免费文献传递   相关文献

Antioxidant Constituents from Pinus massoniana (Pinaceae)

马尾松中的抗氧化成分



全 文 :马尾松中的抗氧化成分*
张玉梅1, 龚庆芳1,2, 杨佳倩1,3, 曾广智1, 谭宁华1**
(1 中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室, 云南 昆明摇 650201;
2 湖南师范大学, 湖南 长沙摇 410081; 3 海南大学, 海南 海口摇 570228)
摘要: 从马尾松 (Pinus massoniana) 枝条中分离得到 21 个已知化合物, 经波谱学方法将其结构鉴定为 7,
13, 15鄄abietatrien鄄18鄄oic acid (1), 12鄄methoxy鄄7, 13鄄abietadien鄄18鄄oic acid (2), 15鄄methoxy鄄7, 13鄄abietadien鄄
18鄄oic acid methyl ester (3), 12鄄hydroxydehydroabietic acid (4), dehydroabietic acid (5), 15鄄hydroxydehydroabi鄄
etic acid methyl ester (6), 3茁鄄methoxyserrat鄄14鄄en鄄21鄄one (7), 3茁鄄methoxy鄄30鄄hydroxyserrat鄄14鄄en鄄21鄄one (8),
茁鄄sitosterol (9), ( 依)鄄pinoresinol (10), ( 依)鄄matairesinol (11), ( -)鄄nortrachelogenin (12), balanophonin
(13), cedrusin (14), pinocembin (15), 5鄄methoxypinosylvin (16), pinosylvin (17), 1, 2鄄bis鄄(4鄄hydroxy鄄3鄄
methoxyphenyl)鄄propane鄄1, 3鄄diol (18), cleistophostaudin (19), lignoceryl ferulate (20) 和 coniferaldehyde
(21)。 其中化合物 12, 14, 18和 21 在 DPPH抗氧化模型上显示一定的抗氧化活性, 其 EC50值分别为 11. 36,
6. 76, 14. 07和 13. 33 滋g·mL-1。 化合物 2 ~ 4, 6 ~ 8, 10, 11, 13, 15 ~ 21 均是从该植物中首次分离得到。
关键词: 马尾松; 化学成分; 抗氧化活性
中图分类号: Q 946摇 摇 摇 摇 摇 摇 文献标识码: A摇 摇 摇 摇 摇 摇 摇 摇 文章编号: 2095-0845(2013)02-209-07
Antioxidant Constituents from Pinus massoniana (Pinaceae)
ZHANG Yu鄄Mei1, GONG Qing鄄Fang1,2, YANG Jia鄄Qian1,3, ZENG Guang鄄Zhi1, TAN Ning鄄Hua1**
(1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany,
Chinese Academy of Sciences, Kunming 650201, China; 2 Hunan Normal University,
Changsha 410081, China; 3 Hainan University, Haikou 570228, China)
Abstract: Twenty one known compounds were isolated from the twigs of Pinus massoniana. Their structures were
elucidated as 7, 13, 15鄄abietatrien鄄18鄄oic acid (1), 12鄄methoxy鄄7, 13鄄abietadien鄄18鄄oic acid (2), 15鄄methoxy鄄7,
13鄄abietadien鄄18鄄oic acid methyl ester (3), 12鄄hydroxydehydroabietic acid (4), dehydroabietic acid (5), 15鄄
hydroxydehydroabietic acid methyl ester (6), 3茁鄄methoxyserrat鄄14鄄en鄄21鄄one (7), 3茁鄄methoxy鄄30鄄hydroxyserrat鄄
14鄄en鄄21鄄one (8), 茁鄄sitosterol (9), ( 依)鄄pinoresinol (10), ( 依)鄄matairesinol (11), ( -)鄄nortrachelogenin
(12), balanophonin (13), cedrusin (14), pinocembin (15), 5鄄methoxypinosylvin (16), pinosylvin (17), 1, 2鄄
bis鄄(4鄄hydroxy鄄3鄄methoxyphenyl)鄄propane鄄1, 3鄄diol (18), cleistophostaudin (19), lignoceryl ferulate (20) and
coniferaldehyde (21). Compounds 12, 14, 18 and 21 showed antioxidant activities on DPPH assay with EC50 values
of 11. 36, 6. 76, 14. 07, and 13. 33 滋g·mL-1, respectively. Compounds 2-4, 6-8, 10, 11, 13 and 15-21 were
isolated from this plant for the first time.
Key words: Pinus massoniana; Chemical constituents; Antioxidant activity
植 物 分 类 与 资 源 学 报摇 2013, 35 (2): 209 ~ 215
Plant Diversity and Resources摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 DOI: 10. 7677 / ynzwyj201312104
*
**
Foundation items: The National Natural Science Foundation of China (20972168, 30725048), the National New Drug Innovation Great
Project of China (2011ZX09307鄄002鄄02), the Natural Science Foundation of Yunnan Province (2010CI048), and the
Found of SKL鄄PPRWC, KIB, CAS (52P2010鄄ZZ07)
Author for correspondence; E鄄mail: nhtan@ mail. kib. ac. cn
Received date: 2012-08-16, Accepted date: 2012-11-06
作者简介: 张玉梅 (1973-) 女, 博士, 副研究员, 研究方向为天然药物化学。 E鄄mail: zymei@ xtbg. ac. cn
摇 Pinus massoniana Lamb. belongs to the family
of Pinaceae and is widely distributed in China. Its
pollen and nodular branch are used as two traditional
Chinese medicines, which can be used to treat trau鄄
matic hemorrhage, eczema, sprain and strain (Chi鄄
nese Pharmacopoeia Commission, 2010). Previous
investigations on P. massoniana led to the isolation
of a series of lignans, flavones and diterpenoids
(Feng et al., 2004; Bi et al., 2002; Shen and The鄄
ander, 1985; Wang et al., 2008; Yang et al.,
2010), and the discovery of some anti鄄tumor diter鄄
penes (Tanaka et al., 2008) and some antioxidant
extracts (Pan et al., 2009). For the recent resear鄄
ches revealed that the occurrence of some chronic
diseases such as cancer, cardiovascular disease and
diabetes were main caused by oxidative stress,
therefore antioxidant compounds might provide us
some different insights for treating these severe dis鄄
eases. In this paper, we report the isolation and
structural elucidation of 21 known compounds from
its twigs with the antioxidant activities.
Experimental
General摇 1H鄄NMR, 13C鄄NMR and 2D鄄NMR spec鄄
tra were recorded on a Bruker AM鄄400 and a DRX鄄
500 NMR spectrometer with TMS as internal stand鄄
ard. MS data were obtained on a VG Autospec鄄3000
spectrometer. HPLC separations were performed on
a HP 1100 apparatus equipped with a diode array
UV detector and ZORBAX SB鄄C18 (9. 4伊250 mm)
column. Column chromatographies were performed
on silica gel ( 200 - 300 mesh, Qingdao Marine
Chemical Inc. China), Lichroprep RP鄄18 gel (40-
63 滋m, Merck, Dramstadt, Germany) and Sephadex
LH鄄20 (25-100 滋m, Merck, Germany). Thin layer
chromatograph (TLC) was carried out on silica gel 60
F254 on glass plates (Qingdao Marine Chemical Inc.
China) using various solvent systems.
Plant material摇 The twigs of Pinus massoniana
Lamb. were collected from Kunming, Yunnan Prov鄄
ince, China in August 2006 and identified by Asso鄄
ciate Prof. Yue Zhongshu at Kunming Institute of
Botany, Chinese Academy of Sciences.
Extraction and isolation 摇 The 20. 0 kg dried
and powdered twigs of P. massoniana were extracted
with MeOH for three times under room temperature
and then concentrated under reduced pressure. The
concentrated MeOH extract was dissolved in water
and extracted with petroleum ether, ethyl acetate and
n鄄butanol, respectively. The petroleum ether, ethyl
acetate and n鄄butanol extracts were respectively puri鄄
fied by CC (silica gel, petroleum ether / acetone (1颐 0
-0 颐 1), CHCl3 / MeOH (9 颐 1-0 颐 1) mixtures of in鄄
creasing polarity); Sephadex LH鄄20 column (CHCl3 /
MeOH 1 颐 1); RP鄄18 column (H2O / MeOH 9 颐 1-0 颐
1) and then HPLC ( Agilent SB鄄C18 preparation
column, H2O / MeOH mixtures of increasing polarity
(9 颐 1-0 颐 1), to give compounds 1-21 (Fig. 1).
Results and discussion
7, 13, 15鄄Abietatrien鄄18鄄oic acid (1) . Color鄄
less oil, C20 H28 O2; EI鄄MS m/ z: 300 [M] +; 1H鄄
NMR (CDCl3, 500 MHz): 啄H 6. 15 (1H, s, H鄄14),
5. 58 (1H, br. s, H鄄7), 5. 03 (1H, s, H鄄16a),
4. 91 (1H, s, H鄄16b), 1. 92 (3H, s, H鄄17), 1. 26
(3H, s, H鄄19), 0. 83 (3H, s, H鄄20); 13C鄄NMR
(CDCl3, 100 MHz): 啄C 184. 6 (C鄄18), 143. 2 (C鄄
13), 136. 3 ( C鄄15), 135. 8 ( C鄄8), 126. 9 ( C鄄
14), 124. 6 (C鄄7), 111. 2 (C鄄16), 50. 2 (C鄄9),
46. 2 (C鄄4), 44. 7 (C鄄5), 38. 1 (C鄄1), 37. 1 (C鄄
3), 34. 4 (C鄄10), 26. 1 (C鄄11), 26. 0 (C鄄6),
22. 0 (C鄄12), 20. 5 (C鄄17), 18. 0 (C鄄2), 16. 7
(C鄄19), 14. 0 (C鄄20). (Cheung et al., 1993).
12鄄Methoxy鄄7,13鄄abietadien鄄18鄄oic acid (2) .
White powder, C21H32O3; EI鄄MS m / z: 332 [M] +;
1H鄄NMR (CDCl3, 500 MHz): 啄H 5. 84 (1H, s, H鄄
14), 5. 48 (1H, t, J=2. 5 Hz, H鄄7), 3. 79 (1H,
t, J=2. 5 Hz, H鄄12), 3. 36 (3H, s, H鄄OMe), 1. 23
(3H, s, H鄄19), 1. 07 (3H, d, J = 6. 9 Hz, H鄄
16), 1. 03 (3H, d, J = 6. 9 Hz, H鄄17), 0. 80
(3H, s, H鄄20); 13C鄄NMR (CDCl3, 100 MHz): 啄C
183. 9 ( C鄄18), 142. 1 ( C鄄13), 134. 5 ( C鄄8),
126. 1 (C鄄14), 123. 9 (C鄄7), 75. 5 (C鄄12), 56. 3
(OMe), 46. 2 (C鄄4), 44. 7 (C鄄5), 43. 6 (C鄄9),
012摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 植 物 分 类 与 资 源 学 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 第 35 卷
37. 9 (C鄄1), 37. 0 (C鄄3), 33. 9 (C鄄10), 32. 6
(C鄄15), 25. 7 ( C鄄11), 24. 8 ( C鄄6), 22. 2 ( C鄄
16), 21. 5 (C鄄17), 18. 0 (C鄄2), 16. 6 (C鄄19),
14. 3 (C鄄20). (Narayanan and Bhadane, 1968).
15鄄Methoxy鄄7, 13鄄abietadien鄄18鄄oic acid meth鄄
yl ester (3) . White crystals, C22H34O3; EI鄄MS m /
z: 345 [M鄄H] +; 1H鄄NMR (CDCl3, 400 MHz): 啄H
5. 95 (1H, d, J=2. 0 Hz, H鄄14), 5. 47 (1H, br.
s, H鄄7), 3. 64 (3H, s, H鄄OMe (15)), 3. 02
(3H, s, H鄄OMe (18)), 1. 29 (3H, s, H鄄17),
1. 27 (3H, s, H鄄16), 1. 26 (3H, s, H鄄19), 0. 82
(3H, s, H鄄20);13 C鄄NMR (CDCl3, 100 MHz): 啄C
179. 0 (C鄄18), 141. 6 (C鄄13), 135. 2 (C鄄8), 126. 2
(C鄄14), 123. 1 (C鄄7), 77. 0 (C鄄15), 51. 9 (OMe鄄
15), 50. 9 (C鄄9), 50. 4 (OMe鄄18), 46. 5 (C鄄4),
45. 0 (C鄄5), 38. 3 (C鄄1), 37. 1 (C鄄3), 34. 5 (C鄄10),
26. 4 (C鄄16), 25. 8 (C鄄11), 24. 8 (C鄄6), 23. 8
(C鄄17), 22. 4 (C鄄12), 18. 1 (C鄄2), 17. 0 (C鄄19),
Fig. 1摇 The structures of compounds 1-21
1122 期摇 摇 摇 摇 摇 摇 摇 摇 ZHANG Yu鄄Mei et al. : Antioxidant Constituents from Pinus massoniana摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
14. 0 (C鄄20). (Ohmoto et al., 1987).
12鄄hydroxydehydroabietic acid (4 ) . White
powder, C20 H28 O3; EI鄄MS m / z: 316 [M] +; 1H鄄
NMR (CDCl3, 400 MHz): 啄H 6. 83 (1H, s, H鄄
14), 6. 62 (1H, s, H鄄11), 1. 27 (3H, s, H鄄19),
1. 20 (3H, s, H鄄20), 1. 24 (3H, d, J = 7. 0 Hz,
H鄄16), 1. 22 (3H, d, J = 7. 0 Hz, H鄄17); 13C鄄
NMR (CDCl3, 100 MHz): 啄C 185. 1 (C鄄18), 150. 7
(C鄄12), 147. 7 ( C鄄9), 131. 7 ( C鄄13), 127. 0
(C鄄14), 126. 7 (C鄄8), 110. 8 (C鄄11), 47. 4 (C鄄
4), 44. 5 (C鄄5), 37. 9 (C鄄1), 36. 8 (C鄄10), 36. 7
(C鄄3), 29. 3 ( C鄄7), 26. 8 ( C鄄15), 25. 0 ( C鄄
20), 22. 8 (C鄄16), 22. 5 (C鄄17), 21. 9 (C鄄6),
18. 5 (C鄄2), 16. 2 (C鄄19). (Kinouchi et al., 2000).
Dehydroabietic acid (5) . White powder, C20
H28O2; EI鄄MS m / z: 300 [M] +; 1H鄄NMR (CDCl3,
400 MHz): 啄H 7. 16 (1H, d, J = 8. 1 Hz, H鄄11),
6. 99 (1H, d, J = 8. 1 Hz, H鄄12), 6. 88 (1H, s,
H鄄14), 1. 27 (3H, s, H鄄19), 1. 23 (3H, s, H鄄
20), 1. 22 (6H, d, J = 6. 4 Hz, H鄄16, 17); 13C鄄
NMR (CDCl3, 100 MHz): 啄C 184. 1 (C鄄18), 146. 6
(C鄄13), 145. 6 (C鄄9), 134. 6 (C鄄8), 126. 8 (C鄄
14), 124. 0 ( C鄄11), 123. 8 ( C鄄12), 47. 3 ( C鄄
4), 44. 5 (C鄄5), 37. 8 (C鄄1), 36. 7 (C鄄10), 36. 6
(C鄄3), 33. 3 (C鄄15), 29. 9 (C鄄7), 25. 0 (C鄄20),
23. 9 (C鄄16, 17), 21. 6 (C鄄6), 18. 4 (C鄄2), 16. 1
(C鄄19). (Fraga et al., 1994).
15鄄Hydroxydehydroabietic acid methyl ester
(6) . White crystals, C21H30 O3; EI鄄MS m / z: 330
[M] +; 1H鄄NMR ( CDCl3, 500 MHz): 啄H 7. 15
(1H, s, H鄄14), 7. 22 (2H, overlapped, H鄄11,
12), 3. 66 (3H, s, H鄄OMe), 1. 55 (6H, s, H鄄
16, 17), 1. 27 (1H, s, H鄄19), 1. 21 (3H, s, H鄄
20); 13C鄄NMR (CDCl3, 125 MHz): 啄C 179. 1 (C鄄
18), 147. 9 ( C鄄13), 146. 0 ( C鄄9), 134. 7 ( C鄄
8), 124. 9 ( C鄄14), 124. 2 ( C鄄11), 122. 0 ( C鄄
12), 72. 3 (C鄄15), 52. 0 (OMe), 47. 6 (C鄄4),
44. 8 (C鄄5), 37. 9 (C鄄1), 37. 0 (C鄄10), 36. 6
(C鄄3), 31. 6 (C鄄16, 17), 30. 1 (C鄄7), 25. 1 (C鄄
20), 21. 7 (C鄄6), 18. 5 (C鄄2), 16. 5 (C鄄19).
(Cheung et al. , 1993).
3茁鄄Methoxyserrat鄄14鄄en鄄21鄄one (7) . Color鄄
less crystals, C31 H50 O2; EI鄄MS m / z: 454 [M] +;
1H鄄NMR (CDCl3, 500 MHz): 啄H 5. 36 (1H, br. s,
H鄄15), 3. 35 (3H, s, H鄄OMe), 2. 75 (2H, m,
H鄄20), 2. 60 (1H, J=11. 8, 4. 0 Hz, H鄄3), 1. 07
(3H, s, H鄄30), 1. 02 (3H, s, H鄄29), 0. 94 (3H,
s, H鄄23), 0. 90 (3H, s, H鄄28), 0. 81 (3H, s,
H鄄26), 0. 78 (3H, s, H鄄25), 0. 73 (3H, s, H鄄
24); 13C鄄NMR (CDCl3, 100 MHz): 啄C 216. 7 (C鄄
21), 138. 1 ( C鄄14), 121. 6 ( C鄄15), 88. 1 ( C鄄
3), 62. 5 (C鄄9), 57. 2 (OMe), 56. 2 (C鄄5), 56. 0
(C鄄13), 55. 6 (C鄄27), 50. 9 (C鄄17), 47. 4 (C鄄
22), 44. 9 (C鄄7), 38. 6 (C鄄4), 38. 2 (C鄄1), 38. 1
(C鄄20), 37. 9 (C鄄10), 36. 8 (C鄄8), 35. 9 (C鄄
18), 34. 5 (C鄄19), 27. 9 (C鄄23), 26. 9 (C鄄12),
25. 2 (C鄄11), 24. 2 ( C鄄16, 29), 22. 1 ( C鄄2),
21. 3 (C鄄30), 19. 5 (C鄄26), 18. 5 (C鄄6), 15. 9
(C鄄24), 15. 4 (C鄄25), 12. 7 (C鄄28). (Tanaka et
al., 1994).
3茁鄄Methoxy鄄30鄄hydroxyserrat鄄14鄄en鄄21鄄one
(8) . Colorless crystals, C31 H50 O3; EI鄄MS m / z:
471 [M+H] +; 1H鄄NMR (CDCl3, 400 MHz): 啄H
5. 34 (1H, br. s, H鄄15), 4. 02 (1H, d, J = 11. 0
Hz, H鄄30a), 3. 59 (1H, d, J=11. 0 Hz, H鄄30b),
3. 35 (3H, s, H鄄OMe), 1. 17 (3H, s, H鄄29), 0. 95
(3H, s, H鄄23), 0. 87 (3H, s, H鄄28), 0. 84 (3H,
s, H鄄26), 0. 80 (3H, s, H鄄25), 0. 74 (3H, s,
H鄄24); 13C鄄NMR (CDCl3, 100 MHz): 啄C 216. 8
(C鄄21), 138. 5 (C鄄14), 121. 7 (C鄄15), 88. 4 (C鄄
3), 65. 8 (C鄄30), 62. 7 ( C鄄9), 57. 5 (OMe),
56. 2 (C鄄5), 56. 1 (C鄄13), 55. 8 (C鄄27), 53. 1
(C鄄22), 52. 2 (C鄄17), 45. 1 (C鄄7), 38. 9 (C鄄
4), 38. 4 (C鄄1), 38. 2 (C鄄20), 37. 1 (C鄄8, 10),
36. 1 (C鄄18), 35. 4 (C鄄19), 28. 1 (C鄄23), 27. 2
(C鄄12), 25. 7 (C鄄11), 24. 6 (C鄄16), 22. 3 (C鄄
2), 20. 7 (C鄄29), 19. 8 (C鄄26), 18. 7 (C鄄6),
16. 2 (C鄄24), 15. 7 (C鄄25), 13. 7 (C鄄28). (Fang
et al., 1991).
茁鄄Sitosterol (9). Colorless crystals. The Rf value
was consistent with that of the authentic sample on TLC.
(依) 鄄Pinoresinol (10) . Colorless oil, C20H22
O6; EI鄄MS m / z: 358 [M] +; 1H鄄NMR ( CDCl3,
400 MHz): 啄H 6. 89 (4H, overlapped, H鄄2, 2忆, 5,
212摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 植 物 分 类 与 资 源 学 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 第 35 卷
5忆), 6. 82 (2H, dd, J = 8. 1, 1. 8 Hz, H鄄6, 6忆),
4. 74 (2H, d, J = 4. 3 Hz, H鄄7, 7忆), 4. 25 (2H,
dd, J=9. 2, 6. 9 Hz, H鄄9a, 9a忆), 3. 91 (6H, s,
H鄄OMe), 3. 88 (2H, dd, J = 9. 2, 3. 7 Hz, H鄄9b,
9b忆), 3. 11 (2H, m, H鄄8, 8忆); 13C鄄NMR (CDCl3,
100 MHz): 啄C 146. 7 ( C鄄3, 3忆), 145. 2 ( C鄄4,
4忆), 132. 9 (C鄄1, 1忆), 118. 9 (C鄄6, 6忆), 114. 2
(C鄄5, 5忆), 108. 6 (C鄄2, 2忆), 85. 9 (C鄄7, 7忆),
71. 6 (C鄄9, 9忆), 55. 9 (2*OMe), 54. 1 (C鄄8, 8忆).
(Guz and Stermitz, 2000).
(依) Matairesinol (11) . Colorless oil, C20H22
O6; Negative FAB鄄MS m / z: 357 [M鄄H] 鄄; 1H鄄NMR
(CDCl3, 500 MHz): 啄H 6. 82 (1H, d, J=7. 7 Hz,
H鄄5忆), 6. 79 (1H, d, J = 8. 0 Hz, H鄄5), 6. 59
(2H, overlappped, H鄄2忆, 6忆), 6. 50 (1H, dd, J=
8. 0, 1. 9 Hz, H鄄6), 6. 41 (1H, d, J = 1. 9 Hz,
H鄄2), 2. 56 (4H, overlapped, H鄄7, 8, 8忆), 4. 15
(1H, dd, J = 9. 1, 7. 2 Hz, H鄄9b), 3. 88 (1H,
dd, J= 9. 1, 7. 2 Hz, H鄄9a), 3. 81 (3H, s, H鄄
OMe), 3. 80 (3H, s, H鄄OMe), 2. 91 (2H, m, H鄄
7忆a, 7忆b); 13C鄄NMR (CDCl3, 125 MHz): 啄C 178. 9
(C鄄9忆), 146. 6 (C鄄3忆), 146. 5 (C鄄3), 144. 4 (C鄄
4忆), 144. 3 (C鄄4), 129. 7 (C鄄1忆), 129. 4 (C鄄1),
121. 2 ( C鄄6 ), 121. 9 ( C鄄6忆), 114. 3 ( C鄄5忆),
114. 0 (C鄄5), 111. 4 (C鄄2忆), 110. 9 (C鄄2), 71. 3
(C鄄9), 55. 7 (2*OMe), 46. 4 (C鄄8忆), 40. 9 (C鄄8),
38. 1 (C鄄7), 34. 4 (C鄄7忆). (Fonseca et al., 1978).
( -) 鄄Nortrachelogenin (12) . Colorless oil,
C20 H22 O7; EI鄄MS m / z: 374 [ M ] +; 1H鄄NMR
(CDCl3, 500 MHz): 啄H 6. 80 (1H, d, J=1. 9 Hz,
H鄄2), 6. 76 (1H, d, J = 8. 0 Hz, H鄄5), 6. 75
(1H, d, J=1. 9 Hz, H鄄2忆), 6. 74 (1H, d, J =8. 0
Hz, H鄄5忆), 6. 68 (1H, dd, J = 8. 0, 1. 9 Hz, H鄄
6), 6. 63 (1H, dd, J=8. 0, 1. 9 Hz, H鄄6忆), 3. 98
(2H, dd, J=8. 1, 2. 7 Hz, H鄄9忆), 3. 80 (3H, s,
H鄄OMe), 3. 76 (3H, s, H鄄OMe), 3. 13 (1H, d,
J= 3. 6 Hz, H鄄7b), 2. 93 (1H, d, J = 13. 6 Hz,
H鄄7a), 2. 81 (1H, m, H鄄7忆b), 2. 54 (1H, m, H鄄
8忆), 2. 50 (1H, m, H鄄7忆a); 13C鄄NMR (CDCl3,
125 MHz): 啄C 178. 7 (C鄄9), 148. 0 (C鄄3), 148. 2
(C鄄3忆), 145. 8 (C鄄4), 146. 3 (C鄄4忆), 131. 4 (C鄄
1忆), 127. 7 (C鄄1), 123. 8 (C鄄6忆), 121. 9 (C鄄6),
115. 6 (C鄄5), 115. 7 (C鄄5忆), 113. 1 (C鄄2), 114. 6
(C鄄2忆), 70. 8 (C鄄9忆), 56. 2(2*OMe), 76. 8 (C鄄
8), 44. 1 ( C鄄8忆), 31. 8 ( C鄄7忆), 41. 5 ( C鄄7).
(Achenbach et al., 1983).
Balanophonin (13) . Colorless oil, C20H20O6;
EI鄄MS m / z: 356 [ M] +; 1H鄄NMR ( CDCl3, 500
MHz): 啄H 9. 64 (1H, d, J=7. 7 Hz, H鄄9忆), 7. 41
(1H, d, J = 15. 8 Hz, H鄄7忆), 7. 26 (1H, br. s,
H鄄5), 7. 13 (1H, s, H鄄6忆), 7. 03 (1H, s, H鄄
2忆), 6. 60 (1H, dd, J=15. 8, 7. 7 Hz, H鄄8忆), 6. 89
(2H, s, H鄄2, 6), 3. 98 (2H, m, H鄄9), 3. 93
(3H, s, H鄄OMe), 3. 86 (3H, s, H鄄OMe), 3. 69
(2H, overlapped, H鄄7, 8 ); 13C鄄NMR ( CDCl3,
125 MHz): 啄C 193. 5 (C鄄9忆), 153. 0 (C鄄7忆), 151. 5
(C鄄4忆), 146. 7 (C鄄3), 146. 0 (C鄄4), 144. 8 (C鄄
3忆), 132. 2 ( C鄄1), 129. 1 ( C鄄5忆), 128. 2 ( C鄄
1忆), 126. 5 ( C鄄8忆), 119. 4 ( C鄄6), 118. 1 ( C鄄
6忆), 114. 5 (C鄄5), 112. 3 (C鄄2忆), 108. 7 (C鄄2),
89. 0 (C鄄7), 63. 9 (C鄄9), 56. 1 (OMe), 56. 0
(OMe), 53. 0 (C鄄8). (Sy et al., 1999).
Cedrusin (14) . Colorless oil, C19H22O6; EI鄄
MS m / z: 346 [ M ] +; 1H鄄NMR ( CDCl3, 400
MHz): 啄H 7. 04 (1H, d, J = 1. 8 Hz, H鄄2), 6. 88
(1H, dd, J=8. 1, 1. 8 Hz, H鄄6), 6. 80 (1H, d,
J=8. 1 Hz, H鄄5), 6. 62 (1H, br. s, H鄄2忆), 6. 60
(1H, br. s, H鄄6忆), 5. 49 (1H, d, J=6. 6 Hz, H鄄
7), 3. 80 (3H, s, H鄄OMe), 3. 76 (2H, m, H鄄
9), 3. 55 (3H, overlapped, H鄄8, 9忆), 2. 54 (2H,
t, J=7. 7 Hz, H鄄7忆), 1. 76 (2H, m, H鄄8忆); 13C鄄
NMR (CDCl3, 100 MHz): 啄C 148. 2 (C鄄3), 147. 1
(C鄄4), 145. 9 (C鄄4忆), 141. 5 (C鄄3忆), 136. 2 (C鄄
5忆), 134. 6 (C鄄1), 129. 7 (C鄄1忆), 119. 5 (C鄄6),
116. 7 ( C鄄2忆), 116. 3 ( C鄄5 ), 115. 6 ( C鄄6忆),
110. 4 (C鄄2), 88. 0 (C鄄7), 64. 7 (C鄄9), 61. 8
(C鄄9忆), 56. 2 (OMe), 55. 2 (C鄄8), 35. 8 (C鄄7忆),
32. 4 (C鄄8忆). (Agrawal et al., 1983).
Pinocembin (15) . Yellow powder, C15H12O4;
EI鄄MS m / z: 256 [ M] +; 1H鄄NMR ( CDCl3, 500
MHz): 啄H 7. 34 (5H, m, H鄄2忆 ~ 6忆), 5. 93 (2H,
overlapped, H鄄6, 8), 5. 35 (1H, dd, J=13. 0, 3. 0
Hz, H鄄2), 3. 01 (1H, dd, J=17. 2, 13. 0 Hz, H鄄
3a), 2. 73 (1H, dd, J = 17. 2, 3. 0 Hz, H鄄3b);
3122 期摇 摇 摇 摇 摇 摇 摇 摇 ZHANG Yu鄄Mei et al. : Antioxidant Constituents from Pinus massoniana摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
13C鄄NMR (CDCl3, 125 MHz): 啄C 195. 5 (C鄄4),
166. 7 (C鄄5), 163. 7 (C鄄7), 162. 9 (C鄄9), 138. 3
(C鄄1忆), 128. 6 (C鄄3忆 ~ 5忆), 125. 9 (C鄄2忆, 6忆),
102. 2 (C鄄10), 96. 3 (C鄄8), 95. 5 (C鄄6), 78. 9
(C鄄2), 43. 1 (C鄄3). (Tanaka et al., 1985).
5鄄Methoxypinosylvin (16) . Colorless liquid,
C15H14O2; EI鄄MS m / z: 226 [M] +; 1H鄄NMR (CD3
OD, 400 MHz): 啄H 7. 50 (2H, d, J = 7. 6 Hz, H鄄
2忆, 6忆), 7. 36 (2H, t, J=7. 6 Hz, H鄄3忆, 5忆), 7. 28
(1H, t, J=7. 3 Hz, H鄄4忆), 7. 06 (1H, d, J=16. 2
Hz, H鄄a), 7. 00 (1H, d, J=16. 2 Hz, H鄄b), 6. 67
(1H, s, H鄄6), 6. 63 (1H, s, H鄄2), 6. 38 (1H,
br. s, H鄄4), 3. 82 (3H, s, H鄄OMe); 13C鄄NMR
(CD3OD, 100 MHz): 啄C161. 0 (C鄄5), 156. 8 (C鄄
3), 139. 7 (C鄄1), 137. 0 (C鄄1忆), 129. 4 (C鄄a),
128. 6 (C鄄2忆, 6忆), 128. 3 (C鄄4忆), 127. 7 (C鄄b),
126. 6 (C鄄3忆, 5忆), 106. 0 (C鄄6), 105. 0 (C鄄2),
101. 0 (C鄄4), 55. 4 (OMe). (Fang et al., 1988).
Pinosylvin (17) . Colorless crystals, C14 H12
O2; EI鄄MS m / z: 212 [M] +; 1H鄄NMR (Acetone鄄d,
400 MHz): 啄H 7. 56 (2H, d, J = 7. 3 Hz, H鄄2忆,
6忆), 7. 35 (2H, t, J = 7. 6 Hz, H鄄3忆, 5忆), 7. 24
(1H, m, H鄄4忆), 7. 09 (2H, s, H鄄a, b), 6. 58
(2H, d, J=2. 1 Hz, H鄄2, 6), 6. 30 (1H, d, J =
2. 1 Hz, H鄄4); 13C鄄NMR (Acetone鄄d, 100 MHz):
啄C 159. 6 (C鄄3,5), 140. 3 (C鄄1), 138. 3 (C鄄1忆),
129. 7 (C鄄a), 129. 5 (C鄄3忆, 5忆), 129. 1 (C鄄b),
128. 3 (C鄄4忆), 127. 3 (C鄄2忆, 6忆), 106. 0 (C鄄2,
6), 103. 2 (C鄄4). (Schultz et al., 1992).
1, 2鄄Bis鄄(4鄄hydroxy鄄3鄄methoxyphenyl) 鄄pro鄄
pane鄄1, 3鄄diol (18) . Amorphours powder, C17H20
O6; Negative FAB鄄MS m / z: 319 [ M鄄H] -; 1H鄄
NMR (Acetone鄄d, 500 MHz): 啄H 6. 66 (6H, over鄄
lappped, H鄄2, 2忆, 5, 5忆, 6, 6忆), 5. 02 (1H, d, J
=4. 0 Hz, H鄄琢), 3. 69 (2H, m, H鄄酌), 3. 68
(3H, s, H鄄OMe), 3. 67 (3H, s, H鄄OMe), 2. 94
( 1H, m, H鄄茁 ); 13C鄄NMR ( Acetone鄄d, 100
MHz): 啄C 147. 6 (C鄄3), 147. 5 ( C鄄3忆), 146. 1
(C鄄4), 145. 9 (C鄄4忆), 136. 5 (C鄄1), 132. 2 (C鄄
1忆), 123. 0 ( C鄄6忆), 119. 9 ( C鄄6), 115. 2 ( C鄄
5忆), 115. 0 (C鄄5), 114. 7 (C鄄2忆), 111. 1 (C鄄2),
74. 8 (C鄄琢), 64. 4 (C鄄酌), 56. 1 (C鄄茁), 56. 1
(OMe), 56. 0 (OMe). (Miki et al., 1980).
Cleistophostaudin ( 19 ) . Colorless oil, C20
H26O4; EI鄄MS m / z: 330 [M] +; 1H鄄NMR (CDCl3,
500 MHz): 啄H 7. 60 (1H, d, J = 15. 9 Hz, H鄄7),
7. 08 (1H, dd, J = 8. 1, 1. 7 Hz, H鄄6), 7. 04
(1H, d, J=1. 7 Hz, H鄄2), 6. 91 (1H, d, J=8. 1
Hz, H鄄5), 6. 32 (1H, d, J=15. 9 Hz, H鄄8), 3. 92
(3H, s, H鄄OMe), 0. 94 (3H, s, H鄄10忆), 0. 89
(3H, s, H鄄9忆), 0. 88 (3H, s, H鄄8忆); 13C鄄NMR
(CDCl3, 125 MHz): 啄C 167. 6 (C鄄9), 147. 8 (C鄄
3), 146. 9 (C鄄4), 144. 3 (C鄄7), 127. 0 (C鄄1),
123. 0 (C鄄6), 116. 2 (C鄄8), 114. 7 (C鄄5), 109. 3
(C鄄2), 79. 8 ( C鄄5忆), 55. 9 (OMe), 48. 9 ( C鄄
1忆), 47. 8 (C鄄7忆), 45. 0 (C鄄4忆), 36. 9 (C鄄6忆),
28. 0 (C鄄3忆), 27. 3 (C鄄2忆), 19. 7 (C鄄8忆), 18. 9
(C鄄9忆), 13. 5 (C鄄10忆). (Tane et al., 1998).
Lignoceryl ferulate (20) . White powder, C34
H58 O4; EI鄄MS m / z: 531 [ M + H] +; 1H鄄NMR
(CDCl3, 400 MHz): 啄H 7. 67 (1H, d, J = 15. 9
Hz, H鄄7), 7. 13 (1H, dd, J = 8. 2, 1. 8 Hz, H鄄
6), 7. 10 (1H, d, J=1. 8 Hz, H鄄2), 6. 98 (1H,
d, J=8. 1 Hz, H鄄5), 6. 36 (1H, d, J = 15. 9 Hz,
H鄄8), 4. 00 (3H, s, H鄄OMe), 0. 94 (3H, t, J =
6. 6 Hz, H鄄24忆); 13C鄄NMR (CDCl3, 100 MHz):
啄C 167. 4 ( C鄄9), 147. 9 ( C鄄3), 146. 7 ( C鄄4),
144. 6 (C鄄7), 127. 0 (C鄄1), 123. 0 (C鄄6), 115. 7
(C鄄8), 114. 7 ( C鄄5), 109. 2 ( C鄄2), 64. 6 ( C鄄
1忆), 55. 9 (OMe), 31. 9 ( C鄄2忆), 29. 7 ~ 28. 7
(C鄄4忆 ~ 22忆), 26. 0 (C鄄3忆), 22. 7 (C鄄23忆), 14. 1
(C鄄24忆). (Li et al., 2000).
Coniferaldehyde (21) . White crystals, C10H10
O3; EI鄄MS m/ z: 178 [M] +; 1H鄄NMR (CDCl3, 400
MHz): 啄H 9. 66 (1H, d, J = 7. 7 Hz, H鄄9), 7. 42
(1H, d, J=15. 8 Hz, H鄄7), 6. 61 (1H, dd, J=15. 8,
7. 7 Hz, H鄄8), 7. 13 (1H, dd, J=8. 2, 1. 3 Hz, H鄄
6), 7. 08 (1H, d, J=1. 3 Hz, H鄄2), 6. 97 (1H, d,
J = 8. 2 Hz, H鄄5), 3. 96 (3H, s, H鄄OMe); 13C鄄
NMR (CDCl3, 100 MHz): 啄C 193. 7 (C鄄9), 153. 2
(C鄄7), 148. 9 (C鄄3), 146. 9 (C鄄4), 126. 6 (C鄄1),
126. 3 (C鄄8), 124. 0 (C鄄6), 114. 9 (C鄄5), 109. 4
(C鄄2), 55. 9 (OMe). (Sy et al., 1999).
Summary摇 In this paper, we report the isola鄄
412摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 植 物 分 类 与 资 源 学 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 第 35 卷
tion and structural elucidation of 21 known com鄄
pounds from the twigs of Pinus massoniana. Com鄄
pounds 2-4, 6-8, 10, 11, 13 and 15-21 were iso鄄
lated from this plant for the first time. Compounds
12, 14, 18 and 21 were found to show antioxidant
activities on DPPH assay with EC50values of 11. 36,
6. 76, 14. 07 and 13. 33 滋g·mL-1, respectively.
These antioxidant compounds from P. massoniana
might provide us a new way to prevent severe disea鄄
ses related oxidative stress, i. e., cancer, cardiovas鄄
cular disease and diabetes.
Acknowledgement: The authors are grateful to the members
of analytical group for the spectral measurements in Kunming
Institute of Botany, Chinese Academy of Sciences.
References:
Achenbach H, Waibel R, Addae鄄Mrasah I, 1983. Lignans and other
constituents from Carissa edulis [ J] . Phytochemistry, 22 (3):
749—753
Agrawal PK, Rastogi RP, Osterdahl BG, 1983. 13C NMR spectral a鄄
nalysis of dihydrobenzofuran lignans [J] . Organic Magnetic Res鄄
onance, 21 (2): 119—121
Bi YF (毕跃峰), Zheng XK (郑晓珂), Feng WS (冯卫生) et al.,
2002. Isolation and structure identification of lignan glycosides
from pine needles of Pinus massoniana Lamb [J] . Acta Pharma鄄
ceutica Sinica (药学学报), 37 (8): 626—629
Cheung HTA, Miyase T, Lenguyen MP et al., 1993. Further acidic
constituents and neutral components of Pinus massoniana resin
[J] . Tetrahedron, 49 (36): 7903—7915
Chinese Pharmacopoeia Commission (国家药典委员会), 2010.
Pharmacopoeia of People忆s Republic of China (中华人民共和国
药典 一部) [ M]. Beijing: Chinese Medicine Science and
Technology Press, 191—192, 211—212
Fang JM, Su WC, Cheng YS, 1988. Flavonoids and stilbenes from
armand pine [J] . Phytochemistry, 27 (5): 1395—1397
Fang JM, Tsai WY, Cheng YS, 1991. Serratene triterpenes from Pi鄄
nus armandii bark [J] . Phytochemistry, 30 (4): 1333—1336
Feng WS (冯卫生), Wang YZ (王彦志), Zheng XK (郑晓珂) et
al., 2004. Isolation and structure identification of the chemical
constituents from pine needles of Pinus massoniana Lamb [ J] .
Acta Pharmaceutica Sinica (药学学报), 39 (3): 190—193
Fraga BM, Mestres T, Diaz CE et al., 1994. Dehydroabietane diterpenes
from Nepeta teydea [J]. Phytochemistry, 35 (6): 1509—1512
Fonseca SF, Campello JDP, Barata LES et al., 1978. 13C NMR
spectra analysis of lignans from Araucaria angustifolia [J] . Phy鄄
tochemistry, 17 (3): 499—502
Guz NR, Stermitz F, 2000. Spectral comparisons of coniferyl and cin鄄
namyl alcohol epoxide derivatives with a purported cis鄄epoxyco鄄
niferyl alcohol isolate [J] . Phytochemistry, 54 (8): 897—899
Kinouchi Y, Ohtsu H, Tokuda H et al., 2000. Potential antitumor鄄
promoting diterpenoids from the stem bark of Picea glehni [ J] .
Journal of Natural Products, 63 (6): 817—820
Li SS (李石生), Deng JZ (邓京振), Zhao SX (赵守训), 2000.
Minor phenolic constituents of chinaberry鄄tree (Melia azedarach)
[J] . Chinese Traditional and Herbal Drugs (中草药), 31 (2):
86—88
Miki K, Takehara T, Sasaya T et al., 1980. Lignans of Larix leptole鄄
pis [J] . Phytochemistry, 19 (3): 449—453
Narayanan CR, Bhadane NR, 1968. The conformation of esters,
acids and aldehydes in terpenoids [ J] . Tetrahedron Letters, 9
(13): 1565—1568
Ohmoto T, Satto M, Yamaguchi K, 1987. Constituents of pollen.
XIV. Constituents of Cedrus deodara Loud [ J] . Chemical &
Pharmaceutical Bulletin, 35 (6): 2443—2447
Pan X (潘炘), Chen SW (陈顺伟), Zhuang XW (庄晓伟),
2009. Antioxidative activities of extracts from Pinus massoniana
needles by different extraction processes [J] . Biomass Chemical
Engineering (生物质化学工程), 43 (3): 21—24
Schultz TP, Boldin WD, Fisher TH et al., 1992. Structure鄄fungicidal
properties of some 3鄄and 4鄄hydroxylated stilbenes and bibenzyl
analogues [J] . Phytochemistry, 31 (11): 3801—3806
Shen Z, Theander O, 1985. The constituents of conifer needles. Part
II. (-)鄄Massoniresinol, a lignan from Pinus massoniana [ J] .
Phytochemistry, 24 (2): 364—365
Sy LK, Brown GD, 1999. Coniferaldehyde derivatives from tissue
culture of Artemisia annua and Tanacetum parthenium [J] . Phy鄄
tochemistry, 50 (5): 781—785
Tanaka R, Mun C, Usami Y et al., 1994. 3鄄Oxo鄄serratene triterpe鄄
noids from the stem bark of Picea jezoensis Carr. var. hondoensis
[J] . Phytochemistry, 35 (6): 1517—1522
Tananka H, Ichino K, Ito K, 1985. A novel flavanone, linderatone,
from lindera umbellata [ J] . Chemical & Pharmaceutical Bulle鄄
tin, 33 (6): 2602—2604
Tanaka R, Tokuda H, Ezaki Y, 2008. Cancer chemopreventive ac鄄
tivity of “rosin冶 constituents of Pinus spez. and their derivatives
in two鄄stage mouse skin carcinogenesis test [J] . Phytomedicine,
15 (11): 985—992
Tane P, Ayafor F, Sondengam BL, 1998. A substituted cinnamoyl
ester from Cleistopholis staudth [J] . Phytochemistry, 27 (12):
3986—3988
Wang W (王巍), Wang XH (王晓华), Yin JF (尹江峰) et al.,
2008. Study on the flavonoid chemical constituents from pine
needles of Pinus massoniana [ J] . Chinese Journal of Hospital
Pharmacy (中国医院药学杂志), 28 (7): 549—552
Yang NY, Liu L, Tao WW et al., 2010. Diterpenoids from Pinus
massoniana resin and their cytotoxicity against A431 and A549
cells [J] . Phytochemistry, 71 (13): 1528—1533
5122 期摇 摇 摇 摇 摇 摇 摇 摇 ZHANG Yu鄄Mei et al. : Antioxidant Constituents from Pinus massoniana摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇