全 文 :作物学报 ACTA AGRONOMICA SINICA 2009, 35(1): 79−86 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
本研究由国家科技支撑计划项目(2006BAD01A02-14), 国家公益性行业(农业)科研专项经费项目(nyhyzx07-002), 农业部引进国际先进农业科
学技术计划(948计划)项目(2006-G2), 山东省三○工程, 山东省泰山学者项目资助。
*
通讯作者(Corresponding author): 何中虎, E-mail: zhhe@public3.bta.net.cn; Tel:010-82108547; Fax:010-82108547
Received(收稿日期): 2008-01-11; Accepted(接受日期): 2008-05-29.
DOI: 10.3724/SP.J.1006.2009.00079
利用揉面特性鉴定小麦 1BL/1RS 易位系
刘建军 1 肖永贵 2 程敦公 1 李豪圣 1 刘 丽 2 宋健民 1 刘爱峰 1
赵振东 1 何中虎 2,3,*
1 山东省农业科学院作物研究所, 山东济南 250100; 2 中国农业科学院作物科学研究所 / 国家小麦改良中心 / 国家农作物基因资源
与基因改良重大科学工程, 北京 100081; 3 CIMMYT中国办事处, 北京 100081
摘 要: 1BL/1RS易位系曾广泛用于小麦农艺性状改良, 但对加工品质有明显的负面影响。利用 404份 F5至 F8高代
品系(试验 I)和 175 份山东省主栽品种及高代品系(试验 II), 研究 1BL/1RS 易位对小麦揉面参数的影响, 分析不同高
低分子量蛋白亚基(HWM/LWM-GS)背景下 1BL/1RS 的揉面特性, 探讨利用揉面特性鉴定 1BL/1RS 易位系的方法。
结果表明, 1BL/1RS易位系的揉面时间、峰值带宽及峰后 1 min带宽显著低于非 1BL/1RS易位系, 而衰落角和带宽比
(峰值带宽/峰后 1 min带宽)显著高于非 1BL/1RS易位系, 说明 1BL/1RS易位导致小麦的揉面特性显著变劣。易位系
的揉面谱带的主要特征为峰后 1 min谱带急剧衰落并变窄, 带宽比显著增大, 而非 1BL/1RS易位系的峰后谱带衰落、
变窄平缓或者稳定时间较长, 带宽比较小。带宽比 1.6可作为判断易位系的有效指标, 即大于或等于 1.6为 1BL/1RS
易位系, 小于 1.6为非 1BL/1RS易位系, 准确率达 85.2%(试验 I)和 96.8%(试验 II)。尽管优质 HWM-GS背景对 Glu-B3j
(1BL/1RS易位系)的揉面特性有一定正向补偿作用, 但品质特性仍显著劣于其他 Glu-B3位点, 带宽比表现尤为突出。
因此, 揉面特性不仅能测定育种材料的面团流变学特性, 而且还能有效鉴别 1BL/1RS易位系。
关键词: 普通小麦; 1BL/1RS易位; 揉面特性
Identification of 1BL/1RS Translocation Based on Mixograph Parameters
in Common Wheat
LIU Jian-Jun1, XIAO Yong-Gui2, CHENG Dun-Gong1, LI Hao-Sheng1, LIU Li2, SONG Jian-Min1,
LIU Ai-Feng1, ZHAO Zhen-Dong1, and HE Zhong-Hu2,3,*
1 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 2 Institute of Crop Sciences / National Wheat Improve-
ment Centre / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081,
China; 3 CIMMYT China Office, Beijing 100081, China
Abstract: 1BL/1RS translocation has been widely used for improving agronomic performance and disease resistance in wheat
(Triticum aestivum L.), however, it has strong negative effect on processing quality. To develop a method for 1BL/1RS transloca-
tion identification with mixograph parameters, 404 advanced lines from 146 crosses in 2005–2006 (experiment I) and 175 ad-
vanced lines and main cultivars of Shandong province (experiment II) in 2005–2006 and 2006–2007 cropping seasons were used
in this study. All materials were sown under irrigation condition in a randomized complete design with 1 replication in Jinan. The
genetic effect of 1BL/1RS translocation on mixograph parameters was investigated. The variations of mixograph parameters under
different combinations of the high molecular weight glutenin subunits (HMW-GS) and low molecular weight glutenin subunits
(LMW-GS) were also analyzed. 1BL/1RS translocation lines showed significantly shorter mixing time, less bandwidth of peak
and bandwidth after 1 min peak, and higher angle of descent and the bandwidth ratio (the ratio of bandwidth of peak/bandwidth
after 1 min peak) in comparison with non-1BL/1RS translocation lines. It indicated that the 1BL/1RS translocation has deleterious
effects on mixograph parameters. Mixograph of the 1BL/1RS translocation was characterized with the bandwidth sharply declin-
ing and narrowing after 1 min peak, and increasing the bandwidth ratio, whereas the bandwidth of non-1BL/1RS translocations
declined gently after 1 min peak or had a longer mixing tolerance, and had a little variation about the bandwidth ratio. Further-
more, 85.2% (experiment I) and 96.8% (experiment II) accuracies were achieved in grouping the 1BL/1RS translocation and
80 作 物 学 报 第 34卷
non-1BL/1RS translocation on the basis of the band width ratio, i.e., 1BL/1RS translocation line had a value more than or equal to
1.6, and non-1BL/1RS translocation line had a value smaller than 1.6. Although the Glu-B3 alleles showed better quality parame-
ters when HMW-GS 5+10 was presented, it was still the most unfavorable allele on mixograph parameters among all Glu-B3 al-
leles. Therefore, mixograph parameters could be used to determine the rheological properties and the presence of 1BL/1RS trans-
location.
Keywords: Common wheat (Triticum aestivum L.); 1BL/1RS translocation; Mixogram characteristics
1BL/1RS 易位系具有良好的抗逆性、适应性和
丰产性 , 是外缘种质用于小麦育种最成功的范例 ,
曾在国内外小麦生产中发挥过重要作用[1]。国际玉
米小麦改良中心(CIMMYT)约 45%的高代品系属于该
易位类型[2]。我国 20 世纪 80 年代后育成的小麦品种
中 38%为 1BL/1RS易位系, 目前主栽品种中 1BL/1RS
的频率高达 44.6%, 其中北方冬麦区和黄淮冬麦区
的频率更高[3-4]。
尽管 1BL/1RS易位对小麦农艺性状有重要正向
作用, 但对加工品质有显著的负面影响, 主要表现
为面团发黏, 面团强度显著降低[5-6]。Burnett 等[7]研
究表明, 1BL/1RS易位能提高籽粒蛋白质含量, 降低
SDS 沉降值, 但对籽粒硬度、降落值及戊聚糖含量
无显著影响。Moreno-Sevilla等[8]发现来自“Rawhide”
背景的 1BL/1RS品系具有较高的蛋白质含量和类似
非 1BL/1RS 易位系的揉面时间 , 但耐揉性较差。
Martin和 Carrillo[9]却认为 1BL/1RS易位对蛋白质含
量和粉质参数的影响主要与品种的遗传背景有关。
小麦高分子量谷蛋白亚基(HMW-GS)和低分子
量谷蛋白亚基(LWM-GS)组成对加工品质有重要影
响, 已成为品质改良中亲本选配和后代选择的重要
指标。HMW-GS 能解释面筋强度和黏弹性变异的
18%~55%[10], 其中亚基 1、7+8和 5+10对面筋强度
有正向作用, 2*和 17+18 对面团延展性有正向效应[1],
而 N、7+9和 2+12对加工品质有显著的负向效应[4]。
LMW-GS约占麦谷蛋白的 60%[12], 对小麦品质也有
重要决定作用[13]。Glu-A3d 和 Glu-B3d 亚基对加工
品质贡献最大, Glu-A3e 和 Glu-B3j 亚基导致品质显
著变劣[14-15]。然而, Glu-1和 Glu-3位点对和面特性
存在加性和互作效应[16], 应综合考虑 HMW-GS 和
LMW-GS对小麦加工品质的影响。
1BL/1RS 易位的鉴定方法很多, 如籽粒贮藏蛋
白的 SDS-PAGE和 Acid-PAGE、细胞学鉴定、染色
体分带、GISH、FISH、高效液相色谱、单克隆抗体
和 PCR 等, 其中 SDS-PAGE 和 PCR 检测应用最为
普遍, 但这些方法在传统的小麦品质育种中仍未完
全普及, 国内育种单位应用更少。揉混仪(Mixograph)
主要用于评价小样品的面团特性, 与国内常用的粉
质仪(用样品量 150~200 g, 需调节吸水率 2~3次, 6~
8份 d−1)相比, 具有分析快(每天 50份)、用样少(10 g)
和指标可靠等优点[17], 在美国、加拿大、澳大利亚
和 CIMMYT 的小麦品质检测及分离世代优质品系
选择中广泛应用。本研究旨在通过分析不同 HWM/
LWM背景下 1BL/1RS易位对小麦揉面参数的影响,
探讨利用揉混仪鉴定 1BL/1RS易位系的可行性, 为提
高品质育种效率提供理论依据。
1 材料与方法
1.1 供试材料和试验设计
2005—2007年连续两个生长季在山东济南进行
田间试验, 共设置 2个试验, 均为 1次重复, 随机排
列, 行长 4.0 m, 行距 0.3 m, 株距 0.05 m。试验 I选
用高代品系 404 份, 于 2005—2006 年度种植; 试验
II 选用山东省主栽品种和山东省农业科学院作物研
究所高代品系 175 份, 于 2005—2006 年度(1 行区)
和 2006—2007 年度(6 行区)种植。这些材料遗传基
础丰富, 基本反映了山东省小麦育种材料的现状。
试验地肥力中等, 田间管理按当地区试要求进
行, 收获籽粒用于揉面参数测定。
1.2 DNA提取及 1BL/1RS鉴定
每个高代品系选取有代表性的种子 3粒, 用锤子
砸碎后放入 1.5 mL离心管中, 按 Lagudah等[18]的方
法分别提取基因组 DNA。利用 1RS特异的 SCAR标
记(AF1/AF4)对品系进行扩增[19], PCR体系和程序参
见文献[20], 以 1.5 %琼脂糖凝胶电泳检测 1RS特异
引物扩增产物, 缓冲体系为 1×TAE溶液, 80 V电压
电泳 1 h, 溴化乙锭染色 0.5 h, ChemiDoc XRS System
扫描成像并存入计算机。根据每品系 3个籽粒 DNA
的检测结果判断该品系的易位类型。
1.3 用 SDS-PAGE分析蛋白亚基
共分析试验 I中 207份品系。每品系选取 20个
饱满籽粒, 用 Foss Tecator公司 Cyclotec1093型旋风
磨磨制全麦粉(0.5 mm筛孔), 称取 0.040 g样品, 用
SDS-PAGE 方法[21]分析其醇溶蛋白和麦谷蛋白亚基
第 1期 刘建军等: 利用揉面特性鉴定小麦 1BL/1RS易位系 81
构成。
1.4 揉面参数的测定
采用 Quadrumat Junior(德国 Brabender 公司)磨
制面粉, 过 60目筛, 出粉率约 60%。
称取每一参试品系 10 g面粉, 用揉面仪(美国Na-
tional MFG公司), 按 54-40A(AACC 2000)方法测定
揉面参数, 包括揉面时间、衰落角、峰值带宽、峰
后 1 min带宽和峰值带宽与峰后 1 min带宽比(简称
带宽比, bandwidth ratio)。
1.5 统计分析
利用 SAS(Statistical Analysis System)9.0软件分
析揉面参数的基本统计量, 并进行方差分析和多重
比较。
2 结果与分析
2.1 1BL/1RS易位系的检测
用 SDS-PAGE电泳检测试验 I品系(图 1), 以无
黑麦碱标记(Sec-1)为非 1BL/1RS 易位品系, 同时具
有 Sec-1和Glu-B3j亚基的品系视为 1BL/1RS易位系;
携带 Sec-1而无 Glu-B3j亚基的品系为杂合系。共检
测出 151个非易位系、50个易位系和 6个杂合系, 其
中杂合系在本研究中不予考虑。
以济麦 20(非易位系)和济麦 21(易位系)为对照
品种, 利用 SCAR标记对 579份材料(试验 I和 II)进
行 PCR扩增, 凡扩增产物为 1.5 kb者即为 1BL/1RS
易位系(图 2), 用此法检测出非 1BL/1RS易位系 395
图 1 部分品系 1BL/1RS 易位系的 SDS-PAGE 鉴定结果
Fig. 1 Identification of 1BL/1RS translocation by SDS-PAGE
1:Opata (Glu-B3d); 2:045254 (兰考 906/中优 16, Glu-B3j); 3:045331 (兰考 906/烟农 19, Glu-B3j); 4:045358 (兰考 906/烟农 19, Glu-B3j);
5:034378 (济麦 20/945139, Glu-B3f); 6:044184 (965261/烟农 19, Glu-B3j); 7:045399 (烟辐 188/藁城 8901, Glu-B3d); 8:044209 (965261/
陕优 225, Glu-B3d); 9:035515 (百农 64/957054, Glu-B3d); 10:Pavon (Glu-B3h); 11:Seri (Glu-B3j); 12:044008 (安农 91168/济麦 20,
Glu-B3d); 13:045769 (中优 9507/98中 33, Glu-B3j); 14:044423 (B9814/954018, Glu-B3d); 15:035081 (皖麦 19/95(6)161, Glu-B3j); 16:
035083 (皖麦 19/95(6)161, Glu-B3j); 17:035288 (95(6)161/98YS510, Glu-B3j); 18:035288 (95(6)161/98YS510, Glu-B3j); 19:035379 (兰
考 147/运丰早 18, Glu-B3j); 20:Pitic (Glu-B3b)。
1: Opata (Glu-B3d); 2: 045254 (Lankao 906/Zhongyou 16, Glu-B3j); 3: 045331 (Lankao 906/Yannong 19, Glu-B3j); 4: 045358 (Lankao
906/Yannong 19, Glu-B3j); 5: 034378 (Jimai 20/945139, Glu-B3f); 6: 044184 (965261/Yannong 19, Glu-B3j); 7: 045399 (Yanfu
188/Gaocheng 8901, Glu-B3d); 8: 044205 (965261/Shaanyou 225, Glu-B3d); 9: 035515 (Bainong 64/957054, Glu-B3d); 10: Pavon (Glu-B3h);
11: Seri (Glu-B3j); 12: 044008 (Annong 91168/Jimai 20, Glu-B3d); 13: 045769 (CA9507/98 Zhong 33, Glu-B3j); 14: 044423 (B9814/954018,
Glu-B3d); 15: 035081 (Wanmai 19/95(6)161, Glu-B3j); 16: 035083 (Wanmai 19/95(6)161, Glu-B3j); 17: 035288 (95(6)161/98YS510,
Glu-B3j); 18: 035288 (95(6)161/98YS510, Glu-B3j); 19: 035378 (Lankao 147/Yunfengzao 18, Glu-B3j); 20: Pitic (Glu-B3b).
图 2 1BL/1RS 易位系的 PCR 检验
Fig. 2 Identification of 1BL/1RS translocation by PCR amplification
1:044170(965261/烟农19); 2:044184(965261/烟农19); 3:044186(965261/烟农19); 4:035354(鲁麦 14/百农64); 5:035357(鲁麦 14/百
农 64); 6:045767(中优 9507/98中 33); 7:045769(中优 9507/98中 33); 8:044205(965261/陕优 225); 9:044206(965261/陕优 225); 10:
045399(烟辐 188/藁城 8901); 11:045243(兰考 906/中优 16); 12:045248(兰考 906/中优 16); 13:045254(兰考 906/中优 16); M:1 kb Plus
DNA Ladder; 14:045257(兰考 906/中优 16); 15:035643(976261/964189); 16:济麦 20; 17:济麦 21。
1: 044170 (965261/Yannong 19); 2: 044182 (965261/Yannong 19); 3: 044184 (965261/Yannong 19); 4: 035354 (Lumai 14/Bainong 64); 5:
035357 (Lumai 14/Bainong 64); 6: 045767 (Zhongyou 9507/98 Zhong 33); 7: 045769 (Zhongyou 9507/98 Zhong 33); 8: 044205
(965261/Shanyou 225); 9: 044206 (965261/Shaanyou 225); 10: 045393 (Yanfu 188/Gaocheng 8901); 11: 045243 (Lankao 906/Zhongyou 16);
12: 045248 (Lankao 906/Zhongyou 16); 13: 045251 (Lankao 906/Zhongyou 16); M: 1 kb Plus DNA Ladder; 14: 045257 (Lankao
906/Zhongyou 16); 15: 035643 (976261/964189); 16: Jimai 20; 17: Jimai 21.
82 作 物 学 报 第 35卷
个, 1BL/1RS 易位系 184 个, 分别占总检测品系的
68.2%和 31.8%。其中试验 I品系的黑麦碱蛋白检测
与分子标记检测结果完全一致, 说明 SDS-PAGE 或
SCAR标记皆可对 1BL/1RS易位进行准确鉴定。
2.2 1BL/1RS易位对揉面特性的影响
表 1 表明, 在试验 I 和 II(两年平均值)中, 1BL/
1RS 易位系的揉面时间、峰值带宽及峰后 1 min 处
带宽显著低于非 1BL/1RS 易位系, 而衰落角和带宽
比显著高于非 1BL/1RS 易位系, 差异均达 5%显著
水平。说明 1BL/1RS 易位导致揉面特性显著变劣,
主要表现在面筋强度、弹性和耐揉性显著降低, 同
时环境效应和遗传背景也影响小麦的揉面特性。
2.3 对 1BL/1RS 易位系揉面图的鉴定及其验证
分析
揉面谱带显示(图 3-A, B), 1BL/1RS易位系的揉
面时间较短, 峰值谱带较窄, 主要特征为峰后 1 min
谱带急剧变窄, 峰值带宽与峰后 1 min 带宽比值显
著增大; 而非 1BL/1RS 易位系的峰后谱带变窄和平
缓或者稳定时间较长, 带宽比值较小。
从试验 I和 II带宽比的频率分布图可以看出(图
4-A, B), 非 1BL/1RS易位系的带宽比变异幅度较小,
主要集中分布在 1.2处, 频率分别为 51.35%和 66.00%;
而 1BL/1RS 易位系的带宽比变异幅度较广, 离散程
度较大, 进一步说明遗传背景的重要影响。1BL/1RS
易位系与非易位系的带宽比频率交叉于 1.6 处, 带宽
比≥1.6 的品系中 1BL/1RS 易位系分别占 85.2%和
96.8%, 而<1.6的非 1BL/1RS易位系分别占 89.0%和
99.2%。说明揉面谱带峰后 1 min左右带宽的变化趋
势及带宽比 1.6 可作为判断 1BL/1RS 易位系的有效
指标。因受遗传背景的影响, 034041(鲁麦 14/平丰 1
号)、045331(兰考 906/烟农 19)和 055471(946131/周
麦 13)等 1BL/1RS易位系相对其他 1BL/1RS易位系
的揉粉特性表现较好 , 带宽比<1.6; 035270[95(6)
161/西安 8号]、035357(鲁麦 14/百农 64)和 045763(中
优 9507/85中 33)等非 1BL/1RS易位系的揉粉特性较
差, 也表现出类似 1BL/1RS易位系的揉面谱带, 但频
率仅占 11.0%和 0.8%。
表 1 1BL/1RS 易位系和非易位系的揉面参数比较
Table 1 Comparison of mixographic parameters between 1BL/1RS and non-1BL/1RS lines
揉面时间
Mixing time
(min)
衰落角
Angle of descent
(°)
峰值带宽
Bandwidth of peak
(cm)
峰后 1 min带宽
Bandwidth after 1 min peak
(cm)
带宽比
Bandwidth ratio
试验#
Exp. #
类型
Type
样本数
No. of
samples
Mean±SD Range Mean±SD Range Mean±SD Range Mean±SD Range Mean±SD Range
I Non-1RS 262 2.8±1.4 a 1.0–9.8 12.1±7.4 b 1.5–50.0 2.6±0.6 a 1.1–4.3 2.0±0.6 a 0.3–3.7 1.3±0.5 b 1.0–5.0
1BL/1RS 135 2.1±0.6 b 1.1–4.6 20.4±10.9 a 3.0–55.0 2.1±0.6 b 1.2–4.3 1.0±0.7 b 0.3–3.3 2.6±0.9 a 1.0–5.3
II Non-1RS 126 3.4±1.7 a 1.5–10.8 7.9±4.0 b 0.5–18.0 2.2±0.4 a 1.3–3.5 1.9±0.3 a 1.1–3.0 1.2±0.4 b 1.0–3.2
1BL/1RS 49 2.5±1.0 b 1.1–9.0 17.7±8.3 a 1.0–41.0 1.7±0.3 b 1.1–2.3 0.8±0.2 b 0.4–1.4 2.4±0.6 a 1.4–4.0
# In experiment I, six heterozygous lines were not included. In experiment II, mean, standard deviation , and range of mixographic parameters
based on averaged data from two years. Values followed by the same letter are not significantly different at the 0.05 probability level between the two
types in each experiment.
图 3 易位系(A)和非易位系(B)的揉面图谱
Fig. 3 Mixograms of 1BL/1RS translocation (A) and non-1BL/1RS type (B)
第 1期 刘建军等: 利用揉面特性鉴定小麦 1BL/1RS易位系 83
图 4 1BL/1RS 易位系和非易位系的带宽比分布频率
Fig. 4 Frequency of mixogram parameters between 1BL/1RS and non-1BL/1RS
A: experiment I; B: experiment II.
2.4 HMW-GS/LMW-GS背景对揉面参数的影响
由表 2(试验 I)可以看出, Glu-B3j对揉面参数的
负向影响最大, 衰落角(24.5°)、峰值带宽(2.0 cm)、
峰后 1 min带宽(1.0 cm)和带宽比(2.7)的效应较其他
亚基差异均达 5%显著水平。此外 , 7+9、2+12、
Glu-A3a 和 Glu-A3b 等亚基对揉面参数也有一定的
负向影响。13+16、5+10、Glu-A3d和 Glu-B3b等亚
基对揉面特性正向影响较大, 均表现揉面时间长、
衰落角小、峰值带宽及峰后 1 min 处带宽较大、带
宽比小。
表 2 HMW-GS/LMW-GS 变异背景下的揉面参数(试验 I)
Table 2 Mean values for mixogram parameters of all genetic groups (experiment I)
位点
Locus
亚基/位点
Subunit/allele
样品数
No. of samples
揉面时间
Mixing time
(min)
衰落角
Angle of de-
scent (°)
峰值带宽
Bandwidth of
peak (cm)
峰后 1 min带宽
Bandwidth after
1 min peak (cm)
带宽比
Bandwidth ratio
Glu-A1 N 43 2.1 a 12.2 b 2.7 a 2.2 a 1.4 a
1 151 2.3 a 17.3 ab 2.7 a 2.0 ab 1.7 a
2* 7 2.1 a 22.7 a 2.6 a 1.5 b 1.8 a
Glu-B1 7+9 41 2.2 bc 20.2 a 2.2 b 1.3 b 2.1 a
7+8 94 2.6 b 15.3 ab 2.8 a 2.2 a 1.6 ab
6+8 14 1.7 c 12.8 ab 3.0 a 2.4 a 1.4 ab
17+18 31 1.6 c 17.4 ab 2.8 a 2.2 a 1.3 ab
14+15 12 1.5 c 19.3 a 2.8 a 1.9 ab 1.6 ab
13+16 9 3.6 a 8.7 b 2.9 a 2.3 a 1.2 b
Glu-D1 2+12 108 2.0 b 19.5 a 2.6 a 1.8 b 1.9 a
4+12 44 1.7 b 16.9 a 2.7 a 2.0 b 1.5 b
5+10 49 3.3 a 9.1 b 2.9 a 2.4 a 1.3 b
Glu-A3 Glu-A3a 102 2.4 abc 16.9 ab 2.5 b 1.7 b 1.8 a
Glu-A3b 37 1.5 c 22.2 a 2.6 ab 1.9 ab 1.8 a
Glu-A3c 14 1.8 bc 14.8 ab 2.8 ab 2.2 ab 1.4 a
Glu-A3d 44 2.6 ab 11.7 b 3.2 a 2.6 a 1.2 a
Glu-A3e 4 3.3 a 8.5 b 2.8 ab 2.3 ab 1.3 a
Glu-B3 Glu-B3b 3 3.4 a 9.3 b 3.8 a 3.1 a 1.2 b
Glu-B3d 47 2.9 ab 11.6 b 2.9 b 2.4 b 1.3 b
Glu-B3f 61 2.4 abc 13.5 b 2.9 b 2.3 b 1.3 b
Glu-B3g 8 2.8 ab 14.8 ab 3.3 ab 2.5 ab 1.3 b
Glu-B3h 32 1.6 c 17.5 ab 2.8 b 2.2 b 1.3 b
Glu-B3j 50 1.9 bc 24.5 a 2.0 c 1.0 c 2.7 a
In each locus, values followed by the same letter are not significantly different at the 0.05 probability level.
84 作 物 学 报 第 35卷
Glu-D1 和 Glu-B3 位点对小麦加工品质的贡献
较大[13,15]。以 Glu-D1为例, 进一步分析 Glu-B3位点
在不同遗传变异背景下的揉面特性 , 结果表明 ,
Glu-B3 位点在 5+10 亚基背景下的揉面参数明显优
于 2+12 亚基背景下的揉面参数(表3), 单个 Glu-B3
位点在相同 Glu-D1内的揉面参数表现不一。Glu-B3j
亚基在 5+10 和 2+12 背景下整体表现揉面时间短、
衰落角大、峰值带宽及峰值后 1 min 带宽窄、带宽
比值大, 其中 Glu-B3j 亚基的带宽比无论是在 2+12
亚基背景下, 还是在优质亚基 5+10背景下均显著高
于其他 Glu-B3 亚基的带宽比, 差异均达 5%显著水
平。在 Glu-A1 和 Glu-B1 背景下的分析结果同样表
现出 Glu-B3j 亚基对揉面特性的负向影响, 对带宽
比影响尤为突出(数据未列出)。
表 3 Glu-D1/Glu-B3 遗传背景下的揉面参数(试验 I)
Table 3 Mean values for mixographic parameters with Glu-D1/Glu-B3 information (experiment I)
和面时间
Mixing time (min)
衰落角
Angle of descent (°)
峰值带宽
Bandwidth of peak (cm)
峰后 1 min带宽
Bandwidth after 1 min peak (cm)
带宽比
Bandwidth ratio
Glu-B3位点
Glu-B3 allele
5+10 2+12 5+10 2+12 5+10 2+12 5+10 2+12 5+10 2+12
Glu-B3b 3.1 bc — 9.5 b — 4.2 a — 3.4 a — 1.2 b —
Glu-B3d 3.8 ab 2.4 a 6.6 b 15.3 b 3.0 b 2.9 b 2.7 b 2.3 a 1.1 b 1.3 b
Glu-B3f 3.4 abc 2.2 a 7.6 b 15.3 b 3.1 b 2.9 b 2.8 ab 2.3 a 1.1 b 1.4 b
Glu-B3g 4.7 a 1.3 c 7.7 b 21.3 ab 3.2 b 3.6 a 2.6 b 2.5 a 1.3 b 1.4 b
Glu-B3h 2.6 bc 1.6 bc 8.3 b 20.4 ab 2.7 bc 2.7 b 2.3 b 2.2 a 1.2 b 1.4 b
Glu-B3j 2.1 c 1.9 ab 16.0 a 26.1 a 2.1 c 2.0 c 1.2 c 0.9 b 2.0 a 2.8 a
— 表示数据缺失。字母不同表示差异在 0.05 显著水平。5+10 亚基背景下, 样本数为 3(Glu-B3b)、19(Glu-B3d)、11(Glu-B3f)、
3(Glu-B3g)、3(Glu-B3h)和 10(Glu-B3j); 2+12亚基背景下, 0(Glu-B3b)、24(Glu-B3d)、34(Glu-B3f)、4(Glu-B3g)、11(Glu-B3h)和 35(Glu-B3j)。
— denotes data not available. Values followed by the same letter are not significantly different at the 0.05 probability level. Genotypes
in the group with HMW-GS 5+10 are 3 (Glu-B3b), 19 (Glu-B3d), 11 (Glu-B3f), 3 (Glu-B3g), 3 (Glu-B3h), and 10 (Glu-B3j). Genotypes with
HWM-GS 2+12 are 0 (Glu-B3b), 24 (Glu-B3d), 34 (Glu-B3f), 4 (Glu-B3g), 11 (Glu-B3h), and 35 (Glu-B3j).
综上所述 , 单个亚基对揉面特性影响不一致 ,
Glu-B3j 对揉面参数表现负向效应最大; 尽管优质
HMW-GS 对 1BL/1RS 揉面参数的负向影响有一定
补偿作用, 但其在 Glu-B3位点中仍表现最劣。
3 讨论
揉面特性是小麦品质育种选择的关键指标之一,
国内外研究多集中于 1BL/1RS易位对加工品质的影
响[4,22], 但对 1BL/1RS 易位系对揉面参数的研究较
少。本研究表明, 易位系显著影响揉面时间、衰落
角、峰值带宽和峰后 1 min带宽及带宽比, 这与 Fenn
等[23]和我们以前的结果[6]基本一致。也有研究认为,
1BL/1RS 易位系主要减弱耐揉性, 对揉面时间没有
明显影响[24], 可能与材料的遗传背景、环境及基因
型与环境互作有关。
本研究表明, 揉面谱带不仅能反映品系的面团
流变学特性, 而且可有效鉴别 1BL/1RS 易位系, 为品
质育种选择提供了有效的鉴定手段。蛋白组成对面团
搅拌特征有着直接影响[25], 特定谷蛋白亚基同揉混
仪测得的流变学特征有着很大的关系[26]。1BL/1RS
易位使 1BS所编码的优质低分子量谷蛋白和醇溶蛋
白丢失, 1RS携带 Sec-1产生大量黑麦碱提高了水溶
性蛋白的含量 [27], 促使面团黏度增加, 面筋强度减
弱, 耐揉性变差, 以致揉面特性负向影响较大[22]。
Glu-D1 和 Glu-B3 位点对小麦加工品质的贡献
较大[13,15], 单个 HMW-GS对面筋强度的影响差异显
著[14]。本研究表明, 携带 13+16、5+10 或 Glu-B3d
品系的揉面特性显著优于其他亚基类型 , 所有
Glu-B3 位点对优质 HMW-GS 背景下的揉面特性有
所补偿, 1BL/1RS易位系仍表现最劣。尽管 1BL/1RS
易位的加工品质受遗传背景影响 [24,28], 理论上讲选
用优质互补亚基类型的易位系与非易位系进行组配,
能改善易位系的品质特性[27], 但实践中却很难选育
出加工品质优良的 1BL/1RS易位品种[22]。
4 结论
易位系的揉面谱带的主要特征为峰后 1 min 谱
带急剧衰落并变窄, 带宽比显著增大, 而非 1BL/1RS
易位系的峰后谱带衰落、变窄平缓或者稳定时间较
长, 带宽比较小。初步认为带宽比 1.6可作为判断易
位系的有效指标, 即大于或等于 1.6 为 1BL/1RS 易
位系, 小于 1.6为非 1BL/1RS易位系, 准确率达 85.2%
第 1期 刘建军等: 利用揉面特性鉴定小麦 1BL/1RS易位系 85
(试验 I)和 96.8%(试验 II)。尽管优质 HWM-GS背景
对 1BL/1RS易位系的揉面特性有一定正向补偿作用,
但品质特性仍显著劣于其他 Glu-B3位点, 带宽比表
现尤为突出。因此, 揉面特性不仅能测定育种材料
的面团流变学特性, 而且还能有效鉴别 1BL/1RS 易
位系。
References
[1] Ehdaie B, Whitkus R W, Waines J G. Root biomass, water-use
efficiency, and performance of wheat-rye translocations of chro-
mosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci, 2003,
43: 710–717
[2] Rabinovich S V. Importance of wheat-rye translocation for
breeding modern cultivars of Triticum aestivum L. Euphytica,
1998, 100: 323–340
[3] Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia
L-Q(夏兰琴), Chen X-M(陈新民), Gao Y-C(高永超), Jing
Z-B(井赵斌), Yu G-J(于广军). Utilization of 1BL/1RS translo-
cation in wheat breeding in China. Acta Agron Sin (作物学报),
2004, 30(6): 531–535(in Chinese with English abstract)
[4] Liu L(刘丽), Yan J(阎俊), Zhang Y(张艳), He Z-H(何中虎),
Peña R J, Zhang L-P(张立平). Allelic variation at the Glu-1 and
Glu-3 loci and presence of 1B/1R translocation, and their effects
on processing quality in cultivars and advanced lines from au-
tumn-sown wheat regions in China. Sci Agric Sin (中国农业科
学), 2005, 38(10): 1944–1950(in Chinese with English abstract)
[5] Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromo-
some translocation on gluten protein composition and techno-
logical properties of bread wheat. J Sci Food Agric, 2000, 80:
1640–1647
[6] Liu J-J (刘建军), He Z-H(何中虎), Peña R J, Zhao Z-D(赵振东).
The effects of 1B/1R translocation on grain quality and noodle
quality of bread wheat. Acta Agron Sin (作物学报), 2004, 30(2):
149–153(in Chinese with English abstract)
[7] Burnett C J, Lorenz K J, Carver B F. Effects of the 1B/1R trans-
location in wheat on composition and properties of grain and
flour. Euphytica, 1995, 86: 159–166
[8] Moreno-Sevilla B, Baenziger P S, Shelton D R, Graybosch R A,
Peterson C J. Agronomic performance and end-use quality of 1B
vs 1B/1R genotypes derived from the winter wheat “Rawhide”.
Crop Sci, 1995, 35: 1607–1612
[9] Martin P, Carrillo J M. Cumulative and interaction effects of
prolamin allelic variation and of 1BL/1RS translocation on flour
quality in bread wheat. Euphytica, 1999, 108: 29–39
[10] Branlard G, Felix I. Part of the HMW glutenin subunits and
omega gliadin allelic variants in the explanation of the quality
parameters. In: Martino al Cimino S eds. Proceedings of Interna-
tional Meeting—Wheat Kernel Proteins: Molecular and Func-
tional Aspects, Viterbo, Italy, 1994. pp 249–251
[11] Gianibelli M C, Larroque O R, MacRichie F, Wrigley C W. Bio-
chemical, genetic, and molecular characterization of wheat glu-
tenin and its component subunits. Cereal Chem, 2001, 78:
635–646
[12] Bietz J A, Wall J S. Isolation and characterization of gliadin-like
subunits from glutenin. Cereal Chem, 1973, 50: 537–547
[13] Gupta R B, MacRitchie F. Allelic variation at glutenin subunit
and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats: II.
Biochemical basis of the allelic effects on dough properties. J
Cereal Sci, 1994, 19: 19–29
[14] Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J.
Genetic diversity of wheat storage proteins and bread wheat qua-
lity. Euphytica, 2001, 119: 59–67
[15] He Z H, Liu L, Xia X C, Liu J J, Peña R J. Composition of HMW
and LMW glutenin subunits and their effects on dough properties,
pan bread, and noodle quality of Chinese bread wheats. Cereal
Chem, 2005, 82: 345–350
[16] Kolster P, Krechting C F, van Gelder W M J. Quantification of
individual high molecular weight subunits of wheat glutenin
SDS-PAGE and scanning densitometry. J Cereal Sci, 1992, 15:
49–61
[17] Wang F-C(王凤成 ), Zhang W(张玮 ), Chen W-Y(陈万义 ).
Mixograph and its application in the determination of wheat flour
quality. Cereal & Feed Ind (粮食与饲料工业), 2004, (12): 10–
12(in Chinese with English abstract)
[18] Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of Triti-
cum tauschii: Natural variation and genetic linkage to markers in
chromosome 5. Genome, 1991, 34: 387–395
[19] Francis H A, Leitch A R, Koebner R M D. Conversion of a
RAPD-generated PCR product, containing a novel dispersed re-
petitive element, into a fast and robust assay for the presence of
rye chromatin in wheat. Theor Appl Genet, 1995, 90: 636–642
[20] Xiao Y-G(肖永贵), Yan J(阎俊), He Z-H(何中虎), Zhang Y(张
勇), Zhang X-K(张晓科), Liu L(刘丽), Li T-F(李天富), Qü
Y-Y(曲延英), Xia X-C(夏先春). Effect of 1BL/1RS transloca-
tion on yield traits and powdery mildew resistance in common
wheat and QTL analysis. Acta Agron Sin (作物学报), 2006,
32(11): 1636–1641(in Chinese with English abstract)
[21] Liu L(刘丽), Zhou Y(周阳), He Z-H(何中虎), Yan J(阎俊),
Zhang Y(张艳), Peña R J. Effect of allelic variation at Glu-1 and
Glu-3 loci on processing quality in common wheat. Acta Agron
Sin (作物学报), 2004, 30(11): 959–968(in Chinese with English
abstract)
[22] Graybosch R A. Uneasy Unions: Quality effects of rye chromatin
transfer to wheat. J Cereal Sci, 2001, 33: 3–16
[23] Fenn D, Lukow O M, Bushuk W, DePauw R M. Milling and
baking quality of 1BL/1RS translocation wheat: I. Effects of
genotype and environment. Cereal Chem, 1994, 71: 189–195
[24] Zarco-Hernandez J A, Santiveri F, Michelena A, Peña R J. Durum
wheat (Triticum turgidum L.) carrying the 1BL/1RS chromoso-
mal translocation: agronomic performance and quality character-
istics under Mediterranean conditions. Eur J Agron, 2005, 22:
33–43
86 作 物 学 报 第 35卷
[25] Finney K F, Shogren M D. A ten-gram mixograph for determin-
ing and predicting functional properties of wheat flours. Baker’s
Digest, 1972, 46: 32–77
[26] Randall P G, Manley M, McGill A E, Taylor J R N. Relationship
between high Mr subunits of glutenin of South African wheats
and end-use quality. J Cereal Sci, 1993, 18: 251–258
[27] Lee J H, Graybosch R A, Peterson C J. Quality and biochemical
effects of a 1BL/1RS wheat-rye translocation in wheat. Theor
Appl Genet, 1995, 90: 105–112
[28] Peña R J, Amaya A, Rajaram S, Mujeep-Kazi A. Variation in
quality of characteristics associated with some spring 1B/1R
translocation wheats. J Cereal Sci, 1990, 12: 105–112
《作物学报》被以下数据库和文摘收录
国外:
(1) 联合国粮农组织(FAO)AGRIS数据库
(2) 美国《生物学文摘》(Biological Abstract)
(3) 美国《剑桥科学文摘》(Cambridge Scientific Abstract)
(4) 美国《化学文摘》(Chemical Abstracts)
(5) 英国国际农业与生物中心( CABI )的 CAB Abstracts数据库
(6) 波兰哥白尼索引(Index of Copurnicus)
(7) 日本科学技术文献数据库(JST’ Bibliographic Databases)
(8) 俄罗斯《文摘杂志》(VINITI Abstracts Journal)
国内:
(1)“中国科技期刊精品数据库”
(2)“中国学术期刊综合评价数据库”
(3)“中国期刊全文数据库”
(4)“中国科技论文与引文数据库”
(5) 科技部“中国科技论文统计源期刊”
(6) 中国科学院文献情报中心“中国科学引文数据库”核心库期刊
(7)“中国核心期刊(遴选)数据库”
(8)“中国生物学文献数据库”
(9)“中文科技期刊数据库”
(10)《中国学术期刊文摘》
(11)《中国生物学文摘》
(12)“中国农业科技文献数据库”
(13)《中国农业文摘》系列
ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ ˆˇˆ ˇˆˇ