全 文 :华南五种木兰科植物精油成分和抗氧化活性*
钟瑞敏1, 2 , 张振明2 , 肖仔君2 , 曾庆孝1 , 王羽梅2**
( 1华南理工大学轻工与食品学院, 广东 广州 510640; 2韶关学院 英东生物工程学院, 广东 韶关 512005)
摘要: 对广东南岭自然保护区内野生的毛桃木莲 ( Manglietia moto )、乳源木莲 ( M1 yuyanensis )、乐昌含笑
( M1 chapensis )、金叶含笑 (M1foveolata) 和深山含笑 ( M1maudiae) 5种木兰科芳香植物精油进行了化学成
分对比分析和抗氧化活性研究。化学成分鉴定采用气质联用技术, 同时结合了保留指数比较法; 精油抗氧
化活性采用B-胡萝卜素漂白试验法。深山含笑芳香精油的主体成分以单萜烯为主, 另外 4 种木兰科芳香精
油所含成分均以倍半萜类为主。毛桃木莲和乳源木莲精油在成分构成上具有高度一致性, 而且在主要成分
上具有相似性, 这可能表明它们具有非常近的植物亲缘关系。4 种精油的抗脂质氧化半抑制浓度分别为
616 gPL (毛桃木莲精油)、91 8 gPL (乳源木莲精油)、1113 gPL ) 金叶含笑精油) 和 1212 gPL (乐昌含笑精
油) , 在本试验条件下, 未能测出深山含笑的半抑制浓度。
关键词: 木兰科; 芳香植物; 精油; 气质联用成分分析; 抗氧化活性; B-胡萝卜素漂白法
中图分类号: Q 946 文献标识码: A 文章编号: 0253- 2700( 2006) 02- 208- 07
Chemical Composition and Antioxidant Activities of the Essential
Oils of Five Magnoliaceae Species from South China
ZHONG Ru-i Min
1,2
, ZHANG Zhen-Ming
2
, XIAO Z-i Jun
2
, ZENG Qing-Xiao
1
, WANG Yu-Mei
2**
( 1 Coll ege of Light Industry and Food Science , South China University of Technology, Guangzhou 510640, China;
2 Yingdong College of Biotechnology , Shaoguan College , Shaoguan 512005, China)
Abstract: The essential oils of five Magnoliaceae plants, namely Manglietia moto Dandy , Manglietia yuyanensis Law,
Michelia chap ensis Dandy, Michelia foveolata Merr. ex Dandy, and Michelia maudiae Dunn, growing wild in Nanling
National Nature Reserve of Guangdong province, were analyzed for their chemical composition and tested for their antiox-i
dant effectiveness. The GC-MS analyses as well as comparison of the retention indices ( RI) of elution peaks with literature
data were used in compound identification of the essential oils; the B-carotene bleaching ( BCB) test method was used in
the preliminary evaluation of antioxidant activities for them. The M1maudiae oil characterizes high contents of monoterpe-
nes, while other four oils are all constituted mainly by sesquiterpenoids. The high consistence of composition and similar-i
ties in major constituents between the M1moto and M1 yuyanensis oils may indicate their close correlation between rela-
tives. The 50% inhibition were accomplished with 616 gPL of M1moto oil, 918 gPL of M1 yuyanensis oil, 111 3 gPL of
M1f oveolata oil and 1212 gPL of M1 chap ensis oil, respectively , whereas M1maudiae oil could not inhibit 50% of the
bleaching reaction under the test conditions.
Key words: Magnoliaceae; Aromatic plant; Essential oils; GC-MS analysis; Antioxidant activity; B-carotene bleaching
The family Magnoliaceae belonging to the most
ancient angiosperm, comprises about 15 genera and
260 species ( Law, 1984) . China occupies maximum
numbers of genus and species of Magnoliaceae in the
云 南 植 物 研 究 2006, 28 ( 2) : 208~ 214
Acta Botanica Yunnanica
*
** 通讯联系人 Corresponding author. E- mail: wym990@sina1 com. Tel: 13380729621
收稿日期: 2005- 07- 02, 2005- 08- 09接受发表
作者简介: 钟瑞敏 ( 1967- ) 男, 副教授, 博士生, 主要从事食品科学和天然产物利用研究。E- mail : zhongrm9898@ 1631com
基金项目: 国家自然科学基金 ( No. 30370151) 资助
world ( 11 genera and 150 species, respectively) ( Xu
et al , 2000) . Many species are famous ornamentals
because of their beautiful flowers and tree forms, and
some species have been well known as important com-
ponents of some Chinese traditional medicines for the
treatment of gastrointest inal disorders and anxiety for
more than 2000 years ( Liu, 2003; Li, 2002; Zhu
et al , 1997; Tachikawa et al , 2000) .
Michelia and Manglietia are two big genera of
Magnoliaceae and both are endemic in Asia ( 58 and 33
species in China, respect ively ) . These species are
mainly used as garden plants while some of them are
also used in folk medicine to treat sore, fever, rhin-i
tis, bronchitis , prostatitis, leucorrhea and pharyngitis
(Shang et al , 2002; Bi et al , 2004) . Analysis of
volatile const ituents from several above species has re-
vealed the presence of monoterpenes, sesquiterpenes
and their derivatives that have shown interesting antiox-
idative, ant imicrobial, and vasodilator activities
( Shen et al , 1998; Khan et al , 2002; Silvio et al ,
2004; Guan and Zhang, 2004) . With a growing in-
terest in the use of essential oils in both the pharma-
ceut ical and the food industries, a systemat ic examina-
tion of plant extracts for these properties has become
increasingly important ( E-l Massry et al , 2002) .
Nanling national nature reserve, the biggest eco-
system in Guangdong province, possesses abundant
plant resource. However, no studies have been car-
ried out on the aromatic plants in this reserve concern-
ing either the chemical composition or the biological ac-
itivities of their volatile oils. In this study, we ana-
lyzed the essent ial oils of f ive Magnoliaceae species
from the reserve forest . The structures of the com-
pounds in the volatile fractions of these five species
were elucidated satisfactorily for the first time by using
GC-MS analysis as well as by comparison of their RI
values with literature data. In addition, we also eva-l
uated their ant ioxidant activities by using the B-carotene
bleaching ( BCB) test method.
1 Materials and Methods
111 Materials and reagents
Leaves from Manglietia moto Dandy, Manglietia yuyanen-
sis Law, Michelia chap ensis Dandy, Michelia f oveolata Merr.
ex Dandy and Michelia maudiae Dunn were collected in the forest
of Nanling national nature reserve, Ruyuan county, by the help
of Dadingshan mountain administration in July 2004. The plants
were identified by comparison with the samples in the administra-
tion. s botanical sample room.
Linoleic acid ( Alfa Aesar, Germany) andB-carotene ( Sig-
ma-Aldr ich, USA) were purchased from Beijing Super-Chem.
Com Inc. ( Beijing, China) . Butylated hydroxytoluene ( BHT)
and n-alkanes ( C8- C20, GC grade) were purchased from China
drug group ( Shanghai, China) . Other chemicals were of HPLC
or reagent grade.
112 Isolation of the essential oil
Fresh leaves were crushed into serum with water and essen-
tial oils were extracted from 180 g of leaves by hydrodistillation in
a modified Clevenger apparatus for 3 h. The obtained oils were
dried over anhydrous sodium sulphate and kept refrigerated until
used. The percentage content of the oils was calculated on the
basis of the fresh weight of plant material. The samples of the
obtained essential oils were dissolved in n-hexane for GC-MS
analyses. The physical characteristics of essential oils from the
five magnoliaceae species are listed in Table 1.
113 Analysis of the essential oils
Table 1 Physical characteristics of the essential oils from f ive Magnoliaceae species
M1moto M1 yuyanensis M1 chapensis M1f oveolata M1maudiae
Oil yield ( % ) 0120 0116 0155 0156 0187
Color Pale yellow Bright yellow Brown Yellow Colorless
Density ( gPmL) 019366 019047 019930 019493 018666
Chemical constituents of the volatile oils were separated on a
Finnigan TRACEPDSQ GCPMS instrument ( Thermo Finnigan,
USA) , equipped with a DB-5 ( 30 m @ 01 25 mm; 0125Lm film
thickness) fused silica capillary column. Initial oven temperature
was maintanined at 40 e for 1 min and then programmed at
10e Pmin to 200 e ( held 3 min ) ; injector temperature,
220e ; ion source temperature, 200 e ; EI, 70 eV; carrier
gas, He at 1 mlPmin; injection type, splitless ( 1Ll, of a 1B
1000 hexane solution) ; mass range, 50- 350 mPz. The constit-
uents were identified by computer search ( NIST Library 2002)
2092期 ZHONG Ru-i M in et al : Chemical Composition and Antioxidant Activities of the Essential . . .
and by comparing their retention indices ( RI) with literature va-l
ues measured on columns with identical ( Adams, 2001) . An n-
alkane hydrocarbon mixture ( C8- C20 series) was injected under
the above temperature program to calculate the RI using the fo-l
lowing equation:
RI=100n+ 100 ( tx- tn )P( t n+1- tn )
where tx , tn and tn+ 1 are the retention times of compound x and
n-alkanes with the number of carbon atoms in the molecule n and
n+ 1, respectively ( tn< tx < tn+ 1 ) ( Isidorov et al, 2004) .
Relative concentrations ( %) of identified compounds were calcu-
lated by integrating peak areas assuming a unity response by all.
114 Determination of antioxidant activity with the B- caro-
tene bleaching ( BCB) test
Antioxidant activities of the five Magnoliaceae species vola-
tile oils were determined according to slightly modified version of
theB-carotene bleaching method ( Kulisic et al, 2004) . The B-
carotene ( 01 1mg) was added to a boiling fask together with lino-
leic acid ( 20 mg ) and Tween 40 ( 100 mg ) , all dissolved in
chloroform. After evaporating to dryness, under vacuum at 50e
by a rotary evaporator , oxygenated distilled water ( 50 ml) was
added and the mixture was emulsified for 1 min in a sonificator to
form emulsion A. 200Ll of ethanolic stock solution of each an-
tioxidant ( concentration of stock solutions were 4, 8, 12, 16,
and 20gPL) , was mixed with 5 ml of emulsion A in open-capped
cuvettes. A control, without antioxidant, consisting of 200Ll of
ethanol and 5 ml of emulsion A was prepared. A second emu-l
sion ( B) consisting of 20 mg of linoleic acid, 100 mg of Tween
40 and 50 ml oxygenated water was also prepared. Ethanol ( 200
Ll) , to which 5 ml of emulsion B was added, was used to zero
the spectrophotometer. Readings of all samples were taken im-
mediately ( t= 0 min) and at 15 min intervals for 120 min on a
UV-visible spectrophotometer ( 916, GBC, Australia) at 470
nm. The cuvettes were therostated at 50e between measure-
ments. All determinations were performed in triplicate. The per-
centage inhibition was calculated from the data with the slightly
modified formula (Mallet et al, 1994) :
%inhibition= [ ( AA( 120)-A C( 120) )P( A C( 0)-A C(120) ) ] @100
where A A(120) is the absorbance of the antioxidant at t= 120 min,
A C(120) is the absorbance of the control at t= 120 min, and A C( 0)
is the absorbance of the control at t= 0 min.
2 Results and Discussion
211 Chemical composition of the five essential oils
The oil yields obtained from the different species
varied considerably ( Table 1) . The high oil yields
were obtained from M1maudiae , M1f oveolata and
M1chapensis. The oils of M1foveolata and M1chap-
ensis species are deep incolor, while the M1maudiae
oil shows no color.
Fifty seven to sixty six components could be ident-i
f ied, representing 97- 98% of the oils, which are list-
ed in Table 2 in order of their elution on a DB-5 co-l
umn. The oils of two Manglietia species, M1moto and
M1yuyanensis, were both const ituted mainly by ses-
quiterpenoids ( 83193% and 93199%, respectively )
and showed a high consistence of composition and some
similarities in major constituents ( also shown in Fig11) .
The M1moto and M1yuyanensis oils were dominated to-
gether with D-cadinol (20157 and 6192% ) , ( E )-nero-
lidol ( 14161 and 11192%) , D-cadinene ( 6142 and
Fig. 1 Total ion current chromatogram of the essent ial oils of
five Magnol iaceae species
210 云 南 植 物 研 究 28卷
Table 2 Volatile constituents ( % ) identified in the essential oils from five Magnoliaceae species
Const ituents RI lit1a
Magnoliaceae species
M1 moto M1 yuyanensis M1 chapensis M1f oveolata M1maudiae
( RI) b ( RI) ( RI) ( RI) (RI)
Ident if ied
methods
3- hexen-1-ol 859 0112 ( 856) 0111 ( 856) 0113 (856) 0110 ( 862) 0117 ( 855) GC-MS& RI
tricyclene 927 Trc ( 920) Tr ( 920) Tr (921) P 0160 ( 921) GC-MS& RI
A-thujene 930 Tr ( 927) Tr ( 927) Tr (927) Tr ( 931) 16100 ( 929) GC-MS& RI
camphene 954 Tr ( 948) Tr ( 947) P Tr ( 953) 26108 ( 949) GC-MS& RI
sabinene 975 Tr ( 968) P 0187 (969) P 0126 ( 969) GC-MS& RI
B-pinene 979 Tr ( 971) Tr ( 973) Tr (972) Tr ( 974) 10154 ( 974) GC-MS& RI
myrcene 991 0105 ( 982) Tr ( 982) 0106 (982) Tr ( 985) 2104 ( 982) GC-MS& RI
A-terpinene 1017 Tr (1013) Tr ( 1013) Tr ( 1014) P 0110 ( 1013) GC-MS& RI
p-cymene 1025 Tr (1021) Tr ( 1021) Tr ( 1022) P 0116 ( 1021) GC-MS& RI
d-limonene 1029 Tr (1025) Tr ( 1025) 0106 ( 1025) Tr (1036) 12154 ( 1027) GC-MS& RI
1, 8-cineole 1031 0155 ( 1031) 0107 ( 1031) P P P GC-MS& RI
C-terpinene 1060 Tr (1058) Tr ( 1058) 0113 ( 1060) P 0123 ( 1058) GC-MS& RI
terpinolene 1089 Tr (1087) Tr ( 1087) Tr ( 1087) P 1167 ( 1087) GC-MS& RI
A- p-dimethyl styrene P Tr (1093) Tr ( 1094) P P 0160 ( 1093) GC-MS
linalool 1097 0171 ( 1102) 0136 ( 1102) 0126 ( 1102) 0. 27 (1108) 2121 ( 1102) GC-MS& RI
allo-ocimene 1132 P P P P 0113 ( 1129) GC-MS& RI
trans-pinocarveol 1139 Tr (1142) Tr ( 1143) Tr ( 1143) P 0119 ( 1143) GC-MS& RI
camphor 1146 Tr (1148) Tr ( 1150) Tr ( 1151) Tr (1153) 1162 ( 1150) GC-MS& RI
bicyclo [ 21211] heptan-2-ol , P Tr (1158) Tr ( 1158) Tr ( 1159) Tr (1158) 0122 ( 1158) GC-MS
2, 3, 3-trimethy-l
borneol 1169 0126 ( 1173) Tr ( 1173) Tr ( 1174) P 0169 ( 1173) GC-MS& RI
p-menth-1- en-4-ol 1177 0155 ( 1180) 0106 ( 1180) 1125 ( 1181) 0106 (1183) 1102 ( 1180) GC-MS& RI
p-menth-1- en-8-ol 1196 1162 ( 1192) 0128 ( 1192) 0131 ( 1194) 0110 (1193) 0174 ( 1192) GC-MS& RI
trans-carveol 1216 1132 ( 1216) 0105 ( 1216) Tr ( 1218) Tr (1218) 0109 ( 1218) GC-MS& RI
geraniol 1253 6176 ( 1246) 1114 ( 1246) Tr ( 1246) Tr (1256) Tr ( 1256) GC-MS& RI
p-menth-3- en-2-one 1258 0110 ( 1256) P Tr ( 1250) P P GC-MS& RI
bornyl acetate 1289 0110 ( 1287) 0110 ( 1287) P 0111 (1299) 0132 ( 1287) GC-MS& RI
D- elemene 1338 0108 ( 1338) 0105 ( 1341) 0107 ( 1339) P 0121 ( 1338) GC-MS& RI
A- copaene 1377 0110 ( 1377) 0124 ( 1377) 0110 ( 1378) Tr (1380) Tr ( 1377) GC-MS& RI
B- cubebene 1388 0127 ( 1388) 1105 ( 1388) Tr ( 1389) P 0106 ( 1388) GC-MS& RI
B- elemene 1391 0130 ( 1395) 0105 ( 1395) 1150 ( 1397) Tr (1396) 0109 ( 1395) GC-MS& RI
A- cedrene 1412 Tr (1408) P P 0178 (1408) Tr ( 1408) GC-MS& RI
B- caryophyllene 1419 Tr (1419) 1116 ( 1418) Tr ( 1416) Tr (1418) 0105 ( 1418) GC-MS& RI
eremophila-1, 11-diene P 0114 ( 1424) 0131 ( 1424) Tr ( 1425) 0116 (1427) P GC-MS
B- caryophyllene expoy- 1425 6179 ( 1425) 1104 ( 1426) 4106 ( 1427) 3178 (1445) 10101 ( 1427) GC-MS& RI
A-trans-bergamotene 1435 P 0110 ( 1434) P P 0114 ( 1436) GC-MS& RI
isocaryophyllene 1438 0105 ( 1442) P 0126 ( 1444) P P GC-MS& RI
A-humulene 1455 0130 ( 1452) 1153 ( 1453) 2102 ( 1454) 0120 (1450) 0116 ( 1450) GC-MS& RI
alloaromaclendrene 1460 0110 ( 1458) 0168 ( 1458) 0120 ( 1456) Tr (1454) 0111 ( 1458) GC-MS& RI
9- epi-( E)- caryophyllene 1466 0176 ( 1467) 0171 ( 1467) 0144 ( 1468) 0152 (1465) 1118 ( 1467) GC-MS& RI
ep-i bicyclosesquiphellandrene 1469 P 0195 ( 1472) 0131 ( 1473) Tr (1472) P GC-MS& RI
germacrene D 1485 1176 ( 1483) 3141 ( 1483) Tr ( 1484) 1111 (1480) 0120 ( 1483) GC-MS& RI
D- selinene 1493 0121 ( 1493) 0111 ( 1493) 4152 ( 1495) 1105 (1489) 0127 ( 1493) GC-MS& RI
B-bisabolene 1506 1156 ( 1501) 4134 ( 1499) P 0136 (1502) P GC-MS& RI
germacrene A 1509 3141 ( 1507) 6192 ( 1507) 16105 (1507) 0130 (1508) 0177 ( 1506) GC-MS& RI
(Z )-C-bisabolene 1515 P P 0147 ( 1515) 0121 (1514) P GC-MS& RI
D- cadinene 1523 6142 ( 1523) 10184 ( 1524 2112 ( 1522) 0128 (1522) 0140 ( 1522) GC-MS& RI
cadina-1, 3, 5-triene P 3160 ( 1528) 4110 ( 1529) P P P GC-MS
isolongifolan-8-ol P Tr (1532) Tr ( 1532) Tr ( 1531) 0127 (1531) P GC-MS
trans-cadina-1 (2) , 4-diene 1535 P P 0125 ( 1534) 0128 (1534) Tr ( 1534) GC-MS& RI
A- cadinene 1539 0133 ( 1540) 0184 ( 1540) P Tr (1540) P GC-MS& RI
A- calacorene 1546 0149 ( 1545) 1103 ( 1545) 0162 ( 1545) P Tr ( 1544) GC-MS& RI
hedycaryol 1550 P P 1149 ( 1549) 0111 (1548) Tr ( 1548) GC-MS& RI
(E )- nerolidol 1563 14161 ( 1558) 11192 ( 1558) 0141 ( 1557) Tr (1557) 1115 ( 1555) GC-MS& RI
B- calacorene 1566 P P 0144 ( 1565) 2100 (1563) 0109 ( 1561) GC-MS& RI
3- hexen-1-ol benzoate 1567 0160 ( 1568) 0168 ( 1568) 0137 ( 1569) 0172 (1568) P GC-MS& RI
ledol 1569 0105 ( 1576) 0161 ( 1576) Tr ( 1576) Tr (1577) P GC-MS& RI
2112期 ZHONG Ru-i M in et al : Chemical Composition and Antioxidant Activities of the Essential . . .
Continued table 2
Const ituents RI lit1a
Magnoliaceae species
M1 moto M1 yuyanensis M1 chapensis M1f oveolata M1maudiae
( RI) b ( RI) ( RI) ( RI) (RI)
Ident if ied
methods
caryophyllenyl alcohol 1572 0141 ( 1580) 0143 ( 1580) P P 0159 ( 1579) GC-MS& RI
globulol 1585 1111 ( 1586) 3142 ( 1589) 0119 ( 1585) 0112 (1584) 1114 ( 1585) GC-MS& RI
guaiol 1601 0189 ( 1594) 1125 ( 1594) P 0125 (1594) 0110 ( 1597) GC-MS& RI
ep-i cubenol 1619 P P P 0141 (1599) P GC-MS& RI
C15H20O (M= 204) P P Tr ( 1604) 6163 ( 1604) P P GC-MS
C15H20O (M= 216) P 211715181 217115183 417715186 Tr15187 011015187 GC-MS
10-ep-i C- eudesmol 1624 0199 ( 1616) 1119 ( 1616) 0116 ( 1618) P Tr ( 1617) GC-MS& RI
C15H24 (M= 204) P 5151 ( 1630) 3137 ( 1630) 0110 ( 1630) 1104 (1629) 0117 ( 1629) GC-MS
C-eudesmol 1632 1181 ( 1636) 2155 ( 1640) 0116 ( 1636) Tr (1640) 0158 ( 1642) GC-MS& RI
A-muurolol 1646 5131 ( 1649) 7170 ( 1649) 0113 ( 1647) P P GC-MS& RI
A- eudesmol 1654 P P P 49170 ( 1657) P GC-MS& RI
C15H24O (M= 220) P P P 10108 (1663) 2150 (1664) 0145 ( 1663) GC-MS
D- cadinol 1674 20157 ( 1669) 6192 ( 1665) P 0181 (1674) P GC-MS& RI
eudesma-4( 15) , 7-dien-1-B-ol 1688 0120 ( 1684) 0132 ( 1684) P 13174 ( 1685) 0110 ( 1680) GC-MS& RI
A-bisabolol 1686 0123 ( 1692) 0166 ( 1692) 7185 ( 1692) P P GC-MS& RI
C15H20O (M= 216) P P P 2153 ( 1700) 1103 (1697) 0105 ( 1697) GC-MS
vatirenene P P P P 0112 (1707) P GC-MS
(Z, Z )-farnesol 1718 0175 ( 1712) 7178 ( 1714) 1155 ( 1714) P Tr ( 1712) GC-MS& RI
(E, E )-farnesol 1725 0110 ( 1730) 0106 ( 1730) 10102 (1729) 7143 (1727) Tr ( 1727) GC-MS& RI
C10H14O (M= 150) P P P 8146 ( 1739) P P GC-MS
limonen-6-ol, pivalate P 0105 ( 1744) Tr ( 1744) P 4145 (1744) P GC-MS
aromadendrene oxide-( 2) P 0106 ( 1751) Tr ( 1752) 0196 ( 1751) P P GC-MS
farnesene epoxide, E- P P P P 3121 (1770) P GC-MS
C15H22O (M= 218) P 8144 ( 1797) 3196 ( 1795) 6106 ( 1797) 0106 (1791) 0121 ( 1793) GC-MS
C13H18O (M= 190) P P P P 0134 (1837) P GC-MS
trans-Z-bisabolene epoxide P P P P 0118 (1856) P GC-MS
nerolidyl acetate P P P P 0116 (1891) P GC-MS
phytol 1943 0135 ( 1931) 0120 ( 1931) P P 0134 ( 1931) GC-MS& RI
monoterpene hydrocarbons 0105 Tr 1112 Tr 70195
oxygenated monoterpenes 12103 2107 10128 4199 7110
sesquiterpene hydrocarbons 27154 46125 33172 13112 15114
oxygenated sesquiterpenes 56139 47174 52156 79150 3133
Others 1107 1104 0150 1116 0151
Total 97108 97110 98131 98132 97103
a RI li t. = Retention indices published by Adams ( DB-5 column) . b RI= Retent ion index relat ive to C8- C20 n-alkanes on DB-5 column.
c Tr= trace compounds ( concentration less than 0105% ) .
10184%) , A-muurolol ( 5131 and 7170%) , germa-
crene A ( 3141 and 6192% ) and an unknown oxygen-
ated sesquiterpene ( 8144 and 3196%) , respect ively.
Of course, there were content differences in some con-
stituents, such as B-caryophyllene ( 6179 and
1104%) , geraniol ( 6176 and 1114%) , and ( Z,
Z )-farnesol ( 0175 and 7178% ) , respectively, be-
tween them. The high consistence of composit ion and
similarities in major const ituents may indicate their
close correlation between relatives. However, the
three oils of Michelia species are quite different . The
oils of M1 chapensis and M1foveolata were constituted
mainly by sesquiterpenoids ( 86128% and 92162% ,
respect ively) , while the oil of M1maudiae was dom-i
nated with monoterpenes ( 78105% ) , and therewas no
similarity in major const ituents between them. The
principal constituents of the M1chapensis oil were ger-
macrene A ( 16105% ) , ( E, E )- farnesol ( 10102%) ,
A-bisabolol ( 7185% ) , three unknown oxygenated ses-
quiterpenes ( 10108, 6163, and 6106%, respectively)
and an unknown oxygenated monoterpene ( 8146%) .
The M1f oveolata oil showed dist inguishable compos-i
t ion and its principle constituents were A-eudesmol
(49170%), eudesma-4 ( 15) , 7-dien-1-B-ol ( 13174%)
and (E, E )- farnesol ( 7143%) . Whereas, theM1mau-
diae oil was mostly dominated with monoterpene hydrocar-
212 云 南 植 物 研 究 28卷
bons such as camphene ( 26108%) ,A-thujene (16100%),
D-limonene ( 12154%) and B-pinene ( 10154%), with
the exception of B-caryophyllene ( 10101%) .
212 Antioxidant activities of the five essential oils
The BCBmethod is based on the loss of the yellow
color of B-carotene due to its reaction with radicals
which are formed by linoleic acid oxidation in an emu-l
sion. The rate of B-carotene bleaching can be slowed
down in the presence of antioxidants ( Kulisic et al ,
2004) . This principle is also used in the ant ioxidant ac-
tivity evaluat ion of the essential oils of five magnoliaceae
species in comparison with BHT and ascorbic acid.
As a result of B-carotene bleaching caused by the
oxidation of linoleic acid, the absorbance of the test
solutions decreased with time ( Fig. 2) . The discolor-
ation process in the model system progressed differently
for the various samples. The control sample without
addition of antioxidant oxidized decreasedmost rapidly,
and the M1maudiae sample also showed this trend.
The rate of B-carotene bleaching in the M1moto sample
was most effectively slowed down suggesting its most
potent antioxidant power among the f ive essential oils.
Fig. 2 Rate of B-carotene bleaching in control without antioxidant
and the essent ial oils of five magnoliaceae species.
The concentration of the total oils was 8 gPL
Fig. 3 shows the antioxidant activities of the five
essential oils in the comparison with those of BHT and
ascorbic acid. The ant ioxidant power decreased in the
order BHT > essential oils> ascorbic acid. BHT was
the strongest antioxidants. In comparison, the essen-
t ial oils except M1maudiae oil showed relatively signif-
icant antioxidant activity, while ascorbic acid showed
no antioxidant effect . Among the five oils, the M1-
moto and M1maudiae samples expressed the strongest
and faintest antioxidant eff icacy in this evaluation meth-
od, respectively. The concentration remarkably influ-
enced the antioxidant power of each oil sample except
ascorbic acid. The 50% inhibition were accomplished
with less than 210 gPL of BHT, 616 gPL of M1moto
oil, 918 gPL of M1yuyanensis oil, 1113 gPL of M1fo-
veolata oil, and 1212 gPL of M1 chapensis oil, respec-
t ively, whereas ascorbic acid and M1maudiae oil
could not inhibit 50% of the bleaching reaction under
the test conditions.
Fig. 3 Antioxidant activity of the essent ial oils of five magnol iaceae
species, BHT and ascorbic acid withB- carotene bleaching method
It is interesting to note that the difference of an-
t ioxidant effect between the M1maudiae oil and other
four oils was remarkable. This can be explained, to
some extent, by comparing the reported antioxidant ef-
f icacy of some individual aromatic components with the
principle constituents and their proportions in these
oils. Ruberto and Baratta ( 2000) evaluated the antiox-i
dant eff icacy of almost 100 pure components of essential
oils with lipid system. The results showed that the an-
t ioxidant efficacy of essential oil was mainly contributed
by the class of oxygenated monoterpene and oxygenated
sesquiterpene components ( generally, phenols > allylic
alcohols> aldebydes) . Moreover, a scare antioxidant
activity is normally accredited to monoterpene hydrocar-
2132期 ZHONG Ru-i M in et al : Chemical Composition and Antioxidant Activities of the Essential . . .
bons except terpinolene, A-terpinene, C-terpinene and
sabinene ( Kama-l Eldin et al , 1996) . However, the
M1maudiae oil characterizes high contents of cam-
phene, A-thujene, and B-pinene ( Table 2) , which
possess of low antioxidant activity. Because of the BCB
method employs an emulsified lipid system, it could not
show the antioxidant properties of ascorbic acid ( a well
known polar antioxidant) . This phenomenon was formu-
lated as the / polar paradox0 which has been reported
earlier ( Frankel et al , 1994; Koleva et al , 2002) .
The polar antioxidants remaining in the aqueous phase
of the emulsion are more diluted in lipid phase and are
thus less effective in protecting the linoleic acid.
Acknowledgements: The authors gratefully acknowledge finan-
cial support from the National Natural Science Foundation, and
thank Mr. PENG Hua-Gui from Dadingshan Mountain Adminis-
tration of Nanling National Nature Reserve for his species identif-i
cation help.
References:
Adams RP, 2001. Identificat ion of Essential Oil Components by Gas
ChromatographyPQuadrupole Mass Spectroscopy [ M ] . Chicago,
IL. USA: Allured Publishing Corporat ion, 10 ) 40
Bi HP (毕和平) , Han CR (韩长日) , Yan FH (严凤华 ) , et al ,
2004. Ident ification of Manglietia hainanensi s by TLC [ J ] . J
Hainan Normal Univ (海南师范学院学报) , 17 ( 3) : 258 ) 259
E-lMassry KF, E-l Ghorab AH, Farouk A, 2002. Antioxidant activity
and volat ile components of Egyptian Artemisia judaica L. [ J] .
Food Chemistry , 79: 331 ) 336
Frankel EN, Huang SW, Kanner J, et al , 1994. Interfacial phenome-
na in the evaluation of ant ioxidants: bulk oils versus emulsions [ J] .
J Agri c Food Chem, 42: 1054 ) 1059
Guan ZB (管志斌) , Zhang LX (张丽霞) , 2004. Study on conserva-
t ion and utilization of endangered plant Michelia hedyosperma [ J] .
Chin Wild Plant Res (中国野生植物资源) , 23 ( 4) : 11 ) 14
Isidorov VA, Krajewska U, Vinogorova VT, et al , 2004. Gas chrom-
atographic analysis of essent ial oil from buds of different birch species
with preliminary partition of components [ J] . Biochemical Systemat-
ics and Ecology, 32: 1 ) 13
Kama-l Eldin A, Appelqvist LA, 1996. The chemistry and antioxidant prop-
erties of tocopherols and tocotreinol [ J] . Lipids, 31: 671 ) 701
Khan MR, Kihara M , Omoloso AD, 2002. Ant imicrobial activity of
Michelia champaca [ J] . Fitoterapia , 73: 744) 748
Koleva II, Van Beek TA, Linssen JPH, et al , 2002. Screening of
plant extracts for antioxidant activity: a comparative study on three
test ing methods [ J] . Phytochemical Analysis, 13: 8 ) 17
Kul isic T, Radonic A, Katalinic V, et al , 2004. Use of different
methods for test ing antioxidative activity of oregano essential oil [ J] .
Food Chemistry , 85: 633) 640
Law YW (刘玉壶) , 1984. A preliminary study on the taxonomy of the
family Magnoliaceae [ J] . Acta Phytotax Sin (植物分类学报 ) ,
22 (2) : 89 ) 109
Li Z (李战) , 2002. Advance in research on pharmacology of Flos mag-
noline and Siberian cocklebur fruit [ J] . Academic Journal of Shang-
hai Second Medical University (上海第二医科大学学报 ) , 24
( 5) : 393 ) 396
Liu SL (刘声亮 ) , 2003. Development and utilization of the f lora of
Magnolia family inGardens [ J] . Yunnan Environmental Science (云
南环境科学) , 22 ( 1) : 41 ) 43
Mallet JF, Cerati C, Ucciani E, et al , 1994. Ant ioxidant activity of
fresh pepper ( Capsicum annuum ) cult ivares [ J] . Food Chemistry ,
49: 61) 65
Ruberto G, Baratta MT, 2000. Antioxidant activity of selected essential
oil components in two l ipid model systems [ J] . Food Chemistry ,
69: 167) 174
Shang C, Hu Y, Deng C, et al , 2002. Rapid determinat ion of volatile
constituents of Michelia alba flowers by gas chromatography-mass
spectrometry with solid-phase microext ract ion [J ] . Journal of Chro-
matography A , 942: 283 ) 288
ShenY, Sung Y, Chen C, 1998. Magnolol inhibit s Mac-1 ( CD11bP
CD18 )-dependent neutrophil adhesion: Relationship with its antiox-i
dant effect [ J] . European Journal of Pharmacology , 343: 79) 86
Silvio C, Lara T, Elisabetta C, et al , 2004. Vasodilator act ivity of
Michelia f igo Spreng. ( Magnoliaceae) by in vitro functional study
[ J] . Journal of Ethnopharmacology, 91: 263 ) 266
Tachikawa E, Takahashi M, Kashimoto T, 2000. Ef fects of extract and
ingredients isolated from Magnolia obovata Thunberg on cate-
cholamine secret ion from bovine adrenal chromaffin cells [ J] . Bio-
chemical Pharmacology, 60: 433 ) 440
Xu FX (徐凤霞 ) , Chen ZY ( 陈忠毅) , Zhang DX ( 张奠湘 ) ,
2000. A cladist ic analysis of Magnol iaceae [ J] . J Trop Subtrop
Bot (热带亚热带植物学报) , 8 ( 3) : 207) 214
Zhu ZP (朱自平) , Zhang MF (张明发) , Shen YQ ( 沈雅琴) , et
al , 1997. Pharmacological effect of cortex magnoliae officinalis on
digest ion system [ J ] . China Journal of Chinese Materia Medica
(中国中药杂志) , 22 (11) : 686 ) 688
214 云 南 植 物 研 究 28卷