免费文献传递   相关文献

Mechanism and Regulation in the Filling of Inferior Spikelets of Rice

水稻弱势粒灌浆机理与调控途径



全 文 :作物学报 ACTA AGRONOMICA SINICA 2010, 36(12): 2011−2019 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

本研究由国家自然科学基金委员会-国际水稻研究所重大国际合作项目(31061140457), 国家科技攻关计划项目(2006BAD02A13-3-2), 江苏省
基础研究计划项目(BK2009005)和教育部博士学科点基金项目(200811170002)资助。
第一作者联系方式: E-mail: jcyang@yzu.edu.cn
Received(收稿日期): 2010-08-16; Accepted(接受日期): 2010-09-09.
DOI: 10.3724/SP.J.1006.2010.02011
水稻弱势粒灌浆机理与调控途径
杨建昌
扬州大学 / 江苏省作物遗传生理重点实验室, 江苏扬州 225009
摘 要: 水稻籽粒充实优劣和粒重高低与颖花在穗上着生的部位有密切关系。通常, 着生在稻穗中上部早开花的强
势粒, 灌浆快、充实好、粒重高; 着生在稻穗下部迟开花的弱势粒, 灌浆慢、充实差、粒重低。这种强、弱势粒灌浆
的差异在大穗型超级稻品种上表现更为突出。弱势粒充实差和粒重低不仅阻碍了水稻产量潜力的发挥, 而且还会降
低稻米品质, 尤其是加工品质和外观品质。关于弱势粒灌浆差的机理有许多假设, 包括同化物供应限制、库容限制、
激素间不平衡、蔗糖-淀粉代谢途径关键酶活性或基因表达量低、“流”不畅等。最近研究表明, 灌浆始期籽粒库生理
活性低和活跃灌浆期蔗糖转化为淀粉的生化效率低是弱势粒灌浆差的重要原因; 增加抽穗期糖花比(抽穗期茎与鞘
中非结构性碳水化合物与颖花数之比)及灌浆期脱落酸与乙烯比值可以显著提高籽粒库生理活性和籽粒灌浆速率。从
环境(含栽培)、植株整体水平以及籽粒内在因素等不同层次上深入研究水稻弱势粒灌浆差的机理及其调控途径, 对于
破解弱势粒灌浆差的科学难题、挖掘水稻生产潜力具有十分重要的意义。
关键词: 水稻; 强势粒; 弱势粒; 灌浆; 机理; 调控
Mechanism and Regulation in the Filling of Inferior Spikelets of Rice
YANG Jian-Chang
Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Yangzhou University, Yangzhou 225009, China
Abstract: Grain filling is the final growth stage in cereals when fertilized ovaries develop into caryopses. The degree and rate of
grain filling in rice spikelets differ largely with their positions on a panicle. In general, earlier-flowering superior spikelets, usually
located on apical primary branches, fill fast and produce larger and heavier grains. While later-flowering inferior spikelets, usually
located on proximal secondary branches, are either sterile or fill slowly and produce smaller grains. The poor grain-filling of infe-
rior spikelets is more aggravated in the new bred “super” rice cultivars that have numerous spikelets on a panicle. Poor filling of
inferior spikelets not only limits the realization of great yield potential, but also degrades rice quality, especially milling and ap-
parent qualities. There are many explanations to the poor filling of inferior spikelets, including carbon limitation, sink capacity
limitation, unbalance in hormone levels, low activities and/or expressions of enzymes involved in sucrose-to-starch conversion,
and “flow” impediment. Recent studies have shown that low physiological activities of sink (grains) at the initial grain filling and
low conversion efficiency from sucrose to starch during the active grain filling period contribute to the poor filling of inferior
spikelets. It is observed that the ratio of sugar to spikelets at the heading stage (amount of non-structural carbohydrate in the stems
and sheaths over the number of spikelets at heading) significantly correlats with the physiological activities of sink, and the ratio
of abscisic acid (ABA) to 1-aminocylopropane-1-carboxylic acid (ACC, a precursor of ethylene) significantly correlats with the
grain filling rate, indicating that increases in the ratios of sugar to spikelets and of ABA to ethylene would be two important regu-
latory approaches to improve the filling of inferior spikelets. Further studies are essential by investigating how environmental
factors (including cultivation techniques), factors of the whole plant, and factors within the spikelets regulate the filling of inferior
spikelets. A deep understanding of the regulation mechanism that limits the filling of inferior spikelets would lead to efforts that
could greatly enhance grain filling and, consequently, increase the yield performance of rice.
Keywords: Rice; Superior spikelets; Inferior spikelets; Grain filling; Mechanism; Regulation
2012 作 物 学 报 第 36卷

水稻产量的高低决定于库容的大小和灌浆充实
的程度[1]。为了增加产量和提高产量潜力, 育种家们
主要通过增加每穗粒数, 即培育大穗型品种有效地
扩大了产量库容, 例如国际水稻研究所培育的新株
型品种、我国培育的亚种间杂交稻、超级杂交稻或
超级稻品种等。但由于结实率低和结实率不稳定等
问题, 这些大穗型品种包括我国超级稻品种在生产上
大面积推广应用并没有充分实现它们的增产潜力[2-5]。
水稻籽粒充实的优劣和粒重的高低与颖花在穗
上着生的部位有密切关系。一般来说, 着生在稻穗
中上部早开花的强势粒 , 籽粒灌浆快 , 充实好 , 粒
重高 ; 着生在稻穗下部迟开花的弱势粒 , 灌浆慢 ,
充实差, 粒重低[6-7]。这种强、弱势粒灌浆的差异在
大穗型超级稻品种上表现更为突出。例如, 根据作
者等[8]对 12个超级稻品种的观察, 弱势粒(穗基部二
次枝梗籽粒)的结实率和千粒重分别比强势粒(穗顶
部 3个一次枝梗的籽粒)低 20.7个百分点和 7.2 g, 而
3 个普通高产品种弱势粒的结实率和千粒重分别比
强势粒低 6.3 个百分点和 3.0 g。研究还发现, 超级
稻品种还存在着结实率的不稳定性, 进而造成产量
的不稳定性, 即在不同年度间、或同一年度不同地
区间结实率忽高忽低, 甚至大起大落[8-10]。进一步研
究表明, 超级稻结实率的不稳定, 主要在于弱势粒
结实(充实)的不稳定, 强势粒在地区间和年度间的
变异很小(表 1)。弱势粒结实率在不同年份及不同种
植地点变异大, 一方面说明其对环境和栽培条件反
应的敏感性, 同时也说明弱势粒结实率和粒重的可
调性。

表 1 12个超级稻品种和 12个当地高产品种(CK)不同年份和不同种植地强、弱势粒结实率的变异系数(CV)
Table 1 Coefficient of variation (CV) of 12 super rice cultivars and 12 conventional cultivars planted in different years and different
locations
弱势粒 Inferior spikelets 强势粒 Superior spikelets
品种类型
Genotype
平均
Mean
(%)
年度间变异
CV of years
(%)
地区间变异
CV of locations
(%)
平均
Mean
(%)
年度间变异
CV of years
(%)
地区间变异
CV of locations
(%)
超级稻(n=12)
Super rice
67.5 b 13.5 16.7 95.1 a 1.1 1.6
对照品种(n=12)
Conventional rice
88.2 a 4.3 5.8 96.8 a 1.2 1.5
强势粒为大田种植植株穗顶部 3个一次枝梗的籽粒, 弱势粒为穗基部二次枝梗的籽粒, 年度间为 2006、2007和 2008年; 种植地
区为江苏无锡(31°29′N)、扬州(32°30′N)和连云港(34°50′N)。平均数栏内相同字母者表示两类品种在 P=0.05水平上差异不显著。
Superior spikelets were sampled from the top three primary branches in the panicle while the inferior spikelets were spikelets from the
secondary branches at the lower part of the panicle, in field-grown plants. The years were 2006, 2007, and 2008, and locations were Wuxi
(31°29′N), Yangzhou (32°30′N) and Lianyungang (34°50′N) in Jiangsu Province. Values in the column of mean followed by the same letter
are not significantly different between the two types of cultivars at P = 0.05.

弱势粒充实差和粒重低不仅限制了作物产量潜
力的发挥, 而且严重影响籽粒品质。弱势粒在分化
和生长过程中需要消耗大量水分和养分, 从而严重
影响作物水分和养分的高效利用。该问题不仅在水
稻上有, 在其他禾谷类作物如玉米、小麦和大麦上
同样存在[11-14]。因此, 揭示水稻弱势粒充实差的机
理, 阐明促进弱势粒灌浆的调控途径与技术, 对于
破解弱势粒灌浆差的难题, 充分挖掘作物生产潜力,
实现高产、优质、高效生产具有十分重要的科学意
义和实践意义。
1 对水稻弱势粒灌浆差机理的认识
水稻灌浆结实期是决定结实率和粒重的关键时
期。因而对水稻籽粒灌浆的研究, 一直受到人们的
重视。1941年, Nagato[15]首先报道稻穗上不同部位籽
粒灌浆存在差异, 早开的花(强势粒或优势粒)粒重
高, 迟开的花(弱势粒或劣势粒)粒重低。此后, 国内
外对水稻弱势粒充实差、粒重低的原因与机理进行
了大量研究, 但存在着不同的研究结果或结论。归
纳起来主要有以下 3种。
1.1 光合同化物供应限制
有学者[16-18]指出, 光合同化物总是优先供应强
势粒, 当光合产物供应不足时, 部分弱势粒的灌浆
速度降低, 甚至完全不能灌浆。在结实期进行剪叶
或遮光 , 弱势粒灌浆速率减小 , 粒重降低; 通过疏
花或增加 CO2 浓度等处理, 弱势粒灌浆速率增大,
粒重提高[16-19]。朱庆森等[20-21]观察到, 籼型杂交水
稻强、弱势粒存在异步灌浆或 “两段灌浆”现象, 即
强势粒灌浆启动早, 灌浆快, 待强势粒灌浆高峰过
后弱势粒才开始灌浆。他们观察到, 灌浆期一度停
第 12期 杨建昌: 水稻弱势粒灌浆机理与调控途径 2013


滞生长的弱势粒, 当同化物供应强度增强时可以恢
复灌浆。王天铎等[22-23]推测, 强、弱势粒灌浆的差
异可能与启动灌浆的能障水平有关, 强势粒要求的
能障水平低, 弱势粒要求的能障水平高。
1.2 库限制
1.2.1 库容限制 一般将制造或供应光合产物的
器官称作源, 接受或累积光合产物的器官称作库[24]。
在结实期 , 水稻籽粒是主要的库。Morhapatra 等 [6]
报道, 在整个灌浆期, 水稻弱势粒中的氨基酸和可
溶性糖浓度均高于强势粒。Kato[25]通过去除穗中上
部颖花以观察切除部分强势粒后对穗上剩余弱势粒
生长的影响, 发现去除部分强势花并不能显著改善
穗上基部剩余二次枝梗籽粒的充实。鉴于此, 他们
认为限制水稻弱势粒灌浆的不是源, 而是库容, 即
弱势粒较小的库容(籽粒的容积)是弱势粒粒重低的
主要原因。赵步洪等 [26]观察到, 在抽穗期剪去 1/2
叶片后, 弱势粒粒重显著降低, 但在灌浆期弱势粒
中的蔗糖浓度不是降低了, 而是增加了。Yang 等[27]
以大穗型品种扬稻 6 号和超级稻两优培九为材料,
在抽穗期依据开花日期将穗上颖花分成若干组(第 1
天开花颖花为第 1组, 第 2天开花的为第 2组, 依次
类推), 观察不同开花日序颖花的灌浆情况, 发现穗
上愈是迟开花的弱势颖花, 灌浆初期籽粒中的蔗糖
的浓度就愈高。这些结果说明灌浆初期弱势粒同化
物基质浓度并不是限制其灌浆的主要因素。
1.2.2 弱势粒中抑制型植物激素浓度较高或激素之
间不平衡 根据植物激素对植物生长发育的调控
作用可以将其分为抑制型植物激素和促进型植物激
素两类。通常将脱落酸(abscisic acid, ABA)和乙烯称
之为抑制型植物激素 , 将生长素、细胞分裂素
(cytokinins, CTK)和赤霉素称之为促进型植物激素[28]。
一些研究者[29-31]观察到, 在水分胁迫等逆境条件下,
玉米败育籽粒和小麦不孕颖花含有较高的 ABA 含
量(每个籽粒含有激素的量)和乙烯释放速率。据此认
为, 弱势粒充实差可能与其抑制型植物激素浓度(单
位干重含有激素的量)较高有关。但也有学者[32]报道,
在玉米开花受精期, 败育籽粒和正常发育籽粒中的
ABA浓度并没有显著差异。分根试验法的研究表明,
在一半根处于湿润和另一半根处于干旱土壤的条件
下, 小麦颖花中 ABA量的增加并不影响小麦受精结
实[33]。在水稻上, 穗上越是早开花的强籽粒, 其胚乳
中 ABA含量就越高, 乙烯释放速率和 1-氨基环丙烷
1-羧酸(1-aminocylopropane-1-carboxylic acid, ACC,
乙烯合成的前体)含量就越低[27]。水稻和小麦籽粒灌
浆速率和粒重与灌浆期籽粒乙烯释放速率和 ACC
浓度呈显著负相关, 与 ABA浓度及 ABA/ACC值呈
显著正相关[27,34]。说明 ABA对籽粒充实有促进作用,
而乙烯的调控作用则相反。有研究者[35-36]认为, 由
于强势粒含有较高的吲哚 -3-乙酸 (indole-3-acetic
acid, IAA), 从而产生顶端优势抑制了弱势粒的生长
发育。但也有研究者[37-38]观察到, 弱势粒中 IAA 浓
度并不一定比强势粒低, IAA 浓度与籽粒的灌浆速
率没有显著的相关关系。在豌豆、蚕豆、玉米、小
麦和水稻等种子发育的早期, 人们观察到种子中较
高的 CTK浓度与胚乳的快速发育有密切联系[39-41]。
但也有研究报道, 灌浆期弱势粒中 CTK浓度并不一
定比强势粒低[42]。
植物体内的多胺 , 最常见的有腐胺(putrescine,
Put)、亚精胺(spermidine, Spd)和精胺(spermine, Spm),
被普遍认为是生长调节物质或激素的第二信使, 调
节植物的生长、发育、形态建成和对环境逆境的响
应[43-45]。Yang等[46]和谈桂露等[47]观察到, 多胺对水
稻籽粒的充实起调控作用, 超级稻品种弱势粒较低
的 Spd 和 Spm浓度及较低的 Spd/Put 和 Spm/Put 值
是其弱势粒灌浆速率小、粒重轻的一个重要生理原
因[46-47]。
1.2.3 籽粒中蔗糖-淀粉代谢途径关键酶活性低或
基因表达量低 稻米的主要成分为胚乳(约占糙
米重的 90% ), 而胚乳细胞的充实物质主要是淀
粉[24,48]。籽粒灌浆充实的过程实际上是胚乳细胞中
淀粉生物合成与累积的过程。源器官光合同化物(含
茎鞘储存的非结构性碳水化合物)以蔗糖的形式经
韧皮部运输到籽粒, 之后在一系列酶作用下形成淀
粉[49-50]。Nakamura 等[49-50]指出, 水稻胚乳发育期参
与籽粒碳代谢的酶有 33种, 但 5种酶在碳代谢中起
关键作用。这些酶包括蔗糖合酶(sucrose synthase,
EC 2.4.1.13, SuS)、腺苷二磷酸葡萄糖焦磷酸化酶
(ADP glucose pyrophosphorylase, EC 2.7.7.27, AGP)、
淀粉合酶(starch synthase, EC 2.4.1.21, StS)、淀粉分
支酶(starch branching enzyme, EC 2.4.1.18, SBE)和
淀粉脱支酶(starch debranching enzyme, EC 3.2.1.70,
DBE)。在灌浆期水稻和小麦籽粒里, 这 5 种酶活性
与籽粒灌浆速率和淀粉积累速率正相关[49-52]。Jeng
等[53]报道, 与对照(wilde type)品种台农 67相比, 通
过 NaN3诱导产生的水稻突变体 SA419, 其籽粒灌浆
速率较快, 籽粒中 AGP、StS、SBE 和 DBE 活性也
2014 作 物 学 报 第 36卷

较高。笔者等[54]观察到, 在水稻活跃灌浆期, 强势粒
中 AGP、StS 和 SBE的活性显著高于弱势粒。表明
籽粒中一些关键酶对籽粒灌浆起调控作用。但要阐
明这些酶活性与籽粒灌浆的因果关系, 尚需进一步
研究。
近年来, 一些学者[55-57]通过基因表达等手段研
究酶对籽粒灌浆调控作用的分子机理。有研究报道,
3个细胞壁转化酶基因(OsCIN1, OsCIN2和 OsCIN3)
在水稻灌浆期对同化物的卸载起重要调控作用[55-56]。
Ishimaru 等[56]观察到, 在灌浆早/中期, 转化酶(inver-
tase, EC 3.2.1.26, INV)、StS和 AGP的一些同工型基
因(OsINV3 和 OsRSus3)或部分亚基基因(OsAGP1 和
OsAGP2)的表达量, 强势粒显著高于弱势粒。Wang
等 [58]发现 , 由水稻 GIF1 (籽粒不完全灌浆 , grain
incomplete filling 1)基因编码的细胞壁转化酶(CINV)
在籽粒灌浆早期对同化物的卸载起关键作用, 通过
GIF1的过表达可以促进籽粒灌浆并增加粒重。但也
有研究者[19,59]认为, 水稻籽粒中转化酶主要在细胞
和库的建成期起调控作用, 在灌浆充实期起的作用
很小。Hirose等[60]通过对细胞壁转化酶基因 OsCIN1
分子克隆分析, 发现仅在开花后 1~4 d 的颖果快速
伸长期能够检测到 OsCIN1 的转录。Ishimaru 等[56]
报道 , 在水稻开花后的 1~3 d, 虽然没有检测到
OsCIN1在弱势粒中的表达, 但弱势粒中的酸性转化
酶活性、细胞壁转化酶同工型基因 OsCIN4 和
OsINV1的表达量均很高。显然, 籽粒中酶基因的表
达与籽粒灌浆的关系表现出多样性和复杂性, 要阐
明调控弱势粒灌浆的分子机理, 仍需做大量工作。
作者最近以超级稻淮稻 9 号为材料, 在花后 18
d对强、弱势粒中蛋白质进行 2-DE电泳分析, 发现
强、弱势粒中蛋白质表达有很大差异(图 1); 对强、
弱势粒中有明显差异的 14个蛋白质进行质谱分析, 除
3 个蛋白质的功能已知外, 其余蛋白质的名称及其功
能均未知(表略)。说明强、弱势粒灌浆差异的机理尚
存在着许多未知因素, 至少在蛋白质表达方面, 一
些蛋白质的结构、性质和功能及其对灌浆的作用机
理等尚待人们去认识。
1.3 “流”不畅
一般将从源到库的光合同化物运输称之为“流”,
而维管束系统则是水稻源-库之间光合同化物、水分
和养分等运输的主要通道[61-62]。由于直接测定光合
同化物的运输有较大难度, 因而目前主要通过观察维
管束系统的结构来反映光合同化物的运输情况[63-64]。
在水稻穗维管束结构与强、弱势粒灌浆关系的研究
方面, 黄升谋等[65-66]观察到, 与着生较多强势粒的
穗中上部一次枝梗维管束相比, 着生较多弱势粒的
穗基部二次枝梗维管束导管面积和韧皮部面积较小,
导管、筛管和伴胞分化数量少, 单个导管、筛管和
伴胞面积也较小, 进而造成无机物和有机物运输不
畅。有研究者[67-69]指出, 一些籼/粳亚种间杂交稻籽
粒充实不良, 一个重要原因就是输导组织的颖花负
荷量过重。但王志琴等[70]报道, 与籽粒充实较好的
杂交籼稻汕优 63 相比, 籽粒充实较差的籼/粳亚种间
杂交稻组合测 03/扬稻 4号及 PC 311/早献党 18的伸



图 1 超级稻淮稻 9号花后 18 d强势粒和弱势粒中蛋白质 2-DE电泳分析
Fig. 1 Silver stained 2-D gel of proteins extracted from superior and inferior spikelets of super rice cultivar Huaidao 9 at the 18th
day after anthesis
S1, S2, …, S13: 仅在强势粒中表达的蛋白质点; I1: 仅在弱势粒中表达的点; 大田种植, 重复测定 3次。
S1, S2, …, S13: proteins only expressed in superior spikelets; I1: protein only expressed in inferior spikelets. Plants were field grown, and the
determination had three replications.
第 12期 杨建昌: 水稻弱势粒灌浆机理与调控途径 2015


长节间、穗颈和一次枝梗维管束和韧皮部数目较多、
面积较大; 两类型水稻颖花数与韧皮部面积的比值
并无显著差异。还有研究者[71-72]认为, 水稻籽粒充
实程度还可能与穗上着粒密度及一次枝梗与二次枝
梗的比例有关, 即着粒密度大、一次枝梗与二次枝
梗的比例小, 弱势粒充实差。
2 促进水稻弱势粒灌浆的调控途径
2.1 提高抽穗期糖花比
笔者等[73-76]研究表明, 水稻弱势粒灌浆差的一
个重要原因就是灌浆初期籽粒生理活性(ATP、细胞
分裂素、多胺和mRNA含量等)低, 造成灌浆启动慢。
作者分析了 12个水稻品种花后 3 d强、弱势粒生理
活性(ATP 含量、玉米素含量及淀粉合酶活性, 强、
弱势粒分别测定)与起始灌浆势、平均灌浆速率和粒
重的关系, 结果表明, 灌浆初期籽粒生理活性与灌
浆速率和粒重呈极显著的正相关(表 2)。
进一步研究发现, 灌浆初期籽粒生理活性与抽
穗期糖花比 [抽穗期茎鞘中非结构性碳水化物
(non-structural carbohydrate, NSC)与颖花数之比 ,
NSC(mg)/颖花(朵)]存在着极显著的正相关关系(图
2), 说明提高抽穗期糖花比可以有效地增加灌浆初
期籽粒生理活性, 加快弱势粒启动灌浆。因此, 提高
抽穗期糖花比, 可作为促进水稻弱势粒灌浆的一条
重要调控途径。提高抽穗期糖花比的关键栽培技术
是, 通过培养壮秧和小苗移栽以促进早发, 为形成
壮秆奠定基础; 通过减少生育前中期的氮肥使用量
以减少无效分蘖(减少冗余生长), 改善群体质量和
通风透光条件; 通过增加穗肥氮肥施用比例并在拔
节初注重增施钾肥以提高花前 0~15 d 生长速率和
NSC 在茎与鞘中的积累, 提高抽穗时的糖花比, 进
而提高灌浆初期籽粒的生理活性, 促进弱势粒启动
灌浆充实。这一途径的栽培技术和调控原理可概括
为, 培育壮秧、前氮后移、拔节初增施钾肥→增加
抽穗前 0~15 d物质积累→提高抽穗期糖花比→提高
灌浆始期籽粒库生理活性→增加胚乳细胞增殖速率
→增加胚乳细胞数、增加籽粒库容→促进弱势粒充
实、提高结实率和粒重。

表 2 花后 3 d籽粒生理活性与起始灌浆势(r1)、平均灌浆速率(r2)和粒重(r3)的相关
Table 2 Correlations of the grain physiological activity at the 3rd day after anthesis with initial grain filling power (r1), mean grain
filling rate (r2), and grain weight (r3) of rice
籽粒生理活性
Grain physiological activity
r1 r2 r3
ATP 含量 ATP content (pmol grain−1) 0.9369** 0.8848** 0.8709**
玉米素含量 Zeatin content (pmol grain−1) 0.8568** 0.7281** 0.8612**
淀粉合酶活性 Starch synthase activity (μmol grain−1 min−1) 0.9223** 0.8124** 0.8392**
**: 在 P=0.01水平上显著(n=24); **: significance at P = 0.01 (n=24).

2.2 提高活跃灌浆期籽粒 ABA与乙烯的比值
水稻弱势粒灌浆差的另一个重要原因是蔗糖转
化为淀粉的生化效率低, 造成灌浆速率小[6,27,77]。作
者等[27,65-67]观察到, 在籽粒活跃灌浆期(籽粒快速增
重期 ), 籽粒蔗糖转化为淀粉的生化效率与内源
ABA 与 ACC 比值(ABA/ACC)有密切关系。在活跃
灌浆期对籽粒施用 10−6 mol L−1 ABA或 10−5 mol L−1
硝酸钴 (乙烯合成抑制剂 ), 显著增加了弱势粒中
ABA/ACC 值 , 提高了蔗糖 -淀粉代谢途径关键酶
(SuS、AGP、StS和 SBE)活性、灌浆速率和粒重; 施
用 ABA 合成抑制剂氟草酮或乙烯释放促进剂乙烯
利的结果则相反。据此作者认为, 提高活跃灌浆期
ABA与乙烯比值或 ABA/ACC值是促进弱势粒灌浆
另一条重要调控途径。在栽培上有何技术可以提高
跃灌浆期 ABA 与乙烯比值呢?作者等[34,78-81]发现,
结实期适度干旱或土壤轻度落干或轻-干湿交替灌
溉, 可以显著提高稻、麦弱势粒 ABA与乙烯的比值、
灌浆速率和粒重。这一技术的调控原理可概括为 ,
结实期土壤轻度落干或轻-干湿交替灌溉→增加弱
势粒 ABA 与乙烯的比值(ABA/ACC)→增强/提高蔗
糖-淀粉代谢途径关键酶基因表达/活性→提高蔗糖
转化为淀粉的生化效率→促进籽粒充实。
应该指出 , 促进弱势粒灌浆的途径是多种的 ,
需要人们不断去探索、总结和开发。
3 对深入研究水稻弱势粒灌浆问题的建议
包括水稻在内的禾谷类作物弱势粒充实差问题
是一个科学难题。目前, 虽然对水稻、小麦和玉米
等作物弱势粒灌浆差、粒重轻的原因及其调控途径
有了初步认识, 但要充分认识其机理、充分挖掘弱
2016 作 物 学 报 第 36卷



图 2 抽穗期糖花比(mg NSC per spikelet)与花后 3 d籽粒玉米
素含量(A)、ATP含量(B)和淀粉合酶活性(C)的关系
Fig. 2 Relationships of sugar-spikelet ratio (mg NSC per spikelet)
at heading with zeatin content (A), ATP content (B), and starch
synthase activity (C) in grains at 3rd day after anthesis
NSC: 茎鞘中非结构性碳水化合物。
NSC: non-structural carbohydrate in the stem and sheath.

势粒的增产潜力, 仍需要作艰苦的工作和不懈的努
力。禾谷类作物籽粒灌浆是一个复杂的、但又是有
序的生理生化过程。这一过程既是激素调控和基因
表达的过程, 也是酶参与代谢的过程; 它既与品种
的基因型及籽粒内在因素有关, 又与植株整体生长
状况、水分养分供应及环境条件有密切联系[82-86]。
以往对禾谷类作物弱势粒充实问题的研究, 或侧重
于籽粒某个激素、某些酶、同化物供应, 或侧重于
养分或水分供应或环境条件影响, 而缺乏对弱势粒
充实机理的全面认识。因此, 今后需要对以下 3 个
方面作系统深入的研究: (1)在胚乳发育充实过程中,
强、弱势粒各激素含量(浓度)及其相互间的比例变化,
激素相关基因在 mRNA转录水平上的差异变化及其
对籽粒灌浆中碳水化合物代谢相关基因表达的调控
网络; 蔗糖-淀粉代谢关键酶的活性变化及其基因表
达的差异, 以及这些生化过程与强、弱势粒胚乳发
育与充实的关系, 阐明弱势粒充实差的籽粒内在因
素; (2)研究在胚乳发育充实过程中, 不同类型品种
的诸功能器官(根、茎、叶)中的激素浓度变化; 根尖
细胞超微结构和根系伤流液组分、叶片光合特性、
茎鞘物质运转特性及根冠信号传递与强、弱势粒中
激素代谢、激素与激素受体之间的关系及信号传导
与碳水化合物代谢之间的生理联系; 穗上不同部位
一、二枝梗及其着生籽粒同化物运输与库端卸载特
点、小穗(颖花)枝梗维管束韧皮部超微结构与生理功
能及其与强、弱势粒灌浆充实的关系, 将植株水平
上的研究工作与器官水平、细胞水平(包括酶生理和
分子生物学)的方法结合, 在不同层次上阐明弱势粒
充实差和粒重低的生理原因; (3)研究温度、光照、土
壤水分等生态因子、矿质营养元素和栽培措施对强、
弱势粒灌浆的影响及其生理机制(根源信号、叶片光
合速率、物质运转、籽粒中激素与受体之间关系、
糖信号传导与籽粒淀粉合成代谢间关系等), 探明适
宜弱势粒充实的环境条件指标, 提出促进弱势粒灌
浆和提高其粒重的栽培调控途径和关键技术。
References
[1] Kato T, Takeda K. Associations among characters related to yield
sink capacity in space-planted rice. Crop Sci, 1996, 36: 1135–1139
[2] Kato T, Shinmura D, Taniguchi A. Activities of enzymes for su-
crose-starch conversion in developing endosperm of rice and
their association with grain filling in extra-heavy panicle types.
Plant Prod Sci, 2007, 10: 442–450
[3] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield
potential trends of tropical since the release of IR8 and its chal-
lenge of increasing rice yield potential. Crop Sci, 1999, 39:
1552–1559
[4] Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and
development on hybrid rice: a super-domesticate in China. Ann
Bot, 2007, 100: 959–966
[5] Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype
breeding to increase rice yield potential. Field Crops Res, 2008,
108: 32–38
[6] Mohapatra P K, Patel R, Sahu S K. Time of flowering affects
grain quality and spikelet partitioning within the rice panicle.
Aust J Plant Physiol, 1993, 20: 231–242
[7] Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain
第 12期 杨建昌: 水稻弱势粒灌浆机理与调控途径 2017


filling pattern and cytokinin content in the grains and roots of rice
plants. Plant Growth Regul, 2000, 30: 261–270
[8] Yang J, Zhang J. Grain filling problem in “super” rice. J Exp Bot,
2010, 61: 1–5
[9] Ao H-J(敖和军), Wang S-H(王淑红), Zou Y-B(邹应斌), Peng
S-B(彭少兵), Tang Q-Y(唐启源), Fang Y-X(方远祥), Xiao
A-M(肖安民), Chen Y-H(陈玉梅), Xiong C-M(熊昌明). Study
on yield stability and dry matter characteristics of super hybrid
rice. Sci Agric Sin (中国农业科学), 2008, 41(7): 1927–1936 (in
Chinese with English abstract)
[10] Wu W-G(吴文革), Zhang H-C(张洪程), Wu G-C(吴桂成), Zhai
C-Q(翟超群), Qian Y-F(钱银飞), Chen Y(陈烨), Xu J(徐军),
Dai Q-G(戴其根), Xu K(许轲). Preliminary study on super rice
population sink characters. Sci Agric Sin (中国农业科学), 2007,
40(2): 250–257 (in Chinese with English abstract)
[11] Singh B K, Jenner C F. Association between concentration or-
ganic nutrients in the grain, endosperm cell number and grain dry
weight within the ear of wheat. Aust J Plant Physiol, 1982, 9:
83–95
[12] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H,
Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of
genes encoding carbohydrate-metabolizing enzymes and their re-
lationship to grain filling in rice (Oryza sativa L.): comparison of
caryopses located at different positions in a panicle. Plant Cell
Physiol, 2005, 46: 620–628
[13] Tsai-Mei O L, Setter T L. Enzyme activities of starch and sucrose
pathways and growth of apical to basal maize kernels. Plant
Physiol, 1985, 79: 848–851
[14] Sinsawat V, Steer B T. Growth of florets of sunflower (Helianthus
annus L.) in relation to their position in the capitulum, shading
and nitrogen supply. Field Crops Res, 1993, 34: 83–100
[15] Nagato K. Differences in grain weight of spikelets located at dif-
ferent positions within a rice panicle. Jpn J Crop Sci, 1941, 13:
156–169 (in Japanese)
[16] Sikder H P, Gupta D K D. Physiology of grain in rice. Indian
Agric, 1976, 20: 133–141
[17] Wang Y. Effectiveness of supplied nitrogen at the primordial
panicle stage on rice characteristics and yields. Int Rice Res
Newsl, 1981, 6: 23–24
[18] Murty P S S, Murty K S. Spikelet sterility in relation to nitrogen
and carbohydrate contents in rice. Indian J Plant Physiol, 1982,
25: 40–48
[19] Liang J, Zhang J, Cao X. Grain sink strength may be related to
the poor grain filling of indica-japonica rice (Oryza sativa) hy-
brids. Physiol Plant, 2001, 112: 470–477
[20] Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Gu Z-F(顾自奋). Studies
on development dynamics of grains of hybrid rice Nanyou 3. Sci
Agric Sin (中国农业科学), 1981, 14(1): 43–49 (in Chinese with
English abstract)
[21] Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦其). Growth
analysis on the process of grain filling in rice. Acta Agron Sin (作
物学报), 1988, 14(6): 182–193 (in Chinese with English abstract)
[22] Wang T-D(王天铎). A dynamic analysis of grain weight distribu-
tion during maturation of rice. Acta Bot Sin (植物学报), 1962,
10(2): 113–119 (in Chinese with English abstract)
[23] Wang T-D(王天铎), Yan R-H(严荣华). A dynamic analysis of
grain weight distribution during maturation of rice. II. The irre-
versible changes in the capacity to filling. Acta Phytophysiol Sin
(植物生理学报), 1964, 1(1): 9–14 (in Chinese with English ab-
stract)
[24] Yoshida S. Physiological aspects of grain yield. Ann Rev Plant
Physiol, 1972, 23: 437–464
[25] Kato T. Effect of spikelet removal on the grain filling of Akeno-
hoshi, a rice cultivar with numerous spikelets in a panicle. J Agric
Sci, 2004, 142: 177–181
[26] Zhao B-H(赵步洪). Grain Filling Characteristics of Two-Line
Hybrid Rice and Their Regulation Approaches. PhD Dissertation
of Yangzhou University, 2004 (in Chinese with English abstract)
[27] Yang J, Zhang J, Wang Z, Liu K, Wang P. Post-anthesis develop-
ment of inferior and superior spikelets in rice in relation to ab-
scisic acid and ethylene. J Exp Bot, 2006, 57: 149–160
[28] Davies P J. Introduction. In: Davies P J ed. Plant Hormones,
Biosynthesis, Signal Transduction, Action! Dordrecht, the Neth-
erlands: Kluwer Academic Publishers, 2004. pp 1–35
[29] Lee B T, Martin P, Bangerth F. Phytohormones levels in the flo-
rets of a single wheat spikelet during pre-anthesis development
and relationships to grain set. J Exp Bot, 1988, 39: 927–933
[30] Ober E S, Setter T L, Madison J T, Thompson J F, Shapiro P S.
Influence of water deficit on maize endosperm development. En-
zyme activities and RNA transcripts of starch and zein synthesis,
abscisic acid, and cell division. Plant Physiol, 1991, 97: 154–164
[31] Saini H S, Sedgley M, Aspinall D. Developmental anatomy in
wheat of male sterility induced by heat stress, water deficit or
abscisic acid. Aust J Plant Physiol, 1984, 11: 243–253
[32] Andersen M N, Asch F, Wu F, Jemsen C R, Naested H, Mogensen
V O, Koch K E. Soluble invertase expression is an early target of
drought stress during the critical, abortion-sensitive phase of
young ovary development in maize. Plant Physiol, 2002, 130:
591–604
[33] Dembinska O, Lalonde S, Saini H S. Evidence against the regula-
tion of grain set by spikelet abscisic acid levels in water-stressed
wheat. Plant Physiol, 1992, 100: 1599–1602
[34] Yang J, Zhang J, Liu K, Wang Z, Liu L. Abscisic acid and ethyl-
ene interact in wheat grains in response to soil drying during
grain filling. New Phytol, 2006, 271: 293–303
[35] Tao L-X(陶龙兴), Wang X(王熹), Huang X-L(黄效林). Effects
of endogenous IAA on grain filling of hybrid rice. Chin J Rice Sci
(中国水稻科学), 2003, 17(2): 149–155 (in Chinese with English
abstract)
[36] Wang X(王熹), Tao L-X(陶龙兴), Xu R-S(徐仁胜), Tian S-L(田
淑兰). Apical grain superiority in hybrid rice. Acta Agron Sin
(作物学报), 2001, 27(6): 980–985 (in Chinese with English ab-
stract)
[37] Duan J(段俊), Tian C-E(田长恩), Liang C-Y(梁承邺), Huang
2018 作 物 学 报 第 36卷

Y-W(黄毓文), Liu H-X(刘鸿先). Dynamic changes of endoge-
nous plant hormones in rice grains in different parts of panicle at
grain-filling stage. Acta Bot Sin (植物学报), 1999, 41(1): 75–79
(in Chinese with English abstract)
[38] Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain
filling pattern and cytokinin content in the grains and roots of rice
plants. Plant Growth Regul, 2000, 30: 261–270
[39] Morris R D, Blevins D G, Dietrich J T, Durly R C, Gelvin S B,
Gray J, Hommes N G, Kaminek M, Mathews L J, Meilan R,
Reinbott T M, Sagavendra-Soto L. Cytokinins in plant pathogenic
bacteria and developing cereal grains. Aust J Plant Physiol, 1993,
20: 621–637
[40] Brenner M L, Cheikh N. The role of hormones in photosynthate
partitioning and seed filling. In: Davies P J ed. Plant Hormones,
Physiology, Biochemistry and Molecular Biology. Dordrecht:
Kluwer Academic Publishers, 1995. pp 649–670
[41] Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L. Correlation of
cytokinin levels in the endosperm and roots with cell number di-
vision activity during endosperm development in rice. Ann Bot,
2002, 90: 369–377
[42] Finkelstein R R. The role of hormones during seed development
and germination. In: Davies P J ed. Plant Hormones, Biosynthesis,
Signal Transduction, Action! Dordrecht, Netherlands: Kluwer
Academic Publishers, 2004. pp 513–517
[43] Papadakis A K, Roubelakis-Angelakis K A. Spatial and temporal
distribution of polyamine levels and polyamine anabolism in dif-
ferent organs/tissues of the tobacco plant. Correlations with age,
cell division/expansion, and differentiation. Plant Physiol, 2005,
220: 826–837
[44] Alcazar R, Marco F, Cuevas J C, Patron M, Ferrando A, Carrasco
P, Tiburcio A F, Altabella T. Involvement of polyamines in plant
response to abiotic stress. Biotech Lett, 2006, 28: 1867–1876
[45] Tomosugi M, Ichihara K, Saito K. Polyamines are essential for
the synthesis of 2-ricinoleoyl phosphatidic acid in developing
seeds of castor. Planta, 2006, 223: 349–358
[46] Yang J, Cao Y, Zhang H, Liu L, Zhang J. Involvement of poly-
amines in the post-anthesis development of inferior and superior
spikelets in rice. Planta, 2008, 228: 137–149
[47] Tan G-L(谈桂露), Zhang H(张耗), Fu J(付景), Wang Z-Q(王志
琴), Liu L-J(刘立军), Yang J-C(杨建昌). Post-anthesis changes
in concentrations of polyamines in superior and inferior spikelets
in relation with grain filling of super rice. Acta Agron Sin (作物
学报), 2009, 35(12): 2225–2233 (in Chinese with English ab-
stract)
[48] Murata Y, Matsushima S. Rice. In: Evans L T ed. Crop Physio-
logy. Cambridge: Cambridge University Press, 1975. pp 75–99
[49] Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the
developing endosperm of rice grains. Plant Cell Physiol, 1989,
30: 833–839
[50] Nakamura Y, Yuki K. Changes in enzyme activities associated
with carbohydrate metabolism during development of rice en-
dosperm. Plant Sci, 1992, 82: 15–20
[51] Yang J, Zhang J, Wang Z, Xu G, Zhu Q. Activities of key en-
zymes in sucrose-to-starch conversion in wheat grains subjected
to water deficit during grain filling. Plant Physiol, 2004, 135:
1621–1629
[52] Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes
involved in source-to-starch metabolism in rice grains subjected
to water stress during filling. Field Crops Res, 2003, 81: 69–81
[53] Jeng T L, Wang C S, Chen C L, Sung J M. Effects of grain posi-
tion on the panicle on starch biosynthetic enzyme activity in de-
veloping grains of rice cultivar Tainung 67 and its NaN3-induced
mutant. J Agric Sci, 2003, 141: 303–311
[54] Yang J-C(杨建昌), Peng S-B(彭少兵), Gu S-L(顾世梁), Visperas
R M, Zhu Q-S(朱庆森). Changes in activities of three enzymes
associated with starch synthesis in rice grains during grain filling.
Acta Agron Sin (作物学报), 2001, 27(2): 157–164 (in Chinese
with English abstract)
[55] Duan M, Sun S S M. Profiling the expression of genes controlling
rice grain quality. Plant Mol Biol, 2005, 59: 165–178
[56] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H,
Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of
genes encoding carbohydrate-metabolizing enzymes and their re-
lationship to grain filling in rice (Oryza sativa L.): comparison of
caryopses located at different positions in a panicle. Plant Cell
Physiol, 2005, 46: 620–628
[57] Jeng T L, Wang C S, Tseng T H, Sung J M. Expression of gran-
ule-bound starch synthase in developing rice grain. J Sci Food
Agric, 2007, 87: 2456–2463
[58] Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W,
Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling
and yield by a gene with a potential signature of domestication.
Nat Genet, 2008, 40: 1370–1374
[59] Kato T. Change of sucrose synthase activity in developing en-
dosperm of rice cultivars. Crop Sci, 1995, 35: 827–831
[60] Hirose T, Takano M, Terao T. Cell wall invertase in developing
rice caryopsis: molecular cloning of OsCIN1 and analysis of its
expression in relation to its role in grain filling. Plant Cell
Physiol, 2002, 43: 452–459
[61] Venkateswarlu B, Visperas R M. Source-sink relationships in
crop plants. International Rice Research Institute Paper Series,
1987, 125: 1–19
[62] Venkateswarlu B. Source-sink interrelationships in lowland rice.
Plant Soil, 1976, 44: 575–586
[63] Jing Y-H(荆彦辉), Xu Z-J(徐正进). Research progress of rice
vascular bundle characters. J Shenyang Agric Univ (沈阳农业大
学学报), 2003, 34(6): 467–471 (in Chinese with English abstract)
[64] Ma J(马均 ), Zhou K-D(周开达 ), Ma W-P(马文波), Wang
X-D(汪旭东), Ming D-F(明东风), Yan Z-B(严志彬). The char-
acteristics of vascular bundles in the first internode and grain
filling of heavy panicle hybrid rice. Sci Agric Sin (中国农业科
学), 2002, 35(5): 576–579 (in Chinese with English abstract)
[65] Huang S-M(黄升谋), Zou Y-B(邹应斌), Li S-Q(李淑清). Vas-
cular bundles feature and physiology character of hybrid rice
第 12期 杨建昌: 水稻弱势粒灌浆机理与调控途径 2019


(Liangyoupeijiu). J Hunan Agric Univ (湖南农业大学学报),
2004, 30(1): 1–3 (in Chinese with English abstract)
[66] Huang S-M(黄升谋), Zou Y-B(邹应斌), Liu C-L(刘春林). Set-
ting physiology of the superior and inferior grains of hybrid rice
Liangyoupeijiu. Acta Agron Sin (作物学报 ), 2005, 31(1):
102-107 (in Chinese with English abstract)
[67] Li M-Y(李木英), Pan X-H(潘晓华). The anatomic characters of
panicle and its relations to filled grain in two-line hybrid rice.
Acta Agric Univ Jiangxiensis (江西农业大学学报), 2000, 22(2):
147–151 (in Chinese with English abstract)
[68] Deng Q-Y(邓启云), Ma G-H(马国辉). A preliminary study on
the characters of bundle and its relation to the grain plumpness in
intersubspecific hybrid rice. J Hubei Agric Coll (湖北农学院学
报), 1992, 2(1): 1–5 (in Chinese with English abstract)
[69] Xiao D-X(肖德兴), Pan X-H(潘晓华), Shi Q-H(石庆华). A pre-
liminary study on the vascular bundle characters and its relation
to the filled-grain rate in two lines hybrid rice (F1). Acta Agric
Univ Jiangxiensis (江西农业大学学报), 1993, 15(S2): 50–55 (in
Chinese with English abstract)
[70] Wang Z-Q(王志琴), Yang J-C(杨建昌), Zhu Q-S(朱庆森), Zhang
Z-J(张祖建), Lang Y-Z(郎有忠), Wang X-M(王学明). Reasons
for poor grain plumpness in intersubspecific hybrid rice. Acta
Agron Sin (作物学报), 1998, 24(6): 782–787 (in Chinese with
English abstract)
[71] Teng S, Qian Q, Zeng D L, Kunihiro Y, Huang D N, Zhu L H.
QTL analysis of rice peduncle vascular bundle system and pani-
cle traits. Acta Bot Sin, 2002, 44(3): 301–306
[72] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield
potential trends of tropical rice since release of IR8 and the chal-
lenge of increasing rice yield potential. Crop Sci, 1999, 39:
1552–1559
[73] Yang J-C(杨建昌), Liu L-J(刘立军), Wang Z-Q(王志琴), Lang
Y-Z(郎有忠), Zhu Q-S(朱庆森). Effects of flowering time of
spikelets on endosperm development in rice and its physiological
mechanism. Sci Agric Sin (中国农业科学), 1999, 32(3): 34–51
(in Chinese with English abstract)
[74] Yang J-C(杨建昌), Su B-L(苏宝林), Wang Z-Q(王志琴), Lang
Y-Z(郎有忠), Zhu Q-S(朱庆森). Characteristics and physiology
of grain-filling in inter-subspecific hybrid rice. Sci Agric Sin (中
国农业科学), 1998, 31(1): 7–14 (in Chinese with English ab-
stract)
[75] Yang J, Zhang W, Wang Z, Liu L, Zhu Q. Source-sink character-
istics and the translocation of assimilates in new plant type and
intersubspecific hybrid rice. Agric Sci China, 2002, 1(2):155–162
[76] Xie G-H(谢光辉), Yang J-C(杨建昌), Wang Z-Q(王志琴), Zhu
Q-S(朱庆森). Grain filling characteristics of rice and their rela-
tionships to physiological activities of grains. Acta Agron Sin (作
物学报), 2001, 27(5): 557–565 (in Chinese with English abstract)
[77] Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. Hormones in
the grains and roots in relation to post-anthesis development of
inferior and superior spikelets in japonica/indica hybrid rice.
Plant Physiol Biochem, 2009, 47: 195–204
[78] Yang J, Zhang J. Grain filling of cereals under soil drying. New
Phytol, 2006, 169: 223–236
[79] Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal Changes in
the grains of rice subjected to water stress during grain filling.
Plant Physiol, 2001, 127: 315–323
[80] Yang J, Zhang J, Ye Y, Wang Z, Zhu Q, Liu L. Involvement of
abscisic acid and ethylene in the responses of rice grains to water
stress during filling. Plant Cell Environ, 2004, 27: 1055–1064
[81] Zhang Z, Xue Y, Wang Z, Yang J, Zhang J. The relationship of
grain filling with abscisic acid and ethylene under non-flooded
mulching cultivation. J Agric Sci, 2009, 147: 423–436
[82] Fageria N K. Plant tisuu test for determination of optimum con-
centration and uptake of nitrogen at different growth stages in
low land rice. Commun Soil Sci Plant Anal, 2003, 34: 259–270
[83] Fageria N K. Yield physiology of rice. J Plant Nutr, 2007, 30:
843–879
[84] Yang J, Zhang J. Crop management techniques to enhance har-
vest index in rice. J Exp Bot, 2010, 61: 3177–3189
[85] Zhang H, Xue Y, Wang Z, Yang J, Zhang J. Morphological and
physiological traits of roots and their relationships with shoot
growth in “super” rice. Field Crops Res, 2009, 113: 31–40
[86] Zhang H, Chen T, Wang Z, Yang J, Zhang J. Involvement of cy-
tokinins in the grain filling of rice under alternate wetting and
drying irrigation. J Exp Bot, 2010, 61: 3709–3717