免费文献传递   相关文献

Study on curcumin analogues with high hydrolytic stability against multidrug-resistant tumor

具有高水解稳定性的姜黄素类似物的抗多药耐药肿瘤作用研究



全 文 :中草药 Chinese Traditional and Herbal Drugs 第 45卷 第 12期 2014年 6月

·1736·
具有高水解稳定性的姜黄素类似物的抗多药耐药肿瘤作用研究
张 峰 1,陈敬清 2,岑 娟 2,陈笑鸽 2,丁秀秀 2,吴春蕊 2*
1. 河南大学药学院,河南 开封 475004
2. 河南大学 天然药物与免疫工程重点实验室,河南 开封 475004
摘 要:目的 探讨具有较好水解稳定性的姜黄素结构类似物的抗多药耐药肿瘤活性及机制。方法 对人白血病多药耐药细
胞 K562/A02孵育姜黄素及其类似物 1~19,MTT法筛选其对 K562/A02细胞的生长抑制作用;高效液相色谱法测定姜黄素
及其类似物 3、4的水解稳定性;流式细胞术检测姜黄素及其类似物 3、4对 K562/A02细胞凋亡、线粒体膜电位(MMP)、
活性氧(ROS)量及细胞周期分布的影响;分光光度法检测 K562/A02 细胞 caspase-3 活性变化;Western blotting 法检测
K562/A02细胞 P-糖蛋白(P-gp)表达、荧光法检测 K562/A02细胞内阿霉素的累积效应。结果 姜黄素结构类似物 3、4与
姜黄素对 K562/A02 细胞的生长抑制作用相近,但类似物 3、4 水解稳定性较姜黄素有显著增高;与对照组比较,姜黄素及
其类似物 3、4均能够通过降低 K562/A02细胞MMP、增加 caspase-3活性促进细胞凋亡,但此过程中细胞内 ROS并未显著
增加;姜黄素及其类似物 3、4可显著降低 K562/A02细胞 G2/M期和 S期的细胞比例,亚二倍体增加;Western blotting结果
显示姜黄素及其类似物 3、4对 P-gp有显著下调作用,可增加细胞内阿霉素的累积。结论 姜黄素结构类似物 3、4具有较
高的水解稳定性,且保持了姜黄素的抗多药耐药肿瘤活性。
关键词:姜黄素;结构类似物;水解稳定性;多药耐药;凋亡;P-糖蛋白
中图分类号:R285.5 文献标志码:A 文章编号:0253 - 2670(2014)12 - 1736 - 07
DOI: 10.7501/j.issn.0253-2670.2014.12.016
Study on curcumin analogues with high hydrolytic stability against
multidrug-resistant tumor
ZHANG Feng1, CHEN Jing-qing2, CEN Juan2, CHEN Xiao-ge2, DING Xiu-xiu2, WU Chun-rui2
1. College of Pharmacy, Henan University, Kaifeng 475004, China
2. Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China
Abstract: Objective To investigate the effect and mechanisms of a series of curcumin analogues with better hydrolytic stability on
multidrug-resistant tumor. Methods Human leukemia multi-drug resistant K562/A02 cells were incubated with curcumin and its
analogues 1-19. MTT method was applied for screening the inhibition on the growth of K562/A02 cells; HPLC was used to detect the
hydrolytic stability of curcumin and its analogues 3 and 4; The effects of curcumin and its analogues 3 and 4 on apoptosis,
mitochondrial membrane potential (MMP), reaction oxygen species (ROS) content, and cell cycle distribution of K562/A02 cells were
measured by flow cytometry; Spectrophotometric method was used to detect the caspase-3 activity; The expression of P-glycoprotein
(P-gp) was assayed by Western blotting; Fluorometric method was applied to evaluating the intracellular Adriamycin accumulation of
anti-tumor drug. Results Analogues 3 and 4 exhibited the inhibitory effect on the growth of K562/A02 cells as similar as that of
curcumin, but their hydrolytic stability was significantly higher than that of curcumin. Compared with the control group, curcumin and
its analogues 3 and 4 could significantly promote apoptosis by reducing MMP and increasing caspase-3 activity of K562/A02 cells, but
no obvious increase in intracellular ROS was found. In addition, the cell proportion of K562/A02 cells in G2/M and S phases was
significantly reduced in the presence of curcumin and its analogues, while the hypodiploid increased. Besides, Western blotting
indicated that the P-gp was significantly downregulated with an increase of intracellular anti-tumor drug accumulation. Conclusion
The analogues 3 and 4 of curcumin have the better hydrolytic stability than that of curcumin, while the anti-resistant tumor activity is
maintained.
Key words: curcumin; analogues; hydrolytic stability; multidrug-resistance; apoptosis; P-glycoprotein


收稿日期:2013-12-06
基金项目:国家自然科学基金资助项目(U1204830);教育部留学归国人员科研启动基金;河南省教育厅科学技术研究重点项目资助计划项目
(13A310064)
*通信作者 吴春蕊(1979—),女,副教授,研究方向为天然成分结构修饰。Tel: (0378)2864665 E-mail: cwu@henu.edu.cn
中草药 Chinese Traditional and Herbal Drugs 第 45卷 第 12期 2014年 6月

·1737·
中医认为,姜黄 Curcuma longa L. 性温,味
辛、苦,归脾、肝经,具有破血行气、通经止痛之
功效。当代药理学研究表明,姜黄素(curcumin)
是姜黄的主要活性成分,具有显著的抗炎、抗氧化、
抗肿瘤活性,且其毒性较低,临床研究表明每人每
天口服 12 g 姜黄素仍无毒副作用[1]。姜黄素用于
治疗胰腺癌、多发性骨髓瘤等疾病已进入了临床试
验阶段,研究表明其抗肿瘤作用可能与诱导凋亡有
关。然而姜黄素不稳定、易降解,对其进行质量控
制有一定难度,也大大降低了其生物利用度,限制
其临床应用。研究发现加入一定量的去甲氧基姜黄
素或十二烷基硫酸钠,可提高姜黄素的稳定性[2]。
但添加剂的使用不仅增加了生产成本,而且带来了
各种不安全的隐患。因此,本课题组对姜黄素不稳
定部分进行结构改造[3],获得姜黄素的结构类似物
1~19(图 1),通过抗耐药肿瘤活性筛选,拟获得
稳定性较高且能够保留优势活性的姜黄素结构类
似物。
MeO
HO
O O
OMe
OH
R1
R2
R3 R5
NN R1
R2
R3
R4
R5 OO
O
THPO CM
R1 R2 R3 R4 R5
1
2
3
4
5
6
7
8
9
10
H
H
H
H
H
Cl
Cl
H
H
H
MeO
H
MeO
H
MeO
MeO
MeO
H
MeO
H
MeO
MeO
THPO
OH
OH
H
MeO
MeO
H
THPO
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
F
F
H
R1 R2 R3 R4 R5
11
12
13
14
15
16
17
18
19
H
H
Cl
H
H
H
H
H
H
F
MeO
H
F
MeO
H
F
MeO
MeO
MeO
OH
H
OH
CM
CM
CM
MeO
CM
H
MeO
H
H
H
H
H
MeO
MeO
H
H
H
H
H
H
H
H
H
R4
� � � � � � � � �

图 1 姜黄素及姜黄素结构类似物的结构
Fig. 1 Chemical structures of curcumin and its analogues
1 材料
1.1 药物与试剂
链霉素、青霉素、MTT、2′, 7′-二氯荧光黄双乙
酸盐(DCF-DA)、姜黄素(质量分数 95%)为 TCI
公司产品;姜黄素类似物 1~19均为自制,质量分
数>98%。胎牛血清购于杭州四季青公司,PRMI
1640培养基为 Gibco公司产品,Annexin V/PI凋亡
检测试剂盒、线粒体膜电位检测试剂盒、caspase-3
活性检测试剂盒、细胞周期检测试剂盒、蛋白定量
检测试剂盒均为南京凯基生物科技有限公司产品;
P-糖蛋白(P-gp)、β-actin 抗体和 IgG-HRP 二抗为
美国 Santa Cruz公司产品;所用化学试剂均为市售
分析纯。阳性药阿霉素、长春新碱及紫杉醇均为阳
性对照药品,为 Sigma公司产品。
1.2 细胞
人红细胞系白血病细胞 K562 及其耐药株
K562/A02细胞购自天津血液病研究所。
1.3 仪器
TACS Calibur流式细胞仪(Becton Dickinson);
Agilent 1100型高效液相色谱仪(Agilent);高内涵
活细胞成像系统(Thermo Scientific);LDZX立式
压力蒸汽灭菌器(上海申安医疗器械厂);Thermo
Barnstead NANO pure DlamondUV/UF超纯水系统
(Thermo Scientific);PB—21型 pH计(Sartorious
AG);TGL—18B—C 高速台式离心机(上海安亭
科学仪器厂);高速低温台式离心机(Thermo
Scientific);3121 型二氧化碳培养箱(Thermo
Scientific);ZHJH—C1112 型超净工作台(上海智
诚分析仪器制造有限公司);倒置生物显微镜(宁
波舜宇仪器有限公司);QL—861型旋涡混合器(海
门其林贝尔仪器制造有限公司)。
2 方法
2.1 MTT 细胞毒实验
K562及其耐药株 K562/A02细胞接种至 96孔
板(每孔 3 000个细胞),阳性药组加入相应浓度(1、
10、100 μmol/L)的阿霉素、长春新碱及紫杉醇,
受试药物组分别加入不同浓度(1、10、100 μmol/L)
的姜黄素及其结构类似物 1~19,对照组加入等体
积的生理盐水。48 h后,每孔加入 0.5 mg/mL MTT
反应 4 h,离心、弃去培养液,加入二甲基亚砜
中草药 Chinese Traditional and Herbal Drugs 第 45卷 第 12期 2014年 6月

·1738·
(DMSO)100 μL溶解结晶,酶标仪 570 nm波长处
测定吸光度(A)值,计算细胞生长抑制率,每个
浓度设 3个复孔,实验重复 3次。
抑制率=1-A 实验 / A 对照
2.2 姜黄素类似物水解稳定性的检测
对结构改造获得的化合物 1~19 采用紫外分光
光度法检测其水解稳定性[4],结果表明各化合物 48 h
降解率均在 15%以内。根据MTT细胞毒性实验结果
发现,仅有类似物 3、4基本保留了姜黄素对耐药细
胞的抑制活性,其他化合物尽管稳定性高,但并无
进一步研究开发的价值。因此,采用 HPLC 法进一
步验证姜黄素类似物 3、4的水解稳定性[5]。精确称
量姜黄素及结构类似物 3、4 用 DMSO 溶解,配制
10 mmol/L备用母液。每种样品配制 A、B、C 3种
溶液:A,取 10 μL母液,用无水乙醇定容至 5 mL,
配制终浓度为 20 μmol/L乙醇溶液,作为对照溶液;
B,取 10 μL母液,用 50%无水乙醇和 50%磷酸缓冲
溶液(pH 7.4)定容至 5 mL,配制终浓度为 20 μmol/L
的 50%乙醇溶液;C,配制方法同 B,配制完成后再
经 37 ℃、48 h降解即得。实验需先配制 C溶液,
置于 37 ℃细胞培养箱内放置 48 h,样品取出前配制
B溶液,HPLC法测定,计算降解率。色谱条件:色
谱柱为Diamonsil C18色谱柱(250 mm×4.6 mm,5
μm);流动相为甲醇-异丙醇-水-冰醋酸(20∶27∶
48∶5);体积流量 0.5 mL/min,柱温为室温;进样
量 20 μL;姜黄素、姜黄素衍生物 3、4的检测波长
分别为 426、380、374 nm。
降解率= (B组溶液的峰面积-C组溶液的峰面积) / B
组溶液的峰面积
2.3 流式细胞仪检测细胞凋亡
将10 μmol/L姜黄素及筛选出的水解稳定性高且
具有较好抗耐药肿瘤细胞活性、对正常细胞无毒性的
姜黄素结构类似物 3、4处理 K562/A02细胞 48 h,
离心,收集细胞,弃上清液,用冰 PBS洗 2遍,离
心后,加入 500 μL结合缓冲液重悬。分组置于不同
EP管中,先加入 5 μL Annexin V/FITC,再加入 5 μL
PI,振荡混匀,避光放置于 37 ℃条件下 30 min,转
移至流式细胞检测管后上流式细胞仪检测。使用 BD
FACSDiva Software软件采集样本并进行数据分析。
2.4 Caspase-3 活性的检测
取对数生长期的 K562/A02细胞,以 1×105/mL
密度接种于 50 mL培养瓶中,受试化合物组中加入
10 μmol/L的姜黄素及姜黄素类似物 3、4,对照组给
予等体积的 PBS。培养 48 h后离心收集细胞,用 PBS
洗涤后个样本加入 50 μL冰冷的 Lysis 缓冲液,置冰
上裂解,经 4 ℃,10 000 r/min离心 10 min,取上清
BCA法测定蛋白浓度;吸取含 200 μg蛋白的细胞裂
解液,并用 Lysis 缓冲液补足至 50 μL,加入 50 μL
2×Reaction 缓冲液,再加入 5 μL caspase-3的底物
于 37 ℃避光孵育 4 h,用酶标仪在 405 nm波长处测
定吸光度(A)值。实验重复 3次。
2.5 线粒体膜电位的检测
通过 JC-1染色法检测线粒体膜电位(MMP)。
参照线粒体膜电位检测试剂盒操作,将 K562/A02
细胞按照 1×106/mL 的密度接种于 50 mL 培养瓶
中,10 μmol/L的姜黄素及姜黄素类似物 3、4孵育
48 h后胰酶消化、离心收集细胞,收集的细胞用新
鲜配制终质量浓度为 5 μg/mL 的 JC-1 工作液于
37 ℃孵育 30 min。用 PBS洗涤细胞清除多余的染
料,流式细胞术检测细胞偶联的荧光强度。
2.6 细胞内活性氧(ROS)的检测
取对数生长期的 K562/A02 细胞以 1×106/mL
的密度接种于 50 mL培养瓶中,10 μmol/L的姜黄
素及姜黄素类似物 3、4分别作用 48 h后收集细胞,
加入终浓度为 100 μmol/L的荧光探针 DCF-DA,避
光、37 ℃孵育 15 min。细胞用 PBS洗涤 3次,并
用 1 mL PBS重悬。流式细胞仪在激发波长为 488
nm和发射波长为 530 nm下检测荧光强度,指示细
胞内 ROS的量。
2.7 流式细胞仪分析细胞周期
取对数生长期细胞,经 10 μmol/L的姜黄素及
姜黄素类似物 3、4作用 48 h后,离心收集细胞,
将细胞在 70%的冰乙醇中于 4 ℃固定 12 h,然后离
心除去乙醇,PBS洗涤 2次,重悬于 100 μg/mL RNA
酶溶液 150 μL中,37 ℃孵育 30 min,加入终质量
浓度为 100 μg/mL的 PI溶液室温避光孵育 15 min,
用流式细胞仪分析,激发波长 488 nm,发射波长
615 nm。使用软件根据细胞 FL2-A的荧光道数进行
DNA倍体分析,分析时通过设门法去除细胞碎片和
细胞团块的干扰。
2.8 Western blotting 检测 P-gp 的表达
以 10 μmol/L的姜黄素及姜黄素类似物 3、4处
理 K562/A02细胞 48 h,收集细胞 PBS洗涤 2次,
加 100 μL含 PMSF的裂解液冰上裂解 30 min,其
间反复吹打 3~4 次,4 ℃、12 000 r/min 离心 10
min,取上清按照 BCA蛋白测定试剂盒说明书检测
中草药 Chinese Traditional and Herbal Drugs 第 45卷 第 12期 2014年 6月

·1739·
蛋白质的量。样品与等体积 2×加载缓冲液混匀,
100 ℃变性 5 min,6% SDS-PAGE电泳,转移蛋白
至 PVDF膜,将 PVDF膜浸润在含 5%脱脂奶粉的
TBST中 1 h,加入特异性一抗 4 ℃过夜,加入 HRP
标记的二抗室温孵育 2 h,最后加入发光底物 X射
线曝光显示目的蛋白条带。
2.9 荧光法检测细胞内阿霉素的累积
取对数生长期的 K562/A02,以 5×103/mL 密
度接种于预先处理过的 96 孔培养板中,每孔 100
μL,受试化合物组中分别加入 10 μmol/L姜黄素及
姜黄素类似物 3、4,药物作用 48 h后,离心去除
药物,再加入终浓度为 10 μmol/L阿霉素和 Hoechst
33342(1 μg/mL)染色 30 min,用 PBS洗 3次,应
用高内涵活细胞成像系统的 Target Activation
BioApplication软件进行分析[6]。
2.10 统计学分析
实验数据以 ±x s表示,应用 SPSS 12.0统计软
件处理数据,两样本均数比较采用 t 检验,多组间
均数比较采用方差分析。
3 结果
3.1 姜黄素及其类似物的对肿瘤细胞生长的影响
姜黄素对 K562 细胞的生长抑制率高于等浓度
阿霉素的作用,但弱于长春新碱与紫杉醇的作用;
姜黄素结构类似物 1~5、8、10~11、16~17对 K562
细胞的生长抑制率高于姜黄素组,见表 1。对多药
耐药细胞 K562/A02,姜黄素及其类似物在 10、100
μmol/L时对细胞生长的抑制率强于阿霉素的作用,
但稍弱于长春新碱的作用,其中姜黄素结构类似物
3、4作用较强,与各浓度下姜黄素的抗耐药肿瘤活
性相似,见表 2。此外,撤药 1 周后,显微镜观察
发现姜黄素组细胞逐渐恢复生长,类似物 3、4 组
则出现细胞生长的持续抑制效应。
3.2 姜黄素及其类似物的水解稳定性
实验结果显示,姜黄素在有水溶剂中易分解,
经结构改造后,姜黄素结构类似物分解率极显著下
降(P<0.001),提示结构改造成功。HPLC法测得
姜黄素及其结构类似物 3、4 的降解率分别为
(30.59±1.09)%、(5.24±0.77)%、(2.01±0.58)%。
此外,姜黄素、姜黄素结构类似物 3、4在无水乙
醇(溶液 A)中最大吸收波长分别为 426、380、
374 nm,而在 50%乙醇溶液(溶液 B、C)中最
大吸收红移至 430、384、376 nm,这与溶剂极性
增强有关。
表 1 姜黄素及其类似物对 K562 细胞生长的抑制作用
( ± = 3x s n, )
Table 1 Inhibition of curcumin and its analogues
on growth of K562 cells ( ± = 3x s n, )
组别 C /
(μmol∙L−1)
生长抑制
率 / % 组别
C /
(μmol∙L−1)
生长抑制
率 / %
阿霉素 10 23.47±1.22 9 10 32.27±1.33
长春新碱 10 88.32±2.33## 10 10 43.26±1.03##
紫杉醇 10 74.53±3.45## 11 10 49.45±2.10##
姜黄素 10 33.98±1.09 12 10 35.09±0.89
1 10 42.93±1.67## 13 10 33.67±1.21
2 10 38.92±0.89## 14 10 29.94±0.77
3 10 49.87±2.11## 15 10 33.33±2.46
4 10 52.12±2.12## 16 10 56.65±1.57##
5 10 49.66±1.37## 17 10 61.38±3.11##
6 10 29.89±0.77 18 10 24.98±1.89
7 10 15.02±0.52 19 10 26.05±1.52
8 10 39.31±2.12##
与姜黄素组比较:##P<0.01
##P < 0.01 vs curcumin group
3.3 姜黄素及其类似物的凋亡诱导作用
如表 3所示,双染结果表明 10 μmol/L的姜黄
素及其类似物 3、4对耐药细胞 K562/A02主要通过
凋亡诱导作用产生细胞毒性,晚期凋亡及坏死的细
胞比例较晚期凋亡比例低。在同样浓度下,类似物
3、4的作用均优于姜黄素的作用。
3.4 姜黄素及其类似物的凋亡诱导特点
图 2 结果表明,姜黄素与其类似物 3、4 对
K562/A02 细胞有较强的 caspase-3 激活作用(图
2-A),其诱导的凋亡作用与细胞内 MMP显著下降
有关(图 2-B),但姜黄素作用细胞后细胞内 ROS
并未发现显著升高(图 2-C),提示姜黄素并不通过
增加细胞内 ROS 发挥促凋亡作用。而姜黄素类似
物 3、4对细胞内 ROS反而有一定的降低作用,推
测此作用可能与其抗氧化能力有关。
3.5 姜黄素及其类似物对细胞周期的影响
如表 4所示,10 μmol/L的姜黄素及其类似物 3、
4对 K562/A02细胞 G0/G1期无显著影响,但均能减
少处于 G2/M期和 S期的细胞比例,相应亚二倍体
量增加,指示细胞凋亡增强,此结果与 Annexin
V/FITC-PI双染结果一致:姜黄素与其类似物 3、4
均可显著增加细胞凋亡,且类似物 3、4作用较强。
中草药 Chinese Traditional and Herbal Drugs 第 45卷 第 12期 2014年 6月

·1740·
表 2 姜黄素及其类似物对 K562/A02 细胞的生长抑制作用 ( ± = 3x s n, )
Table 2 Inhibition of curcumin and its analogues on growth of K562/A02 cells ( ± = 3x s n, )
组别 C / (μmol∙L−1) 生长抑制率 / % 组别 C / (μmol∙L−1) 生长抑制率 / % 组别 C / (μmol∙L−1) 生长抑制率 / %
阿霉素 1 31.95±1.22## 5 1 31.74±1.44## 13 1 37.51±0.57##
10 28.91±1.11 10 31.57±1.39 10 42.55±0.44##
100 34.96±0.91 100 46.07±2.11 100 83.44±2.83
长春新碱 1 29.47±1.62## 6 1 23.20±1.56## 14 1 37.96±0.46##
10 48.24±2.44## 10 35.66±3.24 10 33.75±0.48
100 96.43±4.47 100 38.69±1.82 100 22.89±3.12
紫杉醇 1 22.95±0.47## 7 1 16.28±0.67 15 1 26.65±2.32##
10 43.32±1.09## 10 20.67±2.19 10 29.53±3.22
100 79.77±2.12 100 32.48±2.77 100 30.90±2.04
姜黄素 1 18.85±0.32 8 1 21.35±0.89 16 1 25.92±1.75##
10 33.27±2.31 10 32.40±2.17 10 27.76±2.48
100 93.48±3.77 100 44.62±0.64 100 38.87±1.93
1 1 26.26±0.89## 9 1 34.12±2.14## 17 1 25.33±1.87##
10 63.65±3.22## 10 36.53±1.88 10 33.66±3.12
100 71.48±2.32 100 45.42±2.78 100 26.49±2.64
2 1 30.16±2.11## 10 1 26.54±0.99## 18 1 40.88±2.03##
10 41.05±2.12## 10 26.65±1.53 10 39.99±3.01
100 51.58±3.39 100 41.00±1.99 100 35.58±2.35
3 1 30.70±1.76## 11 1 25.80±1.43## 19 1 34.19±1.46##
10 46.56±0.78## 10 25.61±0.66 10 41.31±1.99##
100 92.97±3.55 100 40.69±2.78 100 42.06±2.45
4 1 29.01±2.01## 12 1 33.68±2.22##
10 35.65±0.57 10 26.21±1.82
100 94.52±2.89 100 44.14±1.92
与同浓度姜黄素比较:##P<0.01
##P < 0.01 vs curcumin group at same concentration
表 3 姜黄素及其类似物对 K562/A02 细胞的凋亡诱导作用 ( ± = 3x s n, )
Table 3 Induction of curcumin and its analogues on apoptosis of K562/A02 cells ( ± = 3x s n, )
组别
凋亡率 / %
正常活细胞 / % 早期凋亡 晚期凋亡与坏死
对照 2.32±0.78 1.57±0.21 96.11±1.12
姜黄素 15.90±1.20** 6.75±1.10** 77.35±1.58**
3 29.37±2.93** ## 10.97±1.30**# 59.66±3.85**##
4 25.54±3.68** # 8.09±1.34** 66.37±4.27**#
与对照组比较:**P<0.01;与姜黄素组比较:#P<0.05 ##P<0.01
**P < 0.01 vs control group; #P < 0.05 ##P < 0.01 vs curcumin group
3.6 姜黄素及其类似物对 K562/A02 细胞 P-gp 表
达的影响
Western blotting 检测显示,与对照组相比,经 10
μmol/L 姜黄素或其类似物 3、4 分别作用 48 h 后,
K562/A02细胞 P-gp蛋白表达显著降低(P<0.01),
姜黄素与其类似物 3、4的作用效果相似,结果见图 3。
3.7 姜黄素及其类似物对 K562/A02 细胞内阿霉素
累积的影响
高内涵活细胞成像系统检测 K562/A02 细胞内
阿霉素的累积,荧光强度扫描数据表明(图 4):对
照组的阿霉素在细胞中累积较少、荧光强度低,而
预孵了姜黄素及其类似物 3、4 各组则均可显著增
中草药 Chinese Traditional and Herbal Drugs 第 45卷 第 12期 2014年 6月

·1741·


与对照组比较:*P<0.05 **P<0.01 *** P<0.001,下同
*P < 0.05 **P < 0.01 *** P < 0.001 vs control group, same as below
图 2 姜黄素及其类似物 3、4 诱导 K562/A02 细胞凋亡与细胞内 caspase-3 活性 (A)、MMP (B) 和 ROS (C) 水平的相关性
Fig. 2 Correlation between induction of curcumin and its analogues 3 and 4 on apoptosis in K562/A02 cells and intracellular
caspase-3 activation (A), MMP level (B), and ROS generation (C)
表 4 姜黄素及其类似物对 K562/A02 细胞周期的影响 ( ± = 3x s n, )
Table 4 Effect of curcumin and its analogues on cell cycle in K562/A02 cells ( ± = 3x s n, )
组别
细胞周期分布 / %
G0/G1期 G2/M期 S期 亚二倍体
对照 57.42±1.26 21.14±1.42 18.97±0.46 2.46±0.69
姜黄素 57.79±1.60 16.54±0.69** 18.22±1.03 7.45±1.94*
3 58.57±1.54 13.58±0.69** 15.56±0.92** 12.30±2.00**
4 58.10±1.86 14.96±0.86** 15.38±0.51*** 11.56±2.03**



图 3 姜黄素及其类似物降低K562/A02细胞P-gp蛋白表达
( ± = 3x s n, )
Fig. 3 Decreasing effect of curcumin and its analogues
on P-gp expression in K562/A02 cells ( ± = 3x s n, )
加阿霉素在细胞内的累积、荧光强度显著增加。此
实验结果进一步验证了姜黄素及其类似物 3、4 对
耐药细胞 P-gp的抑制作用。


图 4 姜黄素及其类似物对 K562/A02 细胞内阿霉素累积的
影响 ( ± = 3x s n, )
Fig. 4 Effect of curcumin and its analogues on intracellular
adriamycin accumulation of K562/A02 cells
( ± = 3x s n, )
4 讨论
虽然姜黄素具有显著的抗炎、抗氧化、抗肿瘤、
抗菌、抗病毒等活性,但是姜黄素不稳定、易降解、
代谢快的问题还是极大地限制了其制备、储存及应
用。这与姜黄素的化学结构有关,它的分子结构高
度对称、共轭,其中 β-二酮中的一个酮常以烯醇的
形式存在,分子中心部分的 α,β-双不饱和的 1, 3-
二酮是代谢不稳定的最大因素,在水溶液和磷酸缓
冲溶液中姜黄素的 β-二酮极易断裂。因此普遍认为
姜黄素分子中心部分是导致姜黄素在体内迅速降
ca
sp
as
e-
3




3.0
2.5
2.0
1.5
1.0
0.5
0
对照 姜黄素 类似物 3 类似物 4
M
M
P




1.2
1.0
0.8
0.6
0.4
0.2
0
对照 姜黄素 类似物 3 类似物 4 对照 姜黄素 类似物 3 类似物 4
R
O
S




1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
P-gp
β-actin
对照 姜黄素 类似物 3 类似物 4
对照 姜黄素 类似物 3 类似物 4
P-
gp







1.2
1.0
0.8
0.6
0.4
0.2
0






/

10
4 )
20
18
16
14
12
10
8
6
4
2
0
对照 姜黄素 类似物 3 类似物 4
A B C
中草药 Chinese Traditional and Herbal Drugs 第 45卷 第 12期 2014年 6月

·1742·
解的原因[7-8]。本课题组通过对其中心部分改造,设
计合成了一系列姜黄素类似物,拟从中筛选获得稳
定性高、活性优越的苗头化合物。因此,在实验设
计中,姜黄素分子中心部分选取代谢不敏感的电子
等排体嘧啶环替换原有结构,不仅使酮羰基还原和
1, 3-二酮的断裂难以进行,而且最大限度地保持了
原中心基团的理化性质:嘧啶环维持了分子中心部
分的共轭性和平面性;2个氮原子均含有孤对电子,
是优势氢键受体;并且鉴于嘧啶环的缺电子性质,
2 个碳碳双键的 Michael 受体的性质也予以最大程
度的保留。此外,尽量不改变姜黄素周边的芳环,
同时以 3, 4-氧代和 2-卤代对其进行合理取代。和已
知的类似物相比,本课题组设计的类似物对姜黄素
分子结构的继承性更强,因此更有可能保留姜黄素
原有的优势活性。
肿瘤多药耐药(MDR)是临床肿瘤化疗的最大
障碍,表现为肿瘤细胞对结构各异、机制不同的多
种药物均产生耐药的特点。多药耐药的主要机制是
P-gp的过度表达,使抗肿瘤药物难以在细胞内达到
有效浓度[9]。迄今为止,尚未探索出有效的治疗措
施。近 20 年来研究显示姜黄素在抑制敏感肿瘤细
胞的转移、增生和浸润的过程中有多个作用靶点,
但对其抗耐药肿瘤的作用研究较少[10]。本研究发现
姜黄素对耐药细胞 K562/A02 表现出较好的生长抑
制作用,部分经结构修饰后的姜黄素结构类似物也
同样表现出较好的抗耐药肿瘤细胞活性。进一步研
究表明,姜黄素结构类似物 3、4 抗耐药肿瘤作用
与姜黄素近似,机制研究表明其抗耐药肿瘤的作用
与激活细胞凋亡通路有关,表现为降低细胞MMP、
增加 caspase-3活性、促进细胞凋亡,但此过程并未
伴随细胞内 ROS 的大量产生。此外经姜黄素和其
类似物 3、4处理的细胞 G2/M期和 S期细胞比例均
有显著下调,亚二倍体显著增加,也提示细胞凋亡
的增加。Western blotting结果提示姜黄素及其类似
物 3、4抗耐药肿瘤的作用可能与其下调 P-gp有关,
这与以往文献报道的姜黄素作用一致[11-12]。此外,
在细胞毒实验中发现,类似物 3、4 在撤药 1 周后
后仍对 K562/A02 细胞有持续的生长抑制作用,而
姜黄素组撤药后细胞逐渐恢复生长,提示类似物 3、
4 可能具有比姜黄素更为持久的潜在抗肿瘤作用,
其作用机制有待进一步研究。
参考文献
[1] 罗廷顺, 李洪文, 刘正文, 等. 姜黄素的提取分离与药
理作用研究进展 [J]. 现代药物与临床, 2011, 26(2):
102-107.
[2] 韩 刚, 毕 瑞, 全 乐, 等. 去甲氧基姜黄素对姜黄
素稳定作用的研究 [J]. 中药材, 2008, 31(4): 592-594.
[3] Achelle S, Nouira I, Pfaffinger B, et al. V-Shaped 4, 6-bis
(arylvinyl) pyrimidine oligomers: synthesis and optical
properties [J]. J Org Chem, 2009, 74(10): 3711-3117.
[4] 厉凤霞, 李晓丽, 李 斌. 葡萄糖-聚乙二醇-姜黄素的
合成及其对姜黄素性能的改善 [J]. 合成化学, 2011,
19(1): 15-18.
[5] 赵 欣, 王爱里, 袁 园, 等. 姜黄中姜黄素、去甲氧
基姜黄素、双去甲氧基姜黄素的光稳定性分析 [J]. 中
草药, 2013, 44(10): 1338-1341.
[6] Xie S Q, Li Q, Zhang Y H, et al. NPC-16, a novel
naphthalimidepolyamine conjugate, induced apoptosis
and autophagy in human hepatoma HepG2 cells and
Bel-7402 cells [J]. Apoptosis, 2011, 16(1): 27-34.
[7] Mishra S, Karmodiya K, Surolia N, et al. Synthesis and
exploration of novel curcumin analogues as anti-malarial
agents [J]. Bioorg Med Chem, 2008, 16(6): 2894-2902.
[8] Liang G, Shao L, Wang Y, et al. Exploration and synthesis
of curcumin analogues with improved structural stability
both in vitro and in vivo as cytotoxic agents [J]. Bioorg
Med Chem, 2009, 17(6): 2623-2631.
[9] 张 峰, 岑 娟. 肿瘤多药耐药模型的建立与评价方
法 [J]. 药物评价研究, 2013, 36(5): 377-381.
[10] 余美荣, 蒋福升, 丁志山. 姜黄素的研究进展 [J]. 中
草药, 2009, 40(5): 828-831.
[11] Tang X Q, Bi H, Feng J Q, et al. Effect of curcumin on
multidrug resistance in resistant human gastric carcinoma
cell line SGC7901/VCR [J]. Acta Pharmacol Sin, 2005,
26(8): 1009-1016.
[12] 范景辉, 张毕奎. 姜黄素对药物转运体影响的研究进
展 [J]. 中国药房, 2011, 35(22): 3351-3353.