higherthanthatofNRtreatment.
Table1 Abovegroundbiomassofnaturalregeneration(NR)andalfalfa(AF)treatments
Treatments
Biomass/kg·hm-2
2003 2004 2005 2006 2007
NR 1053.5±37.7AB 1256.1±106.3A 884.0±82.2B 1234.1±99.5A 520.1±67.2C
AF 1545.1±95.4CD 892.8±78.8D 2433.0±184.2AB 1962.7±85.9BC 2952.1±196.3A
Note:Errorbarsrepresentstandarderrors(n=3).Diferentletterswithinarowmeansignificantdiferenceat0.05level.Thesameasbelow
Thesoilwatercontentsof0~500cmlayer
hadnosignificantdifferencebetweenNRandAF
treatmentsatthebeginningoftheexperimentin
Aprilof2003(Fig.2).Fouryearslater,thesoil
watercontentsofbothNRandAFtreatmentsde-
creasedby24.9%and24.7%in0~200cmsoil
layerandby6.4%and29.2%in0~500cmsoil
layercomparedto2003,respectively.Further-
more,thesoilwatercontentofAFtreatmentata
depthof200~500cmwaslowerthansoilperma-
nentwiltingpoint(6.2%)after2006.
2.2 Soilorganiccarbonandfractions
Thesoiltotalcarbon(STC)ofbothNRand
AFtreatmentshadnosignificantdifferencein2003
and2006.Thesoillightfractionorganiccarbon
(LFOC)ofNRtreatmentin2007was41.00%
higherthanthatin2003.Andthesoilorganiccar-
bon(SOC)andLFOCofAFtreatmentin2007were
12.72%and30.91% higherthanthatin2003,re-
spectively(Table2).
2.3 SoilNandP
TheTNofNRtreatmentin2007decreased
significantlycomparedwiththatin2003,whereas
theTNofAFtreatmentincreasedby14.14%.
Thesoiltotalphosphorus (TP)ofNRtreatment
hadnosignificantdiferenceamongaltestedperiods,
098
第5期
GUOZhi-binetal:EffectsofConvertingDegradedCroplandtoAlfalfa(MedicagosativaL.)
GrasslandonSoilPhysicochemicalProperties
Fig.2 Soilwaterdistributioninthe0~500cmsoillayersofnaturalregeneration(NR)
andalfalfa(AF)treatmentsin2003,2006and2007
Note:PWCmeanspermanentwiltingcoefficient(6.2%),andFWHCmeansfieldwaterholdingcapacity(22.9%).
ErrorbarsaretheLSDatP=0.05
Table2 Thesoiltotalcarbon(STC),organiccarbon(SOC)andlightfractionorganiccarbon(LFOC)
ofnaturalregeneration(NR)andalfalfa(AF)treatmentsfrom2003to2007(mean±SE)
Variables
/g·kg-1
Treatments
Years
2003 2004 2005 2006 2007
STC NR 24.87±1.53aB 23.34±0.71aB 24.80±0.85aB 26.07±2.74aB 34.97±2.35aA
AF 28.80±2.20aB 22.79±0.59aB 22.07±1.69aB 22.83±0.46aB 37.88±0.26aA
SOC NR 10.44±0.38aA 8.99±0.32aB 9.64±0.30aAB 10.07±0.41aA 10.47±0.41aA
AF 9.61±0.33bB 9.70±0.18aAB 10.02±0.41aAB 9.93±0.48aAB 10.37±0.44aA
LFOC NR 1.00±0.08aC 1.41±0.05aB 1.54±0.07aAB 1.66±0.08aA 1.41±0.03aB
AF 1.10±0.05aC 1.36±0.06aB 1.34±0.03bB 1.61±0.06aA 1.44±0.07aAB
Table3 Thesoiltotalnitrogen(STN),totalphosphorus(STP)andavailablephosphorus(SAP)
ofnaturalregeneration(NR)andalfalfa(AF)treatmentsfrom2003to2007(mean±SE)
Variables Treatments
Years
2003 2004 2005 2006 2007
STN/g·kg-1 NR 1.10±0.05aA 0.88±0.06aB 1.12±0.06aA 1.02±0.05aA 0.87±0.03bB
AF 0.99±0.04aB 1.09±0.05aAB 1.10±0.03aA 1.09±0.05aAB 1.13±0.03aA
STP/g·kg-1 NR 0.57±0.01aA 0.56±0.02aA 0.61±0.04aA 0.59±0.01aA 0.55±0.03aA
AF 0.54±0.02aB 0.57±0.02aA 0.62±0.02aA 0.63±0.02aA 0.57±0.02aA
SAP/mg·kg-1 NR 4.89±0.33aB 4.99±0.19aAB 4.84±0.40aAB 5.60±0.40aA 6.05±0.33aA
AF 5.49±0.38aA 4.38±0.39aB 5.04±0.12aA 4.40±0.31bB 2.64±0.03bC
whereastheavailablephosphorus(AP)increased
significantly.However,theTPofAFtreatment
waspositivelycorrelatedwiththegrowthyearsof
alfalfa(r=0.554*,P≤0.05),whereasAPde-
creasedsignificantly.In2006and2007,theAPof
AFtreatmentwas21.4%and56.4%lowerthan
thatofNRtreatment,respectively.Therewasa
negativecorrelationbetweenAPandthegrowth
198
草 地 学 报 第21卷
yearsofalfalfainAFtreatment(r=-0.735**,P
≤0.01)(Table3).
2.4 Relationsamongplantbiomass,soilCpools,
soilNandP
TheC/NratioofNRtreatmentincreasedfrom
9.56in2003to12.17in2007,andwaspositivelycor-
relatedwithtestedperiods(r=0.545*,P<0.05),
whereastheC/NratioofAFtreatmentwasmuchlow-
erthanthatofNRtreatment.TheC/PratioofNR
treatmentdecreasedsignificantlyfromthe2146of2003
tothe1735of2007(P<0.05),whereastheC/Pratio
ofAFtreatmentincreasedsignificantlyfromthe1688
of2003tothe3934of2007(P<0.05).
BothSTCandSOCofNRtreatmentwerepos-
itivelycorrelatedwithC/N,andnegativelycorre-
latedwithbiomass(BM).Furthermore,apositive
correlationwasexistedbetweenSTCandAPand
betweenLFOCandTP(Table4).
In AF,STC waspositivelycorrelatedwith
BMandC/P,andnegativelycorrelatedwithAP.
Inaddition,SOC waspositivelycorrelatedwith
TN,TPandC/P.LFOCwaspositivelycorrelated
withTP(Table4).
Table4 CorrelationcoefficientsamongtheSTC,SOC,LF,LFOC,BM,TN,TP,AP,C/NandC/P
ofnaturalregeneration(NR)andalfalfa(AF)treatments
Treatments Variables BM TN TP AP C/N C/P
NR STC -0.661** -0.350 -0.355 0.520* 0.661** -0.147
SOC -0.560* 0.154 -0.090 0.327 0.557* 0.379
LF 0.227 0.243 0.544* 0.182 -0.107 -0.049
LFOC 0.302 -0.197 0.284 0.197 0.038 -0.326
AF STC 0.535* 0.012 -0.380 -0.682** 0.239 0.755**
SOC 0.381 0.804*** 0.542* -0.354 0.239 0.543*
LF 0.361 0.223 0.392 -0.461 0.020 0.422
LFOC 0.344 0.418 0.572* -0.404 -0.125 0.357
Note:*,**,***representsignificanceat0.05,0.01and0.001levels,respectively.BM,STC,SOC,LF,LFOC,TN,TP,AP,C/N
andC/Prepresentplantbiomass,soiltotalcarbon,soilorganiccarbon,lightfractionoforganicmatter,lightfractionorganiccarbon,soiltotal
nitrogen,soiltotalphosphorus,soilavailablephosphorus,ratioofsoilorganiccarbontototalnitrogenandsoilorganiccarbontoavailablephos-
phorus,respectively
3 Discussion
3.1 Variationofsoilwatercontent
Waterisakeyfactorthatlimitsvegetation
growth,andtheabsenceofwaterresourcesseri-
ouslythreatenthedevelopmentofsustainableagri-
cultureinthesemiaridLoessPlateauofChina.
TheresultsofourpresentworkindicatedthatNR
treatmenthelpedimprovedeepsoilwatercontent,
especialyinthe200~500cmlayer.Incontrast,
thesoilwatercontentofAFtreatmentinthe200~
500cmdepthin2007wassignificantlylowerthan
thatofNRtreatmentandthepermanentwilting
point.Consequently,adesiccativedeepsoillayer
wasformedbelow200cmlayer [20].Thereason
wasattributedtothehighabovegroundbiomass
andalargerootsystemofalfalfa,whichdepleteda
considerable of deep soil water during plant
growth.Along-termgrowthofalfalfaistherefore
notagoodchoicetoimprovedeepsoilwater.
3.2 Dynamicsofsoilcarbon,nitrogenandphos-
phorus
SOCplaysanimportantroleonthestabilityof
soilstructureandsoilnutrients[22-23],anditslevel
isgovernedbythebalancebetweentheinputsof
carbonthroughplantresiduesandthelossesof
carbonthrough decomposition [24-25].Forcrop-
lands,SOCismainlyaffectedbyagriculturalman-
agements,suchastilage,croppingpractices,fer-
tilization,etc [26].However,theresultsofthis
studyindicatedthattheeffectsofNRand AF
treatmentsonSOChadnosignificantdifference.
Besides,theLFOCsofNRandAFtreatmentsin-
creasedslowly,andcoveredfrom15%to32%of
soilorganiccarbon.TheincreasedLFOCofNR
andAFtreatmentswasattributedtoalargenum-
berofplantresiduesleftintosoilannualy.Previ-
298
第5期
GUOZhi-binetal:EffectsofConvertingDegradedCroplandtoAlfalfa(MedicagosativaL.)
GrasslandonSoilPhysicochemicalProperties
ousresearchreportedthatLFOCwasmainlyorigi-
natedfrom relativelyfreshplant materialsand
playedanimportantroleincarbonmineralization
[5,13,27].Consequently,LFOCrestoredearlierthan
SOCaftercroplandsconvertedtograsslands[28-29].
ForthesoilnitrogenofAFtreatment,alfalfa
withanabilityoffixingnitrogenfromtheatmos-
pherewasthemajorreasoncontributedtohigher
soiltotalnitrogeninAFtreatmentthanNRtreat-
ment.Plantresiduesoflegumesspeciesgrownina
low-inputagriculturalsystem wasgeneralyused
asasourceofsoilnitrogen [30].Incontrast,the
decreasedsoiltotalnitrogenofNRtreatmentdur-
ingthetestedperiodmightbeattributedtoahigh
C/Nratiocausedbyanincreaseoflightfraction
organiccarbonandtheextractionofsoilnitrogen
byplant.SomeresearchreportedthatC/Nratio
wasanimportantindicatortoevaluatethemineral-
izationofsoilnitrogen [31-32].WhentheC/Nratio
wasbetween5.6and11.3,themineralizationof
soilorganicnitrogenwasenhanced;whentheC/N
ratiowashigherthan11.3,thedecompositionof
soilorganicmatterwasaccelerated,andorganicni-
trogenwasreleasedtomeetthedemandsofmicro-
organismsandplants.
InthesemiaridLoessPlateau,soiltotalphos-
phorusisabout0.52~0.77g·kg-1.However,
onlyasmalpartofthesoiltotalphosphoruscould
betransformedintoavailablephosphorusforplant
growth.Aftercroplandsconvertedtograsslands,the
availablephosphorusofNRtreatmentincreasedsignifi-
cantly,andC/Pratiodecreasedsignificantlyduetoa
lowerplantbiomassandanincreaseoflightfraction
organicmatter.Lightfractionorganicmatterwasen-
richedinorganicphosphorus.Itwasreportedthatthe
averageorganicphosphorusconcentrationinlightfrac-
tionorganicmatterwas1.5timesasmuchasthatof
soil[33-34].Bycontrast,theC/PratioofAFtreatment
washigherthanthatofNRtreatmentduetoahigher
productivityofalfalfa[35].C/Pratiowasanimportant
indicatortoassesssoilmicrobesandplantgrowthac-
tivities.WhentheC/Pratiowashigherthan300,soil
microbialbiomassincreasedrapidlyandalfalfaextrac-
tedsoilavailablephosphorusgreatly[31-32].Therefore,
soilavailablephosphoruswasaseriouslylimitedfactor
foralfalfagrowth.
3.3 Economicbenefits
Alfalfaisoneofthemostimportantfoddersfor
animalhusbandry.AsanintroductionofShort-tail
HanSheepintothesemiaridLoessPlateau,themarket
demandsforalfalfahaveincreasedconsiderably.Con-
sequently,theaveragepriceofdryalfalfaincreases
significantlyfrom266.71dolars·t-1in2009to400
dolars·t-1in2011 [36].Inthisstudy,theannual
meanneteconomicbenefitsofalfalfawereupto
782.8dolars·hm-2aftercroplandsconvertedtoal-
falfawithoutanyotheragriculturalmanagements
accordingtothedryalfalfapricein2011,which
wasapproximatelyequaltotheneteconomicbenefits
ofcornplantationwithabout823.9dolars·hm-2 [37].
TheeconomicbenefitsofNRtreatmentwerelower
thanthatofAFtreatment.
4 Conclusions
Fromaboveresults,itisconcludedthatcon-
vertingcroplandtograsslandisbeneficialtoen-
hancesoillightfraction organic carbon.The
growthofalfalfahelpsimprovesoiltotalnitrogen,
andelevatestheincomesoflocalfarmers.AF
treatmentisabetterwaytodevelopsustainableag-
ricultureinYuzhongcountyofGansuprovince.
However,bothdeepsoilwaterandavailablephos-
phorus were exploited greatly during alfalfa
growth.Therefore,thegrowthyearsofalfalfaneed
tocontrolandnotmorethanfiveyearsisrecommended
onthebasisoftheexperimentalresults.
References
[1] WuT,SchoenauJJ,LiF,etal.Effectoftilageandrotation
onorganiccarbonformsofchernozemicsoilsinSaskatchewan
[J].JournalofPlantNutritionandSoilScience,2003,166(3):
328-335
[2] ChuaiXW,HuangXJ,LaiL,etal.Accountingofsurface
soilcarbonstorageandresponsetolandusechangebasedon
GIS[J].TransactionsoftheCSAE,2011,27(9):1-6
[3] BendingGD,TurnerM K,JonesJE.Interactionsbetween
cropresidueandsoilorganicmatterqualityandthefunctional
diversityofsoilmicrobialcommunities[J].SoilBiologyand
Biochemistry,2002,34(8):1073-1082
[4] FreySD,EliottET,PaustianK.Bacterialandfungalabun-
398
草 地 学 报 第21卷
danceandbiomassinconventionalandno-tilageagroecosys-
temsalongtwoclimaticgradients[J].SoilBiologyandBio-
chemistry,1999,31(4):573-585
[5] MarriottEE,WanderM.Qualitativeandquantitativediffer-
encesinparticulateorganicmatterfractionsinorganicandcon-
ventionalfarmingsystems[J].SoilBiologyandBiochemistry,
2006,38(7):1527-1536
[6] SixJ,FelerC,DenefK,etal.Soilorganicmatter,biotaand
aggregationintemperateandtropicalsoils--Effectsofno-tilage
[J].Agronomie-SciencesdesProductionsVegetalesetdel’
Environnement,2002,22(7/8):755-776
[7] BendingGD,TurnerMK,RaynsF,etal.Microbialandbio-
chemicalsoilqualityindicatorsandtheirpotentialfordifferentiating
areasundercontrastingagriculturalmanagementregimes[J].Soil
BiologyandBiochemistry,2004,36(11):1785-1792
[8] LeifeldJ,Kogel-KnabnerI.Soilorganicmatterfractionsas
earlyindicatorsforcarbonstockchangesunderdifferentland-
use? [J]Geoderma,2005,124(1/2):143-155
[9] NoelemeyerE,FrankF,AlvarezC,etal.Carboncontentsand
aggregationrelatedtosoilphysicalandbiologicalpropertiesundera
land-usesequenceinthesemiaridregionofcentralArgentina[J].
SoilandTilageResearch,2008,99(2):179-190
[10]ReidRS,SerneelsS,NyabengeM,etal.Thechangingface
ofpastoralsystemsingrass-dominatedecosystemsofeastern
Africa[C]//GrasslandsoftheWorld.FoodandAgriculture
OrganizationoftheUnitedNation,Kome,2005:19-76
[11]LuCH,Van-Ittersum M K,RabbingeR.Quantitativeas-
sessmentofresource-useefficientcroppingsystems:acase
studyforAnsaiintheLoessPlateauofChina[J].European
JournalofAgronomy,2003,19(2):311-326
[12]MooreJM,KloseS,TabatabaiMA.Soilmicrobialbiomass
carbonandnitrogenasaffectedbycroppingsystems[J].Biol-
ogyandFertilityofSoils,2000,31(3/4):200-210
[13]WuTY,SchoenauJJ,LiFM,etal.Conceptsandrelative
analyticaltechniquesofsoilorganicmatter[J].ChineseJour-
nalofAppliedEcology,2004,15(4):717-722(InChinese)
[14]LiuZ,LiBG.Spatialandtemporalchangesingrainproduc-
tionbeforeandafterimplementationofgrainforgreenproject
inLoessPlateauregion[J].TransactionsoftheCSAE,2012,
28(11):1-8(InChinese)
[15]ShiZY,LiuWZ,GuoSL,etal.Moilsturepropertiesinsoil
profilesandtheirrelationtolandformatZhonglianchuanwa-
tershed[J].AgriculturalResearchofAridAreas,2003(4):
101-104(InChinesewithEnglishabstract)
[16]WuGL,DuGZ,LiuZH,etal.Effectsoffencingandgraz-
ingonaKobresia-dominatedmeadowintheQinghai-Tibetan
Plateau[J].PlantandSoil,2009,319(1/2):115-126
[17]NelsonD W,SommersLE.Totalcarbon,organiccarbon,
andorganicmatter[M]//Methodsofsoilanalysis.Part2.
Chemicalandmicrobiologicalproperties.1982:539-579
[18]OlsenSR,ColeCV,WatanabeFS,etal.Estimationofa-
vailablephosphorusinsoilsbyextractionwithsodiumbicar-
bonate[M].Washington,DC:USDepartmentofAgricul-
ture,1954
[19]GregorichEG,ElertBH,CarerM R.Lightfractionand
macroorganicmatterinmineralsoils[M]//CarerMRed.Soil
samplingandmethodsofanalysis.CanadianSocietyofSoil
Science,LewisPublishers,DivisionofCRCPress,BocaRa-
tion,1993:397-405
[20]WangL,ShaoMA,WangQJ,etal.Reviewofresearchon
soildesiccationintheLoessPlateau[J].Transactionsofthe
CSAE,2004,20(5):27-31(InChinesewithEnglishabstract)
[21]LiX Y,GongJD.Compactedmicrocatchmentswithlocal
earthmaterialsforrainwaterharvestinginthesemiaridregion
ofChina[J].JournalofHydrology,2002,257(1/4):134-144
[22]SuYZ,ZhaoHL.Advancesinresearchesonsoilorganiccar-
bonstorages,affectingfactorsanditsenvironmentaleffects
[J].JournalofDesertResearch,2002,22(3):220-228
[23]Blanco-CanquiH,LalR.Soilstructureandorganiccarbonre-
lationshipsfolowing10yearsofwheatstrawmanagementin
no-til [J].SoilandTilageResearch,2007,95(1/2):240-254
[24]SaggaS,YeatesG W,ShepherdTG.Cultivationeffectson
soilbiologicalproperties,microfaunaandorganicmatterdy-
namicsinEutricGleysolandGleyicLuvisolsoilsinNewZeal-
and[J].SoilandTilageResearch,2001,58(1):55-68
[25]HuangY,LiuS,ShenQ,ZongL.Influenceofenvironmental
factorsonthedecompositionoforganiccarboninagricultural
soils[J].ChineseJournalofAppliedEcology,2002,13(6):
709-714(InChinesewithEnglishabstract)
[26]ZhangM Y,WeiY H,KongFL,etal.Effectsoftilage
practicesonsoilcarbonstorageandgreenhousegasemissionof
farmlandin NorthChina [J].TransactionsoftheCSAE,
2012,28(6):203-209(InChinesewithEnglishabstract)
[27]SixJ,FreySD,ThietRK,etal.Bacterialandfungalcontri-
butionstocarbonsequestrationinagroecosystems[J].Soil
ScienceSocietyofAmericaJournal,1990,70(2):555-569
[28]MalhiSS,BrandtS,GilKS.Cultivationandgrasslandtype
effectsonlightfractionandtotalorganicCandNinaDark
BrownChernozemicsoil[J].CanadianJournalofSoilScience,
2003,83(2):145-153
[29]ZhangJ,SongC,WangS.Dynamicsofsoilorganiccarbon
anditsfractionsafterabandonmentofcultivatedwetlandsin
northeastChina[J].SoilandTilageResearch,2007,96(1/
2):350-360
[30]CrewsTE,PeoplesMB.Legumeversusfertilizersourcesof
nitrogen:ecologicaltradeoffsandhumanneeds[J].Agricul-
ture,Ecosystems&Environment,2004,102(3):279-297
[31]ChenWX.Soilscienceandenvironmentalmicrobiology[M].
Beijing:BeijingAgricultureUniversityPress,1990
[32]HuangCY.Soilscience[M].Beijing:ChinaAgriculture
Press,2000
[33]KadonoA,FunakawaS,KosakiT.Factorscontrolingminer-
alizationofsoilorganicmatterintheEurasiansteppe[J].Soil
BiologyandBiochemistry,2008,40(4):947-955
[34]YangC,WangS,JinX,etal.Nitrogenandphosphorusmin-
eralizationinsedimentsofTaihuLakeaftertheremovalof
lightfractionorganicmatter[J].EnvironmentalEarthSci-
ences,2010,59(7):1437-1446
[35]FuXL,ShaoMA,WeiXR,etal.Effectsoftwoperennial,
falowandmiletondistributionofphosphorusinsoilandbio-
massonslopingloessland,China[J].Catena,2009,77(3):
200-206
[36]SunWZ,YuZ,XuCC.Urgencyoffurtherdevelopingalfalfa
industryinChina[J].PrataculturalScience,2012,29(2):314-
319(InChinesewithEnglishabstract)
[37]LiuCA,JinSL,ZhouL M,etal.Effectsofplasticfilm
mulchandtilageonmaizeproductivityandsoilparameters
[J].EuropeanJournalofAgronomy,2009,31(4):241-249
(责任编辑 李美娟)
498