免费文献传递   相关文献

Characteristics of N Accumulation and Translocation in Rice Genotypes with Different N Use Efficiencies

不同氮素利用效率基因型水稻氮素积累与转移的特性


选用氮素利用高效型和低效型具有代表性的12个粳稻基因型, 研究水稻氮素积累、转移特性的差异及其与氮素利用效率的相互关系。结果表明, 有效分蘖临界叶龄(N-n)、抽穗和成熟期, 氮高效类型水稻的氮素积累量极显著高于氮低效类型, 而拔节期差异不明显。水稻氮素的阶段性积累量, 除(N-n)至拔节阶段, 氮高效类型水稻极显著低于氮低效类型外, 其余各阶段氮高效类型水稻的氮积累量均极显著高于氮低效类型。水稻氮素的阶段性积累率, 移栽至(N-n)和(N-n)至拔节阶段氮低效类型水稻显著大于氮高效类型, 而在拔节至抽穗和抽穗至成熟阶段则表现出相反的趋势。抽穗前的氮素转移量和转移率, 氮高效类型水稻显著或极显著大于氮低效类型, 而抽穗前氮对籽粒的贡献率, 氮高效类型极显著低于氮低效类型。氮高效类型水稻具有在(N-n)前氮素适度积累, (N-n)后至抽穗阶段, 氮素的有效积累高而无效积累弱的特点。因此至抽穗期, 氮高效类型水稻的氮素积累量大于氮低效类型, 具有较高的氮素转移量和转移率。但由于氮高效类型水稻在抽穗以后仍具有较强的氮素积累能力, 因此其抽穗前氮对籽粒的贡献率相对低于氮低效类型。

N is yet the most important and largest input required in rice production although over use of N causes so many environment problems. N use efficiency is varied in different rice genotypes. Therefore it is necessary to identify the physiological mechanism of N absorption and utilization in different rice genotypes in order to increase N use efficiency through rice cultivar improvement. In this research, field experiment with 225 kg ha-1 N fertilizer application and twelve rice genotypes (6 N-efficient and 6 N-low-efficient ) selected from 120 rice cultivars grown in Yangzhou during 2004 and 2005 were carried out in 2006 on the farm of Yangzhou University, Jiangsu province, China. Relationship between N use efficiency and indexes of rice N accumulation and translocation was analyzed. At the three growth stages including critical stage of productive tillering, heading, and maturing, the amount of N accumulation of N-efficient rice was obviously higher than that of N-low-efficient genotypes while at the stage of elongating, there was no significant difference in N accumulation between the two rice genotypes. In order to analyze the N accumulation progress of rice genotypes with different N use efficiency, the growth was also divided into four phases including from transplanting to critical stage of productive tillering, from critical stage of productive tillering to elongating, from elongating to heading and from heading to maturing. Results revealed that the amount of N accumulation of N-efficient genotypes was significantly higher than that of N-low-efficient genotypes during all growth phases except the phase from critical stage of productive tillering to elongating, at which the amount of N accumulation of N-efficient genotypes was significantly lower than that of N-low-efficient genotypes. The percentage in N accumulation of N-efficient genotypes was higher than that of N-low-efficient genotypes during the growth phases from elongating to heading and from heading to maturing while it showed the reversed trend during the phases from transplanting to critical stage of productive tillering and from the critical stage of productive tillering to elongating. The amount and the efficiency of N translocation before heading were obviously higher in N-efficient genotypes than those in N-low-efficient genotypes. On the contrary, the contribution rate of transferred N to the total N of rice grain at maturity was significantly lower in N-efficient genotypes than that in N-low-efficient genotypes. For N efficient genotypes, the amount of N accumulation before the critical stage of productive tillering was modest. And during the phase from the critical stage of productive tillering to heading, its N accumulation of usefulness was large while the N accumulation of uselessness was few. Therefore, till the stage of rice heading, the amount of N accumulation of N-efficient genotypes was obviously higher than that of N-low-efficient genotypes. And the amount and the efficiency of N translocation before heading of N-efficient genotypes were also higher than that of N-low-efficient genotypes. Because of the strong ability of N accumulation of N-efficient genotypes after heading, its contribution rate of transferred N to the total N of rice grain at maturity was relatively lower than that of N-low-efficient genotypes before heading.


全 文 :作物学报 ACTA AGRONOMICA SINICA 2008, 34(1): 119−125 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

基金项目: 国家自然科学基金项目(30370827); 国家“十一五”科技支撑计划重大项目(2006BAD02A03)
作者简介: 魏海燕(1980−), 女, 江苏东台人, 在读博士, 研究方向: 作物栽培生理。
*
通讯作者(Corresponding author): 张洪程。
Received(收稿日期): 2007-04-09; Accepted(接受日期): 2007-07-30.
DOI: 10.3724/SP.J.1006.2008.00119
不同氮素利用效率基因型水稻氮素积累与转移的特性
魏海燕 1 张洪程 1, 2, * 杭 杰 1 戴其根 1,2 霍中洋 1,2 许 轲 1,2 张胜飞 1
马 群 1 张 庆 1 张 军 3
(1扬州大学江苏省作物遗传生理重点实验室; 2扬州大学农业部长江流域稻作技术创新中心, 3江苏省扬州环境资源职业技术学院,
江苏扬州 225009)
摘 要: 选用氮素利用高效型和低效型具有代表性的 12个粳稻基因型, 研究水稻氮素积累、转移特性的差异及其与
氮素利用效率的相互关系。结果表明, 有效分蘖临界叶龄(N-n)、抽穗和成熟期, 氮高效类型水稻的氮素积累量极显
著高于氮低效类型, 而拔节期差异不明显。水稻氮素的阶段性积累量, 除(N-n)至拔节阶段, 氮高效类型水稻极显著低
于氮低效类型外, 其余各阶段氮高效类型水稻的氮积累量均极显著高于氮低效类型。水稻氮素的阶段性积累率, 移栽
至(N-n)和(N-n)至拔节阶段氮低效类型水稻显著大于氮高效类型, 而在拔节至抽穗和抽穗至成熟阶段则表现出相反
的趋势。抽穗前的氮素转移量和转移率, 氮高效类型水稻显著或极显著大于氮低效类型, 而抽穗前氮对籽粒的贡献率,
氮高效类型极显著低于氮低效类型。氮高效类型水稻具有在(N-n)前氮素适度积累, (N-n)后至抽穗阶段, 氮素的有效
积累高而无效积累弱的特点。因此至抽穗期, 氮高效类型水稻的氮素积累量大于氮低效类型, 具有较高的氮素转移量
和转移率。但由于氮高效类型水稻在抽穗以后仍具有较强的氮素积累能力, 因此其抽穗前氮对籽粒的贡献率相对低
于氮低效类型。
关键词: 水稻; 氮素利用效率; 氮素积累; 氮素转移; 相关性
Characteristics of N Accumulation and Translocation in Rice Geno-
types with Different N Use Efficiencies
WEI Hai-Yan1, ZHANG Hong-Cheng1,2,*, HANG Jie1, DAI Qi-Gen1,2, HUO Zhong-Yang1,2, XU Ke1,2,
ZHANG Sheng-Fei1, MA Qun1, ZHANG Qing1, and ZHANG Jun3
(1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University; 2 Innovation Center of Rice Cultivation Technol-
ogy in Yangtze Valley, Ministry of Agriculture; 3 Yangzhou Resource and Environment Professional Technology College, Yangzhou 225009, Ji-
angsu, China)
Abstract: N is yet the most important and largest input required in rice production although over use of N causes so many envi-
ronment problems. N use efficiency is varied in different rice genotypes. Therefore it is necessary to identify the physiological
mechanism of N absorption and utilization in different rice genotypes in order to increase N use efficiency through rice cultivar
improvement. In this research, field experiment with 225 kg ha-1 N fertilizer application and twelve rice genotypes (6 N-efficient
and 6 N-low-efficient ) selected from 120 rice cultivars grown in Yangzhou during 2004 and 2005 were carried out in 2006 on the
farm of Yangzhou University, Jiangsu province, China. Relationship between N use efficiency and indexes of rice N accumulation
and translocation was analyzed. At the three growth stages including critical stage of productive tillering, heading, and maturing,
the amount of N accumulation of N-efficient rice was obviously higher than that of N-low-efficient genotypes while at the stage of
elongating, there was no significant difference in N accumulation between the two rice genotypes. In order to analyze the N ac-
cumulation progress of rice genotypes with different N use efficiency, the growth was also divided into four phases including from
transplanting to critical stage of productive tillering, from critical stage of productive tillering to elongating, from elongating to
120 作 物 学 报 第 34卷

heading and from heading to maturing. Results revealed that the amount of N accumulation of N-efficient genotypes was signifi-
cantly higher than that of N-low-efficient genotypes during all growth phases except the phase from critical stage of productive
tillering to elongating, at which the amount of N accumulation of N-efficient genotypes was significantly lower than that of
N-low-efficient genotypes. The percentage in N accumulation of N-efficient genotypes was higher than that of N-low-efficient
genotypes during the growth phases from elongating to heading and from heading to maturing while it showed the reversed trend
during the phases from transplanting to critical stage of productive tillering and from the critical stage of productive tillering to
elongating. The amount and the efficiency of N translocation before heading were obviously higher in N-efficient genotypes than
those in N-low-efficient genotypes. On the contrary, the contribution rate of transferred N to the total N of rice grain at maturity
was significantly lower in N-efficient genotypes than that in N-low-efficient genotypes. For N efficient genotypes, the amount of
N accumulation before the critical stage of productive tillering was modest. And during the phase from the critical stage of pro-
ductive tillering to heading, its N accumulation of usefulness was large while the N accumulation of uselessness was few. There-
fore, till the stage of rice heading, the amount of N accumulation of N-efficient genotypes was obviously higher than that of
N-low-efficient genotypes. And the amount and the efficiency of N translocation before heading of N-efficient genotypes were
also higher than that of N-low-efficient genotypes. Because of the strong ability of N accumulation of N-efficient genotypes after
heading, its contribution rate of transferred N to the total N of rice grain at maturity was relatively lower than that of
N-low-efficient genotypes before heading.
Keywords: Rice; N use efficiency; N accumulation; N translocation; Correlation
氮肥投入是保证水稻稳产丰产的重要措施 [1],
但是氮肥的过量施用在破坏生态环境的同时也威胁
到人类的健康[2-3]。自 1939年 Harvey首次报道玉米
不同品种在吸收利用氮素方面存在差异之后 ,水稻
对氮素吸收利用的基因型差异也已为国内外众多科
学家所证实[4-6]。水稻在生长过程中, 其根系吸收的
氮素在满足自身生长的同时运输至地上部还原同化,
用于器官建成和产量形成。因此, 水稻对氮素的吸
收是决定其最终对氮素利用情况的重要前提。本研
究于 2004 年和 2005 年对 120 份水稻基因型在 4 种
不同施氮水平处理下(0、低、中、高)氮素利用效率
分类、评价的基础上, 2006 年从长江中下游地区应
用较广的迟熟中粳和早熟晚粳中选择氮素利用高效
型与低效型的代表性品种, 系统研究其氮素积累与
转移特性的差异, 以期揭示水稻氮素利用基因型差
异机制的形成, 同时也为各氮效率类型品种在生产
中因种因时施氮提供理论依据。
1 材料与方法
1.1 供试品种
依据 2004—2005年的研究分类与评价, 选取迟
熟中粳中氮素利用高效型品种 9 优 418、武育粳 3
号、扬粳 9538, 低效型品种农垦 57、武农早、郑稻
5 号, 早熟晚粳中氮素利用高效型品种 86 优 8 号、
武粳 15、泗优 422, 早熟晚粳氮低效型品种镇稻 196、
香粳 20-18、T1-56共 12个水稻基因型。
1.2 试验设计
试验于 2006年在扬州大学农学院试验农场进行。
前茬为小麦 , 土质为沙壤土 , 地力中等 , 土壤含全
氮 0.13%、碱解氮 90.5 mg kg−1、速效磷 35.6 mg kg−1、
速效钾 87.9 mg kg−1。 采用裂区设计, 以施氮(纯氮)
水平为主区, 设对照 N0(不施氮), N1(225 kg hm−2) 2
个施氮水平; 品种为裂区, 裂区面积 15 m2, 重复 3
次。小区间做埂隔离, 并用塑料薄膜覆盖埂体, 保证
各小区单独排灌。5月 13日播种, 6月 12日移栽, 栽
插密度为 27万穴 hm−2 (14.4 cm×26.0 cm)。常规稻
双本栽插, ︰杂交稻单本栽插。氮肥基肥 ︰蘖肥 穗肥
=2.5︰2.5︰5.0, 其中穗肥分别于倒 4 叶和倒 2 叶时
期施入。每公顷分别以过磷酸钙和氯化钾的形式基
施 P2O5 150 kg、K2O 150 kg。其他管理措施统一按
常规栽培要求实施。
1.3 测定内容与分析方法
分别于有效分蘖临界叶龄期、拔节期、抽穗期、
成熟期定点调查群体茎蘖数 (成熟期为有效穗数 ),
各处理取有代表性植株 4穴。考察地上部性状后, 分
茎鞘、叶片和穗测定不同部位及全株干物重、含
氮率。
采用 H2SO4-H2O2消化, 半微量凯氏定氮法测定
氮素[7]。
氮肥利用效率=(施氮区植株总吸氮量-空白区
植株总吸氮量)/施氮量×100
灌浆期茎叶氮素表观转移量=抽穗期茎叶鞘氮
素积累量-成熟期茎叶鞘氮素积累量
灌浆期茎叶氮素表观转移率=(灌浆期茎叶氮素
表观转移量/抽穗期茎叶鞘氮素积累量)×100
第 1期 魏海燕等: 不同氮素利用效率基因型水稻氮素积累与转移的特性 121


灌浆期转移的氮对籽粒的贡献率=(灌浆期茎叶
氮素表观转移量/成熟期籽粒氮积累量)×100
各水稻基因型的氮素利用效率及产量见文献[8]。
采用唐启义的 DPS数据处理系统统计分析数据。
2 结果与分析
2.1 水稻氮素利用效率与产量的差异
数据及相关结果参见文献[8]。
2.2 不同氮效率类型水稻氮素积累量的差异
表 1 表明, 各生育时期, 水稻的氮素积累量存
在显著的基因型差异。其中, 在有效分蘖临界叶龄
期、抽穗和成熟期, 氮高效类型水稻的氮素积累量
极显著大于氮低效类型。在拔节期, 氮高效类型水
稻的氮素积累量与氮低效类型互有高低。两种生育
类型表现出相同的趋势。有效分蘖临界叶龄期、拔
节期、抽穗期和成熟期的氮素积累量的平均值, 氮
高效类型均大于氮低效类型, 其中迟熟中粳分别高
6.71%、0.67%、16.09%和 23.68%, 早熟晚粳分别高
6.46%、0.21%、12.11%和 18.45%。
2.3 不同氮效率类型水稻氮素阶段性积累量的
差异
表 2 表明 , 移栽至有效分蘖临界叶龄、拔节至
抽穗和抽穗至成熟阶段 , 氮高效类型水稻的氮素
积累量均极显著大于氮低效类型 , 其中 , 迟熟中
粳分别高 6.71%、29.57%和 78.83%, 早熟晚粳分
别高 6.46%、21.94%和 57.85%。有效分蘖临界叶
龄至拔节阶段 , 氮高效类型水稻的氮素积累量均
极显著低于氮低效类型 , 其中 , 迟熟中粳低 5.06%,
早熟晚粳低 6.19%。两种生育类型表现一致的
趋势。
2.4 不同氮效率类型水稻氮素阶段性积累率的
差异
表 3 表明, 移栽至有效分蘖临界叶龄和有效分
蘖临界叶龄至拔节阶段, 氮高效类型水稻的氮素积
累率极显著低于氮低效类型, 其中迟熟中粳分别低
13.71%和 23.32%, 早熟晚粳分别低 10.08%和
20.78%。拔节至抽穗和抽穗至成熟阶段, 氮高效类
型水稻的氮素积累率显著或极显著高于氮低效类型,
其中迟熟中粳分别高 4.71%和 45.18%, 早熟晚粳分
别高 2.93%和 33.23%。
2.5 不同氮效率类型水稻氮素转移特性的差异
表 4 表明, 就水稻灌浆期茎叶氮素表观转移量
和转移率而言, 氮高效类型水稻极显著或显著大于
氮低效类型水稻 , 其中迟熟中粳分别高 20.06%和
4.80%, 早熟晚粳分别高 14.68%和 2.96%。而灌浆期
转移的氮对籽粒的贡献率, 氮高效类型极显著低于

表 1 不同氮效率类型水稻氮素积累量的差异
Table 1 Diversity of N accumulation in rice types with different N use efficiencies(kg hm−2)
品种类型
Rice type
生育期
Grouth stage
基因型
Genotype
N-n EG HD MT
LMMR NLE 农垦 57 Nongken 57 26.68 Ff 55.76 Cc 118.20 Ff 131.20 Ee
武农早 Wunongzao 28.49 Dd 58.04 Aa 125.90 Dd 142.09 Dd

郑稻 5号 Zhengdao 5 27.80 Ee 56.71 Bb 121.50 Ee 142.63 Dd
NE 9优 418 9 you 418 28.92 Cc 56.86 Bb 144.01 Aa 176.10 Aa
武育粳 3号 Wuyujing 3 29.25 Bb 56.90 Bb 138.90 Cc 166.64 Cc


扬粳 9538 Yangjing 9538 30.36 Aa 57.88 Aa 141.51 Bb 171.69 Bb

EMLR NLE 镇稻 196 Zhendao 196 31.11 Df 61.88 Bb 136.59 Ee 158.50 Cc
香粳 20-18 Xiangjing 20-18 31.47 Ce 61.39 BCc 137.80 Dd 160.53 Cc

T1-56 31.67 Cd 62.84 Aa 136.74 Ee 158.30 Cc
NE 86优 8号 86 you 8 33.85 Ab 62.59 Aa 150.10 Cc 182.89 Bb
武粳 15 Wujing 15 32.46 Bc 61.06 Cc 153.08 Bb 190.82 Aa


泗优 422 Siyou 422 34.03 Aa 62.86 Aa 157.71 Aa 191.67 Aa
标以不同大、小写字母的数值分别具 1%和 5%显著差异; LMMR: 迟熟中粳; EMLR: 早熟晚粳; NIE: 氮低效型;NE: 氮高效型;
N-n: 有效分蘖临界叶龄; EG:拔节; HD: 抽穗; MT: 成熟。
Values followed by a different letter are significantly different at 1% (capital) and 5% (small) probability levels, respectively. LMMR:
late maturing medium Japonica rice; EMLR: early maturing late Japonica rice; NLE: N low-efficient; NE: N efficient; N-n: critical stage of
productive tillering; EG: elongation; HD: heading; MT: maturing.
122 作 物 学 报 第 34卷

表 2 不同氮效率类型水稻氮素阶段性积累量的差异
Table 2 Diversity of period N accumulation in rice types with different N use efficiencies(kg hm−2)
品种类型
Rice type
生育期
Grouth stage
基因型
Genotype
TP-(N-n) (N-n)-EG EG-HD HD-MT
LMMR NLE 农垦 57 Nongken 57 26.68 Ff 29.09 ABb 62.43 Ee 13.00 Ef
武农早 Wunongzao 28.49 Dd 29.55 Aa 67.87 Cc 16.19 De
郑稻 5号 Zhengdao 5 27.80 Ee 28.91 Bb 64.79 Dd 21.14 Cd
NE 9优 418 9 you 418 28.92 Cc 27.93 Cc 87.15 Aa 32.09 Aa
武育粳 3号 Wuyujing 3 29.25 Bb 27.65 Ccd 82.00 Bc 27.74 Bc

扬粳 9538 Yangjing 9538 30.36 Aa 27.52 Cd 83.63 Bb 30.17 ABb

EMLR NLE 镇稻 196 Zhendao 196 31.11 Df 30.77 Ab 74.71 Ee 21.90 Cc
香粳 20-18 Xiangjing 20-18 31.47 Ce 29.92 Bc 76.40 Dd 22.73 Cc

T1-56 31.67 Cd 31.17 Aa 73.89 Ef 21.56 Cc
NE 86优 8号 86 you 8 33.85 Ab 28.75 Cd 87.51 Cc 32.78 Bb
武粳 15 Wujing 15 32.46 Bc 28.60 Cd 92.02 Bb 37.74 Aa

泗优 422 Siyou 422 34.03 Aa 28.83 Cd 94.85 Aa 33.96 Bb
标以不同大、小写字母的数值分别具 1%和 5%显著差异。缩写同表 1。
Values followed by a different letter are significantly different at 1% (capital) and 5% (small) probability levels, respectively. Abbre-
viations as in Table 1.

表 3 不同氮效率类型水稻氮素阶段性积累率的差异
Table 3 Diversity of period percentage of N accumulation in rice types with different N use efficiencies(%)
品种类型
Rice type
生育期
Grouth stage
基因型
Genotype
TP-(N-n) (N-n)-EG EG-HD HD-MT
LMMR NLE 农垦 57 Nongken 57 20.33 Aa 22.17 Aa 47.59 Bb 9.91 De
武农早 Wunongzao 20.05 Bb 20.80 Bb 47.76 Bb 11.39 Dd
郑稻 5号 Zhengdao 5 19.49 Cc 20.27 Cc 45.42 Cc 14.82 Cc
NE 9优 418 9 you 418 16.42 Ee 15.86 Ee 49.49 Aa 18.22 Aa
武育粳 3号 Wuyujing 3 17.55 Dd 16.59 Dd 49.21 Aa 16.65 Bb

扬粳 9538 Yangjing 9538 17.68 Dd 16.03 Ee 48.71 ABa 17.57 ABab

EMLR NLE 镇稻 196 Zhendao 196 19.63 Ab 19.41 Aa 47.14 CDcd 13.82 Cc
香粳 20-18 Xiangjing 20-18 19.60 Ab 18.64 Bb 47.60 BCDbc 14.16 Cc

T1-56 20.01 Aa 19.69 Aa 46.68 Dd 13.62 Cc
NE 86优 8号 86 you 8 18.51 Bc 15.72 Cc 47.85 BCb 17.93 ABb
武粳 15 Wujing 15 17.01 De 14.99 Dd 48.22 Bb 19.78 Aa

泗优 422 Siyou 422 17.75 Cd 15.04 Dd 49.49 Aa 17.72 Bb
标以不同大、小写字母的数值分别具 1%和 5%显著差异。缩写同表 1。
Values followed by a different letter are significantly different at 1% (capital) and 5% (small) probability levels, respectively. Abbre-
viations as in Table 1.

氮低效类型, 其中迟熟中粳分别低 9.32%, 早熟晚
粳分别低 7.55%。迟熟中粳和早熟晚粳表现较为一
致的趋势。
2.6 水稻氮素积累与运转特性与氮素利用效率
的相互关系
水稻的氮素利用效率与其氮素积累与转移特性
有着密切的联系。其中, 水稻的氮素利用效率与有
效分蘖临界叶龄期、抽穗期和成熟期的氮素积累量
存在显著或极显著正相关, 相关系数分别达 0.68*、
0.93**和 0.97**, 而其与拔节期水稻氮素的积累量无
显著相关 (r = 0.34)。水稻氮素利用效率与移栽至有
效分蘖临界叶龄、拔节至抽穗和抽穗至成熟阶段的
氮素积累量呈显著或极显著正相关, 相关系数分别
为 0.68*、0.98**和 0.97**, 与有效分蘖临界叶龄至拔
节阶段的氮素累积量呈显著负相关 , 相关系数为
-0.55*。水稻氮素利用效率与不同生育阶段氮素积
第 1期 魏海燕等: 不同氮素利用效率基因型水稻氮素积累与转移的特性 123


累率的相关性分析表明, 水稻氮素利用效率与移栽
至有效分蘖临界叶龄和有效分蘖临界叶龄至拔节阶
段的氮素吸收率呈极显著负相关, 相关系数分别达
-0.88**、-0.99**, 与拔节至抽穗和抽穗至成熟阶段
的氮素吸收率呈极显著正相关 , 相关系数分别达
0.72**、0.93**。不仅如此, 水稻的氮素利用效率与水
稻植株抽穗前氮素的转移量和转移率也呈极显著的
正相关, 相关系数分别达 0.97**和 0.88**, 与抽穗前
氮对籽粒的贡献率呈极显著的负相关, 相关系数达
-0.93**。

表 4 不同氮效率类型水稻氮素转移特性的差异
Table 4 Diversity of characteristics of N translocation in rice types with different N use efficiencies
品种类型
Rice type
生育期
Grouth stage
基因型
Genotype
NT (kg hm-2) NTE (%) NCR (%)
LMMR NLE 农垦 57 Nongken 57 53.4412 Bc 52.73 BCb 64.16 Aa
武农早 Wunongzao 56.5384 Bb 52.38 CDb 62.34 Ab
郑稻 5号 Zhengdao 5 53.7124 Bbc 50.78 Dc 59.31 Bc
NE 9优 418 9 you 418 67.0246 Aa 55.06 Aa 55.21 De
武育粳 3号 Wuyujing 3 64.4635 Aa 54.34 ABa 57.32 Cd

扬粳 9538 Yangjing9538 65.0336 Aa 53.97 ABCa 55.96 CDe

EMLR NLE 镇稻 196 Zhendao 196 60.3393 Bc 52.77 CDb 57.74 Bb
香粳 20-18 Xiangjing 20-18 61.2949 Bc 53.18 BCDb 57.53 Bb

T1-56 61.1041 Bc 52.47 Db 59.36 Aa
NE 86优 8号 86 you 8 67.9770 Ab 54.08 ABCa 54.31 Cc
武粳 15 Wujing 15 70.0136 Aab 54.66 Aa 52.75 Dd

泗优 422 Siyou 422 71.5663 Aa 54.37 ABa 54.38 Cc
标以不同大、小写字母的数值分别具 1%和 5%显著差异。NT: 灌浆期茎叶氮素表观转移量; NTE: 灌浆期茎叶氮素表观转移率;
NCR: 灌浆期转移的氮对籽粒的贡献率。
Values followed by a different letter are significantly different at 1% (capital) and 5% (small) probability levels, respectively. NT: Ni-
trogen translocation amount; NTE: Nitrogen translocation efficiency; NCR: Contribution rate of transferred nitrogen. Abbreviations as in
Table 1.

3 讨论
3.1 关于不同氮效率类型水稻氮素积累与转移
特性的分析
已有的研究表明 [9-12], 不同基因型水稻成熟期
的氮素积累量具有很大差异。但各基因型水稻氮素
积累在水稻全生育期中动态变化的差异及其与水稻
最终氮素利用效率的相互关系尚不十分明了。本研
究表明, 有效分蘖临界叶龄期、抽穗期和成熟期, 氮
高效类型水稻的氮素积累量均显著大于氮低效类型,
但拔节期没有明显的优势。综合分析氮素阶段积累
的特性, 造成这一现象的表面原因在于有效分蘖临
界叶龄至拔节阶段, 氮低效基因型的氮素吸收量极
显著大于氮高效基因型, 而其根本原因在于该阶段
氮低效类型水稻的无效分蘖大量发生 [8], 物质生产
增加的同时增强了植株对氮素的吸收。虽然无效分
蘖衰退时, 作为可移动元素的氮可以进一步运输至
其他器官再利用, 但这不仅在时间上具有一定的滞
后性, 同时也影响了该阶段有效分蘖的正常生长。
本研究还发现, 移栽至有效分蘖临界叶龄、拔节至
抽穗和抽穗至成熟阶段, 氮高效基因型的阶段性吸
收量均显著大于氮低效基因型。
就水稻氮素的积累与转移特性而言, 有研究认
为[13-14], 要提高水稻的氮素利用效率必须提高抽穗
前的氮素积累量、抽穗后的干物质积累和氮素运转
量。本研究的结果与其较为一致, 但同时又有新的
发现。虽然水稻的氮素利用效率与抽穗期的氮素积
累量呈极显著正相关 , 但与移栽至有效分蘖临界
叶龄和有效分蘖临界叶龄至拔节阶段的氮素积累率
呈极显著负相关, 与拔节至抽穗阶段的积累率呈极
显著正相关。因此, 氮素高效利用水稻类型不仅在
抽穗前具有较高的氮素积累, 同时还具有在有效分
蘖临界叶龄期前氮素适度积累, 有效分蘖临界叶龄
期后, 氮素有效积累强而无效积累弱的特点。虽然
水稻的氮素利用效率与抽穗前的氮素转移量和转移
率呈极显著正相关, 但与抽穗前氮对籽粒的贡献率
呈极显著负相关, 同时与抽穗至成熟阶段的氮素积
累量也呈极显著正相关。由此可见, 氮高效类型水
124 作 物 学 报 第 34卷

稻与低效类型相比, 不仅在抽穗前积累了大量的氮
素, 以便于生殖生长阶段向籽粒输送 [15], 同时在抽
穗以后, 仍然具有较强的氮素积累能力, 积累大量
的氮素并输往籽粒, 因此其抽穗前氮对籽粒的贡献
率要低于氮低效类型。因而本研究认为增强水稻抽
穗以后的氮素积累能力对于提高水稻的氮素利用效
率同样具有重要的作用。
3.2 关于提高水稻氮素利用效率可能调控途径
的思考
不同氮效率类型水稻氮素积累与转移的特性 ,
不仅可以从一个方面解释其氮素吸收与利用差异的
原因, 同时也为生产上提高水稻的氮素利用效率提
供了可以借鉴的调控途径。目前生产上提高水稻氮
素利用效率的调控途径主要是适当的氮肥管理措施
和品种的遗传改良[16-17]。根据本研究的结果, 依据
品种氮素积累和转移特性, 严格控制基肥和分蘖肥
的施用时间和用量[18], 在保证水稻移栽至有效分蘖
临界叶龄阶段氮素适度积累的同时减少有效分蘖临
界叶龄至拔节阶段氮素的积累。穗肥施用时期的适
当提前, 在保花促花, 提高水稻产量的同时维持水
稻生长中后期较高的根系活力, 增强植株对氮素的
吸收, 都是提高水稻氮素利用效率可行的氮肥管理
措施。有关水稻氮素利用遗传改良的研究, 目前主
要集中在氮素利用高效基因型的筛选及其与干物质
等性状的配合力方面[19]。事实上, 水稻一生中对氮
素的吸收利用是一个系统工程, 不仅涉及各水稻品
种与氮素利用相关基因的差异, 同时其生长发育的
各项指标均对水稻的氮素利用效率有着重要的影
响[20], 上述各项指标构成了决定水稻氮素利用基因
型差异的生理生化机制。因此, 系统研究该生理生
化机制, 研究各项机理性指标与水稻氮素利用效率
的配合力及协同改良, 对于提高生产上水稻的氮素
利用效率也具有重要的意义。
4 结论
不同氮效率类型水稻其氮素的积累与转移存在
鲜明的差异, 是导致各类型水稻氮素利用效率产生
差异的重要原因之一。不同氮效率类型的水稻, 均
具有抽穗前积累了一生中大部分氮素的特点, 相对
于氮低效类型, 氮高效类型水稻在有效分蘖临界叶
龄期前氮素适度积累, 有效分蘖临界叶龄期后, 氮
素有效积累高而无效积累低; 不仅在抽穗期积累了
大量的氮素, 具有较高的氮素转移量和转移率, 同
时 , 在抽穗以后仍然积累大量的氮素并输往籽粒 ,
表现抽穗前氮对籽粒相对较低的贡献率。
References
[1] Ramasamy S, Berge H F M, Purushothaman S. Yield formation in
rice in response to drainage and nitrogen application. Field Crops
Res, 1997, 51: 65−82
[2] Jing Q, Bouman B A M, Hengsdijk H, Keulen H V, Cao W. Ex-
ploring options to combine high yields with high nitrogen use
efficiencies in irrigated rice in China. Eur J Agron, 2007, 26:
166−177
[3] Jiang F-Y (江福英), Weng B-Q (翁伯琦). -3NO -N pollution in
field and its prevention. Fujian J Agric Sci (福建农业科学),
2003, 18(3): 196−200 (in Chinese with English abstract)
[4] Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay
M, Fukai S, Basnayake J. Genotype differences in nutrient uptake
and utilization for grain yield production of rainfed lowland rice
under fertilised and non-fertilised conditions. Field Crops Res,
2000, 65: 57−68
[5] Koutroubas S D, Ntanos D A. Genotypic differences for grain
yield and nitrogen utilization in indica and japonica rice under
Mediterranean conditions. Field Crops Res, 2003, 83: 251−260
[6] Piao Z-Z (朴钟泽), Han L-Z (韩龙植), Koh H J (高熙宗). Varia-
tions of nitrogen use efficiency by rice genotype. Chin J Rice Sci
(中国水稻科学), 2003, 17 (3): 233−238 (in Chinese with English
abstract)
[7] Bao S-D(鲍士旦). Agricultural Chemistry Analysis in Soil (土壤
农化分析), 3rd edn. Beijing: China Agriculture Press, 2000. pp
44−49 (in Chinese)
[8] Wei H-Y(魏海燕), Zhang H-C (张洪程), Dai Q-G (戴其根), Huo
Z-Y (霍中洋), Xu K (许轲), Hang J (杭杰), Ma Q (马群), Zhang
S-F (张胜飞), Zhang Q (张庆), Liu Y-Y (刘艳阳). Characteristics
of matter production and accumulation in rice genotypes with
different N use efficiency. Acta Agron Sin (作物学报), 2007,
33(11): 1802−1809 (in Chinese with English abstract)
[9] Tirol-padre A, Ladhs J K, Singh U, Laureles E, Punzalan G, Akita
S. Grain yield performance of rice genotypes at suboptimal levels
of soil N as affected by N uptake and utilization efficiency. Field
Crops Res, 1996, 46: 127−143
[10] Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay
M, Fukai S, Basnayake J. Genotypic performance under fertilized
and non-fertilized conditions in rainfed lowland rice. Field Crops
Res, 2000, 65: 1−14
[11] Shan Y-H (单玉华), Wang H-H (王海候), Long Y-C (龙银成),
Wang Y-L(王余龙), Pan X-B (潘学彪). Differences of nitrogen
uptake and utilization in rice lines with various sink potentials. J
Yangzhou Univ (Agric & Life Sci Edn) (扬州大学学报·农业与
生命科学版), 2004, 25(1): 41−45 (in Chinese with English ab-
stract)
第 1期 魏海燕等: 不同氮素利用效率基因型水稻氮素积累与转移的特性 125


[12] Zhang Y-F (张岳芳), Wang Y-L (王余龙), Zhang C-S (张传胜),
Dong G-C (董桂春), Yang L-X (杨连新), Huang J-Y (黄建晔),
Chen P-F (陈培锋), Gong K-C (龚克成). Differences of nitrogen
absorption and utilization and their influences on grain yield of
conventional indica rice cultivars. Jiangsu J Agric Sci (江苏农业
科学), 2006, 22 (4): 318−324 (in Chinese with English abstract)
[13] Ntanos D A, Koutroubas S D. Dry matter and N accumulation
and translocation for indica and japonica rice under Mediterra-
nean conditions. Field Crops Res, 2002, 74: 93−101
[14] Jiang L G, Dai T B, Jiang D, Cao W X, Gan X Q, Wei S Q. Char-
actering physiological N-use efficiency as influenced by nitrogen
management in three rice cultivars. Field Crops Res, 2004, 88:
239−250
[15] Zhang Y-H (张耀鸿), Zhang Y-L (张亚丽), Huang Q-W (黄启为),
Xu C-Y (徐春阳), Shen Q-R (沈其荣). Effect of different nitro-
gen application rates on grain yield and nitrogen uptake and
utilization by different rice cultivars. Plant Nutr Fert Sci (植物营
养与肥料学报), 2006,12(5): 616−621(in Chinese with English
abstract)
[16] Peng S-B (彭少兵), Huang J-L (黄见良). Research strategy in
improving fertilizer-nitrogen use efficiency of irrigated rice in
China. Sci Agric Sin (中国农业科学), 2002, 35(9): 1095−1103
(in Chinese with English abstract)
[17] Ladha J K, Kirk G J D, Bennett J, Peng S, Reddy C K, Reddy P
M, Singh U. Opportunities for increased nitrogen-use efficiency
from improved lowland rice germplasm. Field Crops Res, 1998,
56: 41−71
[18] Wan L-J(万靓军), Zhang H-C(张洪程), Hou Z-Y(霍中洋), Lin
Z-C(林忠诚), Dai Q-G(戴其根), Xu K(许轲), Zhang J(张军).
Effects of nitrogen application regimes on yield, quality, and ni-
trogen use efficiency of super japonica hybrid rice. Acta Agron
Sin (作物学报), 2007, 33(2): 175−182 (in Chinese with English
abstract)
[19] Piao Z-Z(朴钟泽), Han L-Z(韩龙植), Koh H J(高熙宗), Zhang
J-M(张建明), Lu J-A(陆家安), Li P-D(李培德). Analysis on
combining ability of dry weight and nitrogen use-efficiency in
rice. Chin J Rice Sci (中国水稻科学), 2005, 19(6): 527−532(in
Chinese with English abstract)
[20] Jiang L-G (江立庚), Cao W-X (曹卫星). Physiological mecha-
nism and approaches for efficient nitrogen utilization in rice.
Chin J Rice Sci (中国水稻科学), 2002, 16(3): 261−264 (in Chi-
nese with English abstract)