利用随机碰撞测试方法, 对229份自交纯合的甘蓝型油菜品种(系)进行了抗裂角指数测定, 以期筛选出抗裂角种质。结果表明, 抗裂角性状在现有品种(系)中存在广泛变异, 变异系数达114.4%。发现了2份抗裂角的品种(系), 占0.9%; 较抗的资源占3.93%; 处于中间状态的品种(系)占8.73%; 易裂角资源占27.07%, 极易裂角的品种(系)占59.39%。选择6个品种(系)进行了连续3年的测试, 表明抗裂角性状由品种(系)的遗传特性决定, 但受环境条件影响; 随机碰撞法具有较好的重现性。简单相关分析显示, 抗裂角指数与角果密度呈显著负相关, 与角皮厚度、角果长度、角果宽度、角喙长度、角粒数呈显著正相关, 但相关系数都很小。
The silique shattering resistance index (SSRI) of 229 accessions (Brassica napus L.) was investigated through random impact test (RIT) for screening silique shattering (SS) resistance. The accessions displayed wide variation in SSRI, which ranged from 0.000 to 0.7675 with the variance coefficient (CV) of 114.4%. Only two varieties (accounting for 0.9%) showed SS resistance; about 3.93% of the varieties (lines) showed relative resistance to SS; and about 8.73% were identified as the medium. Most (59.38%) of the varieties (lines) were identified as very susceptible germplasm to SS, and 27.07% as the susceptible germplasm. According to independent experiments in three years with 6 representative varieties (lines), the SSRI was dominated by genetic factor with obvious interactions with environment, and the RIT showed stable results within years. The simple correlation analysis showed that the SSRI had significant (P<0.01) negative correlation with silique number per centimeter, and significant (P<0.01) positive correlations with silique wall thickness, silique length, silique width, beak length, and seed number per silique. However, the correlation coefficients (CV) were rather small indicating the selection potential of varieties with high SSRI and fine silique traits via recombination in B. napus breeding programs.
全 文 : ACTA AGRONOMICA SINICA 2008, 34(1): 163−166 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
:
(973
)(2001CB1088);
(IRTO442); !
#
(072101110300)
:
$%&(1965−), , ( ), *+ ,, -./012345 6E-mail: yanchengwen@yahoo.com.cn7
*
89:(Corresponding author):
;<=(1938−), >?@AA+, B6E-mail: rapelab@mail.hzau.edu.cn
Received(CDEF): 2007-01-29; Accepted(GHEFI: 2007-04-24.
DOI: 10.3724/SP.J.1006.2008.00163
()
1,2 1,*
1
1 1 2
(1J>KL:M34NOPQR, STUV 430070; 2KL AWX:M Y, Z[ 450002)
:
, 229
() !#, $%&(
)*+,-., /0123()4516789, 89: 114.4%*;2 2
(),
< 0.9%; =>?< 3.93%; @A4B0C()< 8.73%; D >?< 27.07%, ED ()<
59.39%*F 6G()HI 3J , -. /0K()LMN/O#, PQRSTUVW;
X3=YZ2/*[\]^_`ab, !c ,defagh]^, c ijek ,lek
,mek nlek ofagp]^, P]^qrs*
: ; ; &
Screening and Analysis of Resistance to Silique Shattering in Rape (Brassica
napus L.)
WEN Yan-Cheng1, 2, FU Ting-Dong1,*, TU Jin-Xing1, MA Chao-Zhi1, SHEN Jin-Xiong1,
and ZHANG Shu-Fen2
( 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei; 2 Institute of Industrial
Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China)
Abstract: The silique shattering resistance index (SSRI) of 229 accessions (Brassica napus L.) was investigated through random
impact test (RIT) for screening silique shattering (SS) resistance. The accessions displayed wide variation in SSRI, which ranged
from 0.000 to 0.7675 with the variance coefficient (CV) of 114.4%. Only two varieties (accounting for 0.9%) showed SS resis-
tance; about 3.93% of the varieties (lines) showed relative resistance to SS; and about 8.73% were identified as the medium. Most
(59.38%) of the varieties (lines) were identified as very susceptible germplasm to SS, and 27.07% as the susceptible germplasm.
According to independent experiments in three years with 6 representative varieties (lines), the SSRI was dominated by genetic
factor with obvious interactions with environment, and the RIT showed stable results within years. The simple correlation analysis
showed that the SSRI had significant (P<0.01) negative correlation with silique number per centimeter, and significant (P<0.01)
positive correlations with silique wall thickness, silique length, silique width, beak length, and seed number per silique. However,
the correlation coefficients (CV) were rather small indicating the selection potential of varieties with high SSRI and fine silique
traits via recombination in B. napus breeding programs.
Keywords: Brassica napus L.; Silique shattering resistance; Variety screening
[1],
8%~12% [2], !#$
20%[3], % &()*+,+-./[4]012
345678 9:;<, =>?@AB[5],
CD,E, FGHIJ,0KLMN
2OPQRSTUVW+, XYZ[6], =[
\]F^_,E1`, &Sa@bAcd0e
fgAhi8 ;<jklm , noipq
jkgr
\]0Josefsson[7]stuvw[8]sLoof[9]
@ Jakubiecw[10]xyz{|}~s~@,
~\]r
Ahg, =9L\]Sa
, @40Kadkolw[2]xyHI
164 34
AhZ@\]rg,
/0Morgan w [4]xyH] (random
impact test)r
g, 0
KLM¡-¢£¤ , ¥j¦§¨©ª«g
¬®, ¯°±²+h«³
gR´, 4µ
¶·¸/¹º»R´¼½¾gR´¿À¦§¨
«[2,4,11-13]0·¸/¹ÁAhÂjÃEKLFÄ
Å, ÆÇ¶È }ÉÄv
,ÊËy0
M,
ÌÍÎw[14] 12:/¹ÏWgÐÑÒz
{, ÓÔÕw[15]@Ö×w[16]ØÙÚMhB©ª«
4³
gÛܬ0EÝGyHÞ\]@
gØ~¦§¨Ah(ß)ÑÒàe, 7án
ÅâgÅã}nß , ä
¤åfg
¦§¨Ah1ægr
\]@g ÃE0
1
1.1
229çè¹éW¦§¨Ah(ß)êèëìíî
ïð-ñ(226ç)sò«îï-(2ç)@óôíîïð-
ñ(1ç)0
1.2
2004 õö÷, ¾jøÞ¬ùhëìíîïð-
ñÞú|, ûõ
üýþ 10 :¨«
6 50:,
«,
, Þ2¾
20s 50%Sa« 2, ³0xy
H][4] , *ÉÑ, g0H5
, !¤#m 19 cms` 14 cmV
$%&, ! 12:#m¤ 13 mmF()*0
+,-¤ 24 mm0.Ah(ß)þ 20:, 5
400 û min−1, 1 min, /0~, 10û0.
Ah(ß)1Þ2û, þ3140
Ø~
10
1
(10 1) / 200i
i
SI i X
=
= − +∑ , 5«, Xi¤
6
iû, ~; gØ~ SSRI=17SI0
1.3
8 229 :æÞAh(ß)«e9j: 6 :Ah
(ß), « 3 :¤;<¨(GNsQva @/ 5900), 2
:¤g<¨(H155@ 98009), 1:¤«}g<¨(=
10 >)0 2005?2007 õ@A 3 õ, ¾è¹hBh
Cëìíîïð-ñÞú|, xyH][4]
.
ç¬.õgØ~, \]%Ê, 2û09 3õ
}DEFG , 2005 õÙ¥HI ,
2006õREJK, 2007õI67¬LM0
1.4
229:æÞAh(ß)7NO 9:Å, P
(: cm−1)sQâRSÊT(º)sQâ
SÊT(º)sÈ(cm)sQÈ(cm)s«
6U(cm)sVÈ(cm)s~()@WX(mm),
.:Ah(ß)þ 5:, .:þ 10:«6
, q3140WXyYZ[\
10 :
WX, þ3140
1.5
xy SAS]^7á_GÑÒ\7á@n7á0
2
2.1
229:Ah(ß)«, ;©ª(SSRI¤ 0.0~0.1)
` 59.39%; ©ª(SSRI ¤ 0.1~0.3)` 27.07%; a¢
b` 86.46%0SSRI 0.3~0.5 «}<¨©ª 20 ç, `
8.73%; SSRI
0.5~0.7g©ªj 9:, ` 3.93%;
SSRI
0.7 5Êg©ªcj 2 :(7¤ H155 @
98009), ` 0.09%04dgAh(ß);®(e 1), SSRI
f¥ÛÜ , ÛÜ-
0.0000~0.7675 ã} , 31
0.1347, ÛÜß~# 114.4%, ghgÅ
F%A
h(ß)}³
ÛÜ, 8¥jAh(ß)«àeg¬
i40
1 229
()
Fig. 1 Distribution of shattering resistance index of 229 accessions
in B. napus
SSRI 0~0.1
; SSRI 0.1~0.3
;
SSRI 0.3~0.5
;
SSRI 0.5~0.7
; SSRI 0.7
The accessions with SSRI between 0 and 0.1 belong to very susceptible
group; those with SSRI between 0.1 and 0.3 belong to susceptible group;
those with SSRI between 0.3 and 0.5 belong to the medium group; those
with SSRI between 0.5 and 0.7 belong to relatively resistant group; those
with SSRI over 0.7 belong to resistant group.
2.2 !#
: 1 ij, gØ~Ah(ß)}Ü;ik,õç
}5lAh(ß)âõçm*;ik, n}Ah(ß)
gØ~ÜFik , ghGyH]r
g¥ , oj4Ò0gØ~â
õç}³
m*, gÅSaFG
03
õ
SSRI314, g<¨ H155@ 980097
¤ 0.6458@ 0.5066, a¢Üik; «}g<¨=
10 >¤ 0.4842, â H155@ 98009 Ü;ik, gh³
ikg¦§Ah(ß); ;<¨ GNsQva
@/ 5900 7¤ 0.0358s0.0325 @ 0.0308, p¢ã}
ÜFik0
1 :
() 165
2.3 $%&
µ¶sQâRSÊTs
QâSÊTsQÈsUsÈs
VÈs~@WX 9:Å, q¥rs³
tuÛÜ, ghy7á9 229 :Ah(ß)ojv
:(: 2)0
1 6()
(20052007)
Table 1 ANOVA of the silique shattering resistance index (SSRI) of 6 representative varieties (lines) based on
the tests in 2005–2007
Source df SS MS F F-value P > F
Replicate 1 0.0000 0.0000 0.0000 0.9460
(!) Accession 5 2.4560 0.4912 131.8800 0.0001
# Year 2 0.1343 0.0671 18.03 0.0000
(!)× # Accession × year 10 0.3418 0.0342 9.180 0.0000
$ Error 17 0.0633 0.0037
%& Total 35 2.9954
2 9
9
Table 2 Variance of 9 silique traits and correlation coefficients between shattering resistance indexes and 9 silique traits
()
Silique trait
*+,-
Variance range
Mean
./012!0
Correlation coefficient
3 Silique number per centimeter(cm-1) 0.5424−2.5573 1.5203 −0.1582 **
4.56789 Upper angle between stalk and stem() 40−150 80.43 −0.0436
4.789 Upper angle between stalk and silique() 115−180 155.02 −0.0044
4: Stalk length(cm) 0.84−3.17 2.12 0.0235
: Silique length(cm) 2.98−11.50 7.08 0.3394**
; Silique width(cm) 0.365−0.660 0.507 0.2299**
<: Peak length(cm) 0.67−2.33 1.25 0.2635**
=> Silique wall thickness(mm) 0.05−0.38 0.17 0.2708**
?0 Seeds per silique 2.38−39.00 23.75 0.1668**
**
Significant at P<0.01.
n7á:h, QâRSÊTsQ
âSÊT@QÈâgØ~}F³
n0âgØ~}³
;ikwn(r
= −0.1582**)0ghx, x!Z0g
Ø~âÈsUsVÈsWX@
~}1f;ikJn, PyÈsyUsVy
ÈsWyX@~yz, gy{0nß
~5gØ~âÈ}| , âWX}
û, âVÈ}û, â~}|}(: 2), gh4
5µ¶9LnÅefgAh(ß)0=rsã}
n~, e9kF, gâ²
Å0
3
3.1
Morganw[4]xyH]g ,
\]¶
, c¾ÜAh7Z, F
7Ah0E
\]RÊ, xyzû,
ygØ~7~, \]
4s
, ¾F%Ah(ß)g7Z03
F%AhQÈ@ÈÜv , y
)*èÒF%, Ès
jK
, ¿gØ~}, È
gØ~0=È@gØ~±
<¨ , ÈFEÉÛgÅ
0[\]jÑKÉÄ, ]K@ø~, 5F
%ú~oj40
3.2
Kirk w[17]q¥
¥j¦§¨Ah«, g
ÅÛÜv}, n
²¯°±*+«1³
gÛÜ0
Mongkolpornw[13]
¨«q¥gÛܬ0
Êi
ÑÒtuàer
RÊÁÙ,
ojK
¡¢0E:h, ¦§¨g
Å
Ah}³
vÜ, ;@Ah
`£z~, 9â Tys w[18]¤K0Eq¥j
3.93%Ah(ß)g, àeÙ 2 ç|gAh
(ß), gh
¦§¨«¥$ghB©ª, e
166 34
f¦§¨gAhi40
3.3
Morgan w [4]£¤ , gÅâWXJn ,
nâsÈsUs~Fn, â
VÈikwn0E67â¦G[1]§
¨%, nâ Morganw[4]jÙÀ0
E«gÅâf;ikwn ,
9jÑK0EâMorganw[4]£¤, g
ÅâÆÅ}nß~v} , rsã
}oj¤Ð ,
gAhef«9
LÅ}m
}0
,
!#$%&()*
+%&,-., /012!
References
[1] Liu H-L (). Practical Cultivation of Rapeseed (
). Shanghai: Shanghai Scientific Technique Publishing
House, 1987. pp 117−119(in Chinese)
[2] Kadkol G P, Macmillan R H, Burrow R P, Hallooran G M.
Evaluation of Brassica genotypes for resistance to shatter: .
Development of a laboratory test. Euphytica, 1984, 33:63−73
[3] Price J S, Hobson R N, Neale M A, Bruce D M. Seed losses on
commercial harvesting of oilseed rape. J Agric Eng Res, 1996, 65:
183−191
[4] Whitehead R., Wright H C. The incidence of weeds in winter oil-
seed rape in Great Britain. Aspects Appl Biol, 1989, 23:211−218
[5] Morgan C L, Bruce D M, Child R D, Ladbrooke Z L, Arthur A E.
Genetic variation for pod shatter resistance among lines of oilseed
rape developed from synthetic B. napus. Field Crops Res, 1998,
58: 153−165
[6] Szot B, Tys J. The influence of the SPODAM DC preparation on
agro-physical properties of rape silique and seed losses at matu-
ration and harvest. In: Proceedings of the 8th International Rape-
seed Congress, Saskaton, Canada, 1991. pp 1272−1277
[7] Josefsson E. Investigations on shattering resistance of cruciferous
oil crops. Z Pflanzenzüchtg, 1968, 59: 384−396
[8] Sun C-C (
), Wang W-R (), Li Y-L (), Qian
X-F (). Breeding of a double rapeseed variety Huyou No.
17 that is suitable for machinery harvest. Chin J Oil Crop Sci (
), 2005, 27(3): 16−17 (in Chinese with English
abstract)
[9] Loof B. Platzfestigkeit als zuchtproblem bei olipflanzen der fa-
milie Cruciferae. Zeitschlift fur Planzenzuchtung, 1961, 46:
405−416 (in Polish with English abstract)
[10] Jakubiec J, Grochowski L. Polowa i laboratoryjna ocena odporności
dwόch odmian rzepaku jarego na pękanie łuszczyn. Zesz. Nauk
SGGW –Rolnictwo, 1963, 7: 49−65(in Polish with English abstract)
[11] Chauvaux N, Child R D, John K, Ulvskov P, Borkhardt B, Prinsen
E, Van Onckelen H A. The role of auxin in cell seperation in the
dehiscence zone of oilseed rape. J Exp Bot, 1997, 48: 1423−1429
[12] Davies G C, Bruce D M. Fracture mechanics of oilseed rape pods.
J Mat Sci, 1997, 32: 5895−5899
[13] Mongkolporn O, Kadkol G P, Pang E C K, Taylor P W J. Identi-
fication of RAPD markers linked to recessive genes conferring
siliques shatter resistance in Brassica rapa. Plant Breed, 2003,
122: 479−484
[14] He Y-T( ! ), Li D-R( ). Preliminary study on the
pod-shattering resistance of hybrids in Brassica napus. Shaanxi J
Agric Sci (#$%&), 1996, 3: 30−31 (in Chinese)
[15] Pu X-B (()*), Jiang L-C (+,-), Zhang Q-X (./0),
Zhang J-F (.1). Brief review of rapeseed pod shattering re-
sistance. Sci Plant Genet Resour (23456), 2002,
3(1):49−54 (in Chinese with English abstract)
[16] Li H-Z (78), Zhang Z-J (.9:). Advances of pod shatter
resistance in rapeseed (Brassica napus). Chin J Oil Crop Sci (
), 2003, 25(1): 89−91 (in Chinese)
[17] Kirk J T O, Hurlstone C J. Variation and inheritance of erucic acid
content in Brassica juncea. Z Pflanzenzuchtg, 1983, 90: 331−338
[18] Tys J, Bengtsson L. Estimation of rape silique resistance to
cracking and rapeseed shattering resistance for some selected va-
rieties and lines of spring rape. In: Proceedings of the 8th Inter-
national Rapeseed Congress, Saskaton, Canada, 1991. pp
1848−1853